第二章--《有理数及其运算》易错题及难题
2021-2022学年北师大版七年级数学上册第二章 有理数及其运算 章末专题复习练习题(教师版)

2021-2022学年北师大版七年级数学上册第二章 有理数及其运算 章末专题复习练习题专题课1 绝对值的应用类型1 绝对值的非负性①|a |≥0.①若|a |+|b |=0,则a =b =0.1.若|x |=x ,则x 的取值范围是( )A .x >0B .x ≤0C .x ≥0D .x <0 2.若|x -2|=2-x ,则x 的取值范围是__________. 3.已知|x -3|+|y -1|=0,求2x +3y 的值.4.已知有理数|x -2|与|y -3|互为相反数,求x +y +xy 的值.类型2 绝对值的最值问题5.当a =2时,|2-a |+2会有最小值,且最小值是________. 6.当b =12 时,5-|2b -1|会有最大值,最大值是________.7.已知x 为有理数,则|x -5|+|x -3|的最小值是________.8.同学们都知道:|5-(-2)|表示5与-2之差的绝对值,实际上也可以理解成5和-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)若|x -2|=5,则x =________;(2)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|有最小值,请写出当x 在什么范围时|x-3|+|x -6|有最小值,并求出最小值;(3)当x 取何值时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值是多少?专题课2 有理数的大小比较类型1 利用数轴比较有理数的大小1.如图,数轴上的四个点分别表示有理数a ,b ,c ,d ,则下列说法正确的是( )A .a >bB .c <0C .b <cD .-1>d2.已知有理数在数轴上对应的点如图所示,则a ,-a ,-1,1的大小关系是( )A .a <-1<1<-aB .-a <-1<a <1C .a <-1<-a <1D .-a <-1<1<a 3.大于-2.5而小于3.5的整数共有( )A .6个B .5个C .4个D .3个4.已知a ,b 两数在数轴上的位置如图所示,试在数轴上找出表示-a ,-b 的点,并用“<”连接a ,b ,-a ,-b .5.在数轴上表示下列各数,并把这些数用“>”连接起来: 3.5,3.5的相反数,-12 ,绝对值等于3的数,最大的负整数.类型2 利用比较大小的法则比较有理数的大小 6.下列各数中:-1,0,12,0.5,最小的数是( )A .0.5B .0C .12D .-1 7.下列比较大小结果正确的是( )A .-3<-4B .-(-3)<|-3|C .-12 >-13D .|-16 |>-178.比较大小:1100 ________-0.009;-2 0192 020 ________-2 0202 019 .9.已知数:0,-2,1,-3,5.用“>”把各数连接起来.类型3 利用绝对值比较大小 10.比较下列各对数的大小: (1)-0.1与-0.2;(2)-45 与-56 ;(3)-821 与-|-17 |.类型4 利用特殊值比较有理数的大小11.如图,数轴上的点表示的有理数是a ,b ,则下列式子正确的是( )A .-a <bB .a <bC .|a |<|b |D .-a <-b 12.如果a >0,b <0,a <|b |,那么a ,b ,-a ,-b 的大小关系是( ) A .-b >a >-a >b B .a >b >-a >-b C .-b >a >b >-a D .b >a >-b >-a专题课3 一线串起有理数类型1 数轴与有理数1.数轴上,如果表示数a 的点在原点的左边,那么a 是( )A .正数B .负数C .零D .以上皆有可能2.点M 为数轴上表示-2的点,将点M 沿数轴向右平移5个单位到点N ,则点N 表示的数是( )A .3B .5C .-7D .3或-7【变式】 在数轴上,点A ,B 分别表示数a ,2,若将点B 在数轴上平移3个单位长度后与点A 重合,则数a 为( )A .5B .-1C .5或-1D .5或-2 3.在数轴上,点A 表示数-4,距A 点3个单位长度的点表示的数是________.4.请在数轴上表示下列各数:-|-3|,4,-1.5,-5,212 并将它们用“>”连接起来,并回答表示最大数与最小数两点之间相距多少个单位长度?5.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A,再向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.(1)画出数轴,标出A,B,C三点在数轴上的位置,并写出A,B,C三点表示的数;(2)根据点C在数轴上的位置,点C可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?(3)若蚂蚁从点D出发,先向右爬了7个单位长度,再向左爬了4个单位长度,此时它恰好回到了原点,求点D表示的数.类型2数轴与相反数6.已知数轴上A,B两点间的距离是6,它们分别表示的两个数a、b互为相反数(a>b),那么a=________,b=________.7.在数轴上,点A表示1,点B、点C所表示的数互为相反数,且点C与点A间的距离为3,则点B所表示的数是________.8.小明做题时,画了一个数轴,在数轴上原有一个点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在了-3的相反数的位置,想想,要把数轴画正确,原点要向哪个方向移动几个单位长度?( )A.向右移6个单位长度B.向右移3个单位长度C.向左移6个单位长度D.向左移3个单位长度9.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?类型3数轴与绝对值10.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是( )A.点A B.点B C.点C D.点D 11.如图,已知数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A.-4 B.0 C.-2 D.4 12.已知a,b是不为0的有理数,且|a|=-a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是( )13.有理数a,b在数轴上的位置如图所示,且|a|=2,|b|=3,则a=________,b=________.14.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A处出发去寻找B,C,D处的其他福娃,规定:向上向右走为正,向下向左走为负.如果从A到B 记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)B→D(________),C→________(-3,-4);(2)若贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程.类型4利用数轴探究问题15.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,-52 ,-3,观察数轴,与点A 的距离3的点表示的数是________,A ,B 两点之间的距离为________;(2)以点A 为分界点,把数轴折叠,与点B 重合的点表示的数是________;(3)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是0.5;若此数轴上M ,N 两点之间的距离为11(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则点M 表示的数是________,点N 表示的数是________. 16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是________; ①从-2到2有5个整数,分别是________________; ①从-3到3有7个整数,分别是________________________; ①从-100到100有________个整数;(2)根据以上规律,直接写出,从-3.9到3.9有7个整数,从-10.1到10.1有________个整数;(3)在单位长度是1 cm 的数轴上任意画一条长为1 000 cm 的线段AB ,线段AB 盖住的整点最多有多少个?专题课4 有理数的加减运算技巧有理数的加减运算的简便方法归纳 方法1 相反数结合法【例1】 计算:(-2)+3+1+(-3)+2+(-4).方法2 同号结合法——把正数和负数分别结合相加 【例2】 计算:(+9)-(+10)+(-2)-(-8)+3.方法3 同分母结合法 【例3】 计算:(1)-23 -35 +78 -13 -25 +18 ;(2)-479 -(-315 )-(+229 )+(-615 ).方法4 凑整结合——分数相加,把相加得整数的数先结合相加 【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18 |+78 .方法5 分解——将一个数拆分成两个数的和或差 【例5】 计算:-156 +(-523 )+2434 +312 .方法6 裂项相消法【例6】 观察下列各式:12 =11×2 =1-12 ,16 =12×3 =12 -13 ,112 =13×4 =13 -14 ,…,根据规律完成下列各题. (1)19×10=________; (2)计算12 +16 +112 +120 +…+19 900的值为________.易错点 分解带分数时易弄错符号【例7】 计算:634 +313 -514 -312 +123 .强化训练 计算:(1)(-7)-(+5)+(-4)-(-10);(2)-9+6-(+11)-(-15);(3)3.5-4.6+3.5-2.4;(4)12 +(-23 )+45 +(-12 )+(-13 );(5)-478 -(-512 )+(-412 )-318 ;(6)0.25+112 +(-23 )-14 +(-512 );(7)|-12 |-(-2.5)-(-1)-|0-212 |;(8)0+1-[(-1)-(-37 )-(+5)-(-47 )]+|-4|;(9)-205+40034 +(-20423 )+(-112 );(10)-12 -16 -112 -120 -130 -142 -156 -172 ;(11)1-2-3+4+5-6-7+8+…+97-98-99+100.专题课5 有理数的混合运算技巧有理数混合运算的简便方法归纳 方法1 运用乘法的交换律和结合律【例1】 计算:531 ×(-29 )×(-2115 )×(-412 ).方法2 运用乘法对加法的分配律 【例2】 计算:(1)-16×(34 -78 +12 )+(-1)2020.(2)391314 ×(-14);方法3 逆用乘法对加法的分配律【例3】 计算:4×(-367 )-3×(-367 )-6×367 .方法4 除法变乘法,再利用乘法对加法的分配律 【例4】 计算:(113 -58 +712 )÷(-124 ).强化训练计算:(能用简便方法的尽量用简便方法计算) (1)-0.75×(-112 )÷(-214 );(2)-(3-5)×32÷(-1)3;(3)(-1.5)×45 ÷(-25 )×34 ;(4)-14-(12 -23 +14 )×12;(5)(-5)÷(-127 )×(-214 )÷7;(6)1318 ÷(-7);(7)(-5)-(-5)×110 ÷110 ×(-5);(8)2×(-137 )-234 ×13+(-137 )×5+14 ×(-13);(9)12.5×6.787 5×18 +1.25×678.75×0.125+0.125×533.75×18 ;(10)-14-(-512 )×411 +(-2)3÷|-32+1|;(11)1-(-112 )÷(12 -14 -16 );(12)1-0.52 -|0.5-23 |÷13 ×|-2-(-3)2|;(13)[(-1)2 021-(32 -56 -19 )×18]÷|-22|.2021-2022学年北师大版七年级数学上册第二章有理数及其运算章末专题复习练习题专题课1绝对值的应用类型1绝对值的非负性①|a|≥0.①若|a|+|b|=0,则a=b=0.1.若|x|=x,则x的取值范围是( C )A.x>0 B.x≤0 C.x≥0 D.x<02.若|x-2|=2-x,则x的取值范围是x≤2.3.已知|x-3|+|y-1|=0,求2x+3y的值.解:因为|x-3|和|y-1|均为非负数,即|x-3|≥0, |y-1|≥0,又因为|x-3|+|y-1|=0,所以|x-3|=0,|y-1|=0.所以x-3=0,y-1=0.所以x=3,y=1.所以2x+3y=2×3+3×1=9.4.已知有理数|x-2|与|y-3|互为相反数,求x+y+xy的值.解:因为|x-2|与|y-3|互为相反数,所以|x-2|=-|y-3|.所以|x-2|+|y-3|=0.所以x-2=0,y-3=0.所以x=2,y=3.所以x+y+xy=2+3+2×3=11.类型2 绝对值的最值问题5.当a =2时,|2-a |+2会有最小值,且最小值是2. 6.当b =12 时,5-|2b -1|会有最大值,最大值是5.7.已知x 为有理数,则|x -5|+|x -3|的最小值是2.8.同学们都知道:|5-(-2)|表示5与-2之差的绝对值,实际上也可以理解成5和-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)若|x -2|=5,则x =7或-3;(2)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|有最小值,请写出当x 在什么范围时|x -3|+|x -6|有最小值,并求出最小值;(3)当x 取何值时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值是多少? 解:(2)当3≤x ≤6时,|x -3|+|x -6|有最小值,最小值为3. (3) 当x =2时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值为7.专题课2 有理数的大小比较类型1 利用数轴比较有理数的大小1.如图,数轴上的四个点分别表示有理数a ,b ,c ,d ,则下列说法正确的是( C )A .a >bB .c <0C .b <cD .-1>d2.已知有理数在数轴上对应的点如图所示,则a ,-a ,-1,1的大小关系是( A )A .a <-1<1<-aB .-a <-1<a <1C .a <-1<-a <1D .-a <-1<1<a 3.大于-2.5而小于3.5的整数共有( A )A .6个B .5个C .4个D .3个4.已知a ,b 两数在数轴上的位置如图所示,试在数轴上找出表示-a ,-b 的点,并用“<”连接a ,b ,-a ,-b .解:-a ,-b 对应的点如图所示. 由数轴上点的位置可得-b <a <-a <b .5.在数轴上表示下列各数,并把这些数用“>”连接起来: 3.5,3.5的相反数,-12 ,绝对值等于3的数,最大的负整数.解:各数分别为:3.5,-3.5,-12,±3,-1.在数轴上表示如图:这些数由大到小用“>”连接为:3.5>3>-12 >-1>-3>-3.5.类型2 利用比较大小的法则比较有理数的大小 6.下列各数中:-1,0,12,0.5,最小的数是( D )A .0.5B .0C .12D .-1 7.下列比较大小结果正确的是( D )A .-3<-4B .-(-3)<|-3|C .-12 >-13D .|-16 |>-178.比较大小:1100 >-0.009;-2 0192 020 >-2 0202 019 .9.已知数:0,-2,1,-3,5.用“>”把各数连接起来. 解:5>1>0>-2>-3.类型3 利用绝对值比较大小 10.比较下列各对数的大小: (1)-0.1与-0.2;解:因为|-0.1|=0.1,|-0.2|=0.2,且0.1<0.2,所以-0.1>-0.2.(2)-45 与-56;解:因为|-45 |=45 =2430 ,|-56 |=56 =2530 ,且2430 <2530 , 所以-45 >-56 .(3)-821 与-|-17 |.解:-|-17 |=-17.因为|-821 |=821 ,|-17 |=17 =321 ,且821 >321 , 所以-821 <-|-17 |.类型4 利用特殊值比较有理数的大小11.如图,数轴上的点表示的有理数是a ,b ,则下列式子正确的是( B )A .-a <bB .a <bC .|a |<|b |D .-a <-b 12.如果a >0,b <0,a <|b |,那么a ,b ,-a ,-b 的大小关系是( A ) A .-b >a >-a >b B .a >b >-a >-b C .-b >a >b >-a D .b >a >-b >-a专题课3 一线串起有理数类型1 数轴与有理数1.数轴上,如果表示数a 的点在原点的左边,那么a 是( B )A .正数B .负数C .零D .以上皆有可能2.点M 为数轴上表示-2的点,将点M 沿数轴向右平移5个单位到点N ,则点N 表示的数是( A )A .3B .5C .-7D .3或-7【变式】 在数轴上,点A ,B 分别表示数a ,2,若将点B 在数轴上平移3个单位长度后与点A 重合,则数a 为( C )A .5B .-1C .5或-1D .5或-2 3.在数轴上,点A 表示数-4,距A 点3个单位长度的点表示的数是-7或-1. 4.请在数轴上表示下列各数:-|-3|,4,-1.5,-5,212 并将它们用“>”连接起来,并回答表示最大数与最小数两点之间相距多少个单位长度? 解:如图所示.4>212>-1.5>-|-3|>-5.最大数与最小数两点之间相距9个单位长度.5.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A ,再向右爬了2个单位长度到达点B ,然后又向左爬了10个单位长度到达点C .(1)画出数轴,标出A ,B ,C 三点在数轴上的位置,并写出A ,B ,C 三点表示的数; (2)根据点C 在数轴上的位置,点C 可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?(3)若蚂蚁从点D 出发,先向右爬了7个单位长度,再向左爬了4个单位长度,此时它恰好回到了原点,求点D 表示的数. 解:(1)如图:A ,B ,C 三点表示的数分别为4,6,-4.(2)点C 可以看作是蚂蚁从原点出发,向左爬了4个单位长度得到的.(3)从原点向右爬4个单位长度,再向左爬7个单位长度,可以到D ,结合数轴可得,点D 表示的数为-3.类型2数轴与相反数6.已知数轴上A,B两点间的距离是6,它们分别表示的两个数a、b互为相反数(a>b),那么a=3,b=-3.7.在数轴上,点A表示1,点B、点C所表示的数互为相反数,且点C与点A间的距离为3,则点B所表示的数是2或-4.8.小明做题时,画了一个数轴,在数轴上原有一个点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在了-3的相反数的位置,想想,要把数轴画正确,原点要向哪个方向移动几个单位长度?( A )A.向右移6个单位长度B.向右移3个单位长度C.向左移6个单位长度D.向左移3个单位长度9.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?解:(1)点C表示的数是-1.(2)点C表示的数是0.5,D表示的数是-4.5.类型3数轴与绝对值10.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是( D )A.点A B.点B C.点C D.点D 11.如图,已知数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( C )A .-4B .0C .-2D .412.已知a ,b 是不为0的有理数,且|a |=-a ,|b |=b ,|a |>|b |,那么用数轴上的点来表示a ,b 时,正确的是( C )13.有理数a ,b 在数轴上的位置如图所示,且|a |=2,|b |=3,则a =2或-2,b =3.14.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A 处出发去寻找B ,C ,D 处的其他福娃,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)B →D (+3,-2),C →A (-3,-4);(2)若贝贝的行走路线为A →B →C →D ,请计算贝贝走过的路程.解:|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10(米).答:贝贝走过的路程为10米.类型4 利用数轴探究问题15.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,-52,-3,观察数轴,与点A 的距离3的点表示的数是4或-2,A ,B 两点之间的距离为3.5;(2)以点A 为分界点,把数轴折叠,与点B 重合的点表示的数是4.5;(3)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是0.5;若此数轴上M ,N 两点之间的距离为11(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则点M 表示的数是-6.5,点N 表示的数是4.5.16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是-1,0,1;①从-2到2有5个整数,分别是-2,-1,0,1,2;①从-3到3有7个整数,分别是-3,-2,-1,0,1,2,3;①从-100到100有201个整数;(2)根据以上规律,直接写出,从-3.9到3.9有7个整数,从-10.1到10.1有21个整数;(3)在单位长度是1 cm的数轴上任意画一条长为1 000 cm的线段AB,线段AB盖住的整点最多有多少个?解:依题意,得①当线段AB起点在整点时覆盖1 001个数;①当线段AB起点不在整点,即在两个整点之间时覆盖1 000个数.综上所述,线段AB盖住的整点最多有1 001个.专题课4有理数的加减运算技巧有理数的加减运算的简便方法归纳方法1相反数结合法【例1】计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.方法2同号结合法——把正数和负数分别结合相加【例2】计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)-(10+2)=20-12=8.方法3同分母结合法【例3】计算:(1)-23 -35 +78 -13 -25 +18; 解:原式=(-23 -13 )+(-35 -25 )+(78 +18) =-1-1+1=-1.(2)-479 -(-315 )-(+229 )+(-615). 解:原式=[-479 -(+229 )]+[-(-315 )+(-615)] =-7-3=-10.方法4 凑整结合——分数相加,把相加得整数的数先结合相加【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18 |+78. 解:原式=0.75-3+0.25+18 +78=(0.75+0.25)+(18 +78)-3 =1+1-3=-1.方法5 分解——将一个数拆分成两个数的和或差【例5】 计算:-156 +(-523 )+2434 +312. 解:原式=(-1-56 )+(-5-23 )+(24+34 )+(3+12) =[(-1)+(-5)+24+3]+[(-56 )+(-23 )+34 +12] =21+(-14) =2034.方法6 裂项相消法【例6】 观察下列各式:12 =11×2 =1-12 ,16 =12×3 =12 -13 ,112 =13×4 =13 -14,…,根据规律完成下列各题.(1)19×10 =19 -110 ; (2)计算12 +16 +112 +120 +…+19 900 的值为99100 .易错点 分解带分数时易弄错符号【例7】 计算:634 +313 -514 -312 +123. 解:原式=6+34 +3+13 -5-14 -3-12 +1+23=(6+3-5-3+1)+(34 +13 -14 -12 +23) =2+1=3.强化训练计算:(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(3)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7-7=0.(4)12 +(-23 )+45 +(-12 )+(-13); 解:原式=[12 +(-12 )]+[(-23 )+(-13 )]+45=0+(-1)+45=-15.(5)-478 -(-512 )+(-412 )-318; 解:原式=-478 +512 -412 -318=(-478 -318 )+(512 -412) =-8+1=-7.(6)0.25+112 +(-23 )-14 +(-512); 解:原式=14 +112 +(-23 )-14 +(-512) =(14 -14 )+[112 +(-23 )+(-512)] =-1.(7)|-12 |-(-2.5)-(-1)-|0-212|; 解:原式=12 +2.5+1-212=12 +1+(2.5-212) =112.(8)0+1-[(-1)-(-37 )-(+5)-(-47)]+|-4|; 解:原式=1-[(-1)+37 -5+47]+4 =1-[(-1+37 +47)-5]+4 =10.(9)-205+40034 +(-20423 )+(-112); 解:原式=(-205)+400+34 +(-204)+(-23 )+(-1)+(-12) =(400-205-204-1)+(34 -23 -12) =-10+(-512) =-10512.(10)-12 -16 -112 -120 -130 -142 -156 -172; 解:原式=-(12 +16 +112 +120 +130 +142 +156 +172) =-(1-12 +12 -13 +13 -14 +14 -15 +15 -16 +16 -17 +17 -18 +18 -19 ) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100)=-1+1-1+1-…-1+1=0.专题课5 有理数的混合运算技巧有理数混合运算的简便方法归纳方法1 运用乘法的交换律和结合律【例1】 计算:531 ×(-29 )×(-2115 )×(-412). 解:原式=-531 ×29 ×3115 ×92=-(531 ×3115 )×(29 ×92) =-13×1 =-13.方法2 运用乘法对加法的分配律【例2】 计算:(1)-16×(34 -78 +12)+(-1)2020. 解:原式=-16×34 +16×78 -16×12+1 =-12+14-8+1=-5.(2)391314×(-14); 解:原式=(40-114)×(-14) =40×(-14)-114×(-14) =-560+1=-559.方法3 逆用乘法对加法的分配律【例3】 计算:4×(-367 )-3×(-367 )-6×367. 解:原式=-367×(4-3+6) =-27.方法4 除法变乘法,再利用乘法对加法的分配律【例4】 计算:(113 -58 +712 )÷(-124). 解:原式=(43 -58 +712)×(-24) =43 ×(-24)-58 ×(-24)+712×(-24) =-32+15-14=-31.强化训练计算:(能用简便方法的尽量用简便方法计算)(1)-0.75×(-112 )÷(-214); 解:原式=-34 ×(-32 )×(-49) =-12.(2)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=-2×9÷1=-18.(3)(-1.5)×45 ÷(-25 )×34; 解:原式=32 ×45 ×52 ×34=94.(4)(2020·成都成华区期末)-14-(12 -23 +14)×12; 解:原式=-1-12 ×12+23 ×12-14×12 =-1-6+8-3=-2.(5)(-5)÷(-127 )×(-214)÷7; 解:原式=-5×79 ×94 ×17=-54.(6)1318÷(-7); 解:原式=1318 ×(-17) =(14-78 )×(-17) =-2+18=-178.(7)(-5)-(-5)×110 ÷110×(-5); 解:原式=(-5)-(-5)×110×10×(-5) =-5-25=-30.(8)2×(-137 )-234 ×13+(-137 )×5+14×(-13); 解:原式=-137 ×(2+5)-13×(234 +14) =-107×7-13×3 =-10-39=-49.(9)12.5×6.787 5×18 +1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(10)-14-(-512 )×411+(-2)3÷|-32+1|; 解:原式=-1+112 ×411-8÷8 =-1+2-1=0.(11)1-(-112 )÷(12 -14 -16); 解:原式=1+112 ÷(612 -312 -212) =1+112 ÷112=1+1=2.(12)1-0.52-|0.5-23 |÷13 ×|-2-(-3)2|; 解:原式=-4-16×3×11 =-4-112=-192.(13)[(-1)2 021-(32 -56 -19 )×18]÷|-22|.解:原式=[(-1)-32 ×18+56 ×18+19×18]÷4 =(-1-27+15+2)÷4 =(-11)÷4=-114.。
第二章 有理数及其运算(知识归纳+题型突破)(解析版)

第二章有理数1.了解具有相反意义的量,正负数的概念;2.理解有理数、相反数、绝对值、倒数的概念,能正确解题;3.理解数轴的概念,并能正确画出数轴,,在数轴上表示数;4.理解有理数加法、减法、乘法、除法法则、;5.理解有理数乘方定义及运算;6.能掌握加法、减法的运算定律和运算技巧,熟练计算;能掌握乘法的运算定律和运算技巧,熟练计算;7.通过将减法转化成加法和将除法转化成乘法,初步培养学生数学的归一思想8.进一步掌握有理数的五则混合运算;9.理解科学记数法,了解近似数;10.能运用科学记数法表示较大的数.知识点1 正数和负数1.概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
知识点2:有理数1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数知识点3:数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)知识点3 :相反数1.概念代数:只有符号不同的两个数叫做相反数。
(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
七年级数学上册2有理数及其运算易错课堂二新版北师大版

对应训练
1.下列各结论成立的是( D ) A.若|m|=|n|,则m=n B.若m>n,则|m|>|n| C.若|m|>|n|,则m>n D.若m<n<0,则|m|>|n| 2.数轴上A,B,C三点所表示的数分别为a,b,c,其中AB=BC,如 果|a|>|c|>|b|,那么该数轴的原点的位置应该在( C ) A.点A的左边 B.点A与点B之间 C.点B与点C之间 D.点C的右边 3.绝对值大于1小于3的整数为_±__2_.
第2章 有理数及其错 例❶ 已知a=-3,|a|=|b|,则b=_±__3_. 错解:-3 错因分析:对绝对值的三种情况分析不全面,认为|a|=|b|,则a=b ,于是b=-3. 正解:±3 牛牛文档分 享 牛牛文档分 享
对应训练 7.计算:(-5)×15÷(-15)×5 解:原式=(-5)×15×(-5)×5=25 8.计算:-42-(-7)÷12×2
解:原式=-16-(-7)×2×2=-16+28=12
9.计算:2×(-3)2-6÷(-3)×(-13)2 解:原式=2×9-6×(-13)×19=18+29=1829
www.Leabharlann 牛牛文档分 享二、有理数的乘方运算,易出错 例❷ 计算:(1)-34;(2)(213)3;(3)342. 错因分析:对乘方的意义理解有误,不能认清底数和指数.
《有理数及其运算》易错题及培优题

1《有理数及其运算》易错题、难题考点一:有理数的分类及应用(☆☆☆) 1.下列说法正确的是( ).A.数0是最小的整数B.若│a │=│b │,则a=bC.互为相反数的两数之和为零D.两个有理数,大的离原点远 2.若两个有理数的和是正数,那么一定有结论( )A.两个加数都是正数B.两个加数有一个是正数C.一个加数正数,另一个加数为零D.两个加数不能同为负数 3、1-2+3-4+5-6+……+2015-2018的结果不可能是 ( ) A.奇数 B.偶数 C.负数 D.整数4.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.•2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( ) A 、0.8kg B 、0.6kg C 、0.5kg D 、0.4kg考点二:数轴(☆☆☆)5.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( )A.a+b<0B.a+c<0C.a -b>0D.b -c<07.考点三:相反数(☆☆)8.倒数是它本身的数是 ;相反数是它本身的数是 ;绝对值是它本身的数是 ,绝对值最小的数是________.9.-m 的相反数是 ,-m+1的相反数是 ,m+1的相反数是 . 10.已知-a=9,那么-a 的相反数是 ;已知a=-9,则a 的相反数是 . 11.两个非零有理数的和是0,则它们的商为 ( ) A.0 B.-1 C.+1 D.不能确定考点四:绝对值(☆☆☆☆☆)12.已知数轴上的三点A 、B 、C 分别表示有理数a ,1,-1,那么|a+1|表示( ) A.A 、B 两点的距离 B.A 、C 两点的距离C.A 、B 两点到原点的距离之和D.A 、C 两点到原点的距离之和 13.已知|m|=-m ,化简|m-1|-|m-2|所得的结果是_______14.若a 是有理数,则|-a|-a 一定是( ) A.零 B.非负数 C.正数 D.负数 ※若|x-2|+x-2=0,那么x 的取值范围是( ) A.x ≤2 B.x ≥2 C.x=2 D.任意实数15.互不相等的有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C ,如果|a-b|+|b-c|=|a-c|,那么点A 、B 、C 在数轴上的位置关系是( ) A.点A 在点B 、C 之间 B.点B 在点A 、C 之间 C.点C 在点A 、B 之间 D.以上三种情况均有可能16、(1)若|x+1|=3,则x=_______. (2)绝对值大于1且不大于5的所有整数的和为_______.17.已知|a|=3,|b|=1,且|a-b|=b-a ,那么a+b=______.19.代数式15-|x+y|的最大值是______,当此代数式取最大值时,x 与y 的关系是______.20.若x <0,3x+2|x|=m ,则m____0.(填“>”、“=”、“<”)21.(1)已知有理数a 、b 、c 在数轴上的对应点如图所示,化简:|b-a|+|a+c|-2|c-b|.22.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A 、B 在数轴上分别对应的数为a 、b ,则A 、B 两点间的距离表示为|AB|=|a-b|.根据以上知识解题: (1)若数轴上两点A 、B 表示的数为x 、-1, ①A 、B 之间的距离可用含x 的式子表示为_____; ②若该两点之间的距离为2,那么x 值为______.2(2)|x+1|+|x-2|的最小值为______,此时x 的取值是______;(3)若|x+1|+|x-2|+|x-3|取最小值时,相应的x 的取值是_____,此最小值是_____.考点五:有理数的计算(☆☆☆) 23.计算:(直接写出结果)(1)12+(-223)=_______; (2)-2-22=_____; (3)(-0.25)×(-113)=______; (4)(-1225)÷(-35)=_____;(5) 9-33=_____; (6)-(-12)2+(-2)2=______.24.计算: (1)(12+13+14-45+16)×(-60)(2)(-1.5)2×(113)2-(-0.2)3×202;(3)[30-(79+56-1112)×36]÷(-5)(4)-14-(1-0.5)×13×[1-(-2)2].(5))415()310()10(815-÷-⨯-÷ (6) )8()2()7()15()3(15-++-++--++-考点六:有理数的应用(☆☆☆)25.某工厂某周计划每日生产自行车100辆,由于每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的为正数,减少的为负数),则本周是增加26.一天小明和冬冬利用温差来测量山峰的高度。
第二章《有理数及其运算》专项练习共7个专题(含答案)

第二章《有理数及其运算》专项练习专题一:正数和负数1、下列各数中,大于-21小于21的负数是( ) A.-32B.-31C.31D.02、负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数 3、关于零的叙述错误的是( )A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数 4、非负数是( )A.正数B.零C.正数和零D.自然数5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处 6、大于-5.1的所有负整数为_____.7、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____. 8、请写出3个大于-1的负分数_____.9、某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.10、某同学语、数、外三科的成绩,高出平均分部分记作正数,低出部分记作负数,如表所示请回答,该生成绩最好和最差的科目分别是什么?专题二:数轴与相反数1、下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间 2、关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零3、若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定 4、在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____. 5、两个负数较大的数所对应的点离原点较_____.6、在数轴上距离原点为2的点所对应的数为_____,它们互为_____.7、数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____. 8、数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____. 9、在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
人教版七年级数学上册 第二章 有理数的运算易错训练(单元复习 6类易错)

第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(24-25七年级上·全国·假期作业)折项法计算:3221554410014334⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24七年级上·四川成都·阶段练习)阅读计算5231591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪⎝⎭.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪⎝⎭⎝⎭.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算111503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪⎝⎭⎝⎭.2.(23-24六年级下·上海·期中)计算:111321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24六年级下·上海黄浦·期中)计算:17424122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.巩固训练1.(23-24六年级下·上海长宁·期中)计算:229125111683⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭;2.(23-24六年级下·全国·假期作业)计算:(1)34(2)5(0.64)4+-⨯--÷.(2)21(2)31(0.2)4-+-⨯-÷---.3.(23-24六年级下·全国·假期作业)计算下列各题:(1)22222(3)(6)(2)-+⨯-+-⨯-(2)42112(3)6⎡⎤--⨯--⎣⎦(3)25221(1)31(2)33⎡⎤⎛⎫---⨯--÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)22319345121543⎡⎤⎛⎫-⨯-+⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦易错题型五有理数的混合运算中的新定义型问题例题:(23-24七年级上·陕西西安·期中)用“△”定义新运算,对于任意有理数a ,b ,都有2a b a ab =- .例如:27477421=⨯=- .(1)求()35- 的值;(2)若继续用“*”定义另一种新运算2*3a b ab b =-,例如:21*231222=⨯-=⨯.求()()4*23- .巩固训练1.(23-24七年级上·湖北随州·期中)用“☆”定义一种新运算:对于任意有理数a 和b ,规定22a b b ab =+☆,如:214421424.=+⨯⨯=☆(1)计算:54☆的值;(2)计算:()326-⎡⎤⎣⎦☆☆的值.2.(22-23七年级上·江苏镇江·期中)我们定义一种新运算:2*a b a b ab =-+,例如:21*31313=-+⨯.(1)求()()3*2--;(2)求()()()2*2*3---⎡⎤⎣⎦.3.(23-24七年级上·福建龙岩·期中)若定义一种新的运算“*”,规定:22*a b a b =-,如225*35316=-=.(1)求()3*4-的值;(2)通过计算说明()()5*4*2⎡⎤--⎣⎦与()()5*4*2⎡⎤--⎣⎦的值是否相等?易错题型六有理数运算中的错题复原问题例题:(2023秋·山东东营·六年级统考期末)课代表发下作业本之后,小刚同学发现有一个题做错了,检查巩固训练第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪.1.(24-25七年级上·全国·假期作业)折项法计算:3221 554410014334⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪.()01=+-1=-.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪.3.(23-24七年级上·四川成都·阶段练习)阅读计算591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪.1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪.2.(23-24六年级下·上海·期中)计算:321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪.3.(23-24六年级下·上海黄浦·期中)计算:4122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.【答案】6【分析】本题考查了有理数的混合运算,先计算乘除,再加减即可,熟知计算法则是解题的关键。
第二章--《有理数及其运算》易错题及难题.docx

第二章《有理数及其运算》易 、考点一:有理数的分 及 用 (☆☆☆ ) 1. 下列 法正确的是( ).A. 数 0 是最小的整数B.若│ a │ =│b │, a=b C.互 相反数的两数之和 零 D. 两个有理数,大的离原点2. 若两个有理数的和是正数,那么一定有 ()A. 两个加数都是正数B.两个加数有一个是正数 C.一个加数正数 , 另一个加数 零D. 两个加数不能同 数3、 1-2+3-4+5-6+ ⋯⋯ +2015-2018 的 果不可能是()A. 奇数B.偶数C.数D.整数4. 某粮店出售的三种品牌的面粉袋上分 有 量( 25± 0.1 )kg ,( 25± 0.?2 )kg ,( 25±0.3 ) kg 的字 ,从中任意拿出两袋,它 的 量最多相差( )A 、 0.8kg B、 0.6kgC、 0.5kg D、0.4kg考点二:数 ( ☆☆☆ )5.a,b,c三个数在数 上的位置如 所示, 下列 中 的是 ( )A.a+b<0B.a+c<0C.a -b>0D.b - c<06. 在数 上表示下列各数:5,-|-3.5|, 21,|-1| ,+4,0,并用“<”号把 些数22接起来.7.-5____-3( 填“>”、“=”、“<”)64考点三:相反数 ( ☆☆ )8. 倒数是它本身的数是;相反数是它本身的数是; 是它本身的数是,最小的数是________.9.-m 的相反数是, -m+1 的相反数是10. 已知 -a=9 ,那么 -a 的相反数是 ;已知, m+1的相反数是a=-9 , a 的相反数是 ..11. 两个非零有理数的和是 0, 它 的商 ( ) A.0B.-1C.+1D.不能确定考点四:( ☆☆☆☆☆ )12. 已知数 上的三点 A 、 B 、C 分 表示有理数 a , 1, -1 ,那么 |a+1| 表示 ( )A.A 、 B 两点的距离B.A、C 两点的距离C.A 、 B 两点到原点的距离之和D.A 、C 两点到原点的距离之和13. 已知 |m|=-m ,化 |m-1|-|m-2| 所得的 果是 _______14. 若 a 是有理数, |-a|-a 一定是()A.零 B. 非 数 C. 正数D. 数 ※若 |x-2|+x-2=0 ,那么 x 的取 范 是 ( ) A.x ≤ 2 B.x ≥ 2 C.x=2D.任意 数15. 互不相等的有理数 a 、b 、c 在数 上的 点分A 、B 、C ,如果 |a-b|+|b-c|=|a-c|,那么点 A 、B 、 C 在数 上的位置关系是( )A.点 A 在点 B 、C 之B. 点 B 在点 A 、C 之C.点 C 在点 A 、B 之D.以上三种情况均有可能16、(1) 若 |x+1|=3 , x=_______. (2) 大于1 且不大于 5 的所有整数的和 _______.17. 已知 |a|=3 , |b|=1,且 |a-b|=b-a ,那么 a+b=______.18. 若 |2-a|+|b+1.5|+|c+4|=0, a-b+c × (b-c)=_____.19.代数式 15-|x+y| 的最大值是 ______, 当此代数式取最大值时,x 与 y 的关系是 ______.20.若 x< 0, 3x+2|x|=m ,则 m____0.( 填“>”、“ =”、“<” )21.(1) 已知有理数 a、 b、 c 在数轴上的对应点如图所示,化简:|b-a|+|a+c|-2|c-b|.(2)设 a、b、c 为非零的有理数,且 |a|+a=0 ,|ab|=ab ,|c|-c=0 ,化简:|b|-|a+b|-|c-b|+|a-c|(3)当 x=- π时,求3|x+1|-|x+2|+|x+3|-|x+4|+|x+5|-|x+6|+|x+7|-|x+8|+|x+9|-|x+10|+|x+11|-|x+12|+|x+13| .(4) 如图表示数轴上四个点的位置关系,且它们表示的数分别为p,q, r , s,若 |p-r|=10,|p-s|=12,|q-s|=9,则|q-r|=( ) A.7 B.9 C.11 D.1322.设 x 是有理数, y=|x-1|+|x+1|,下列结论正确的是( )A.y 没有最小值B.只有一个 x, 使 y 取得最小值C.只有有限多个x, 使 y 取得最小值D.有无穷多个 x, 使 y 取得最小值23.若 |x+2|+|x-4|≥ a 恒成立,则 a 的取值范围为 ______.24.设 a、 b 同时满足:① (a-2b)2+|b-1|=b-1 ;② |a-4|=0.那么 ab=_____.25.若 2x+|4-5x|+|1-3x|+4的值恒为常数,则此常数的值为______.26.(1) 若abc≠0,则+++的可能取值有种(2)有理数 a、b、c 均不为零,且a+b+c=0,设|a |+| b |+| c |的最大值是 x,最小值是y,试求代数式x2-99xy+2018 的值 .b c a c a b27. 数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、 b,则 A、 B 两点间的距离表示为|AB|=|a-b|.根据以上知识解题:(1)若数轴上两点 A、 B 表示的数为 x、 -1 ,①A、 B 之间的距离可用含x 的式子表示为 _____;②若该两点之间的距离为2,那么 x 值为 ______.(2)|x+1|+|x-2|的最小值为______,此时x的取值是______;(3) 若 |x+1|+|x-2|+|x-3|取最小值时,相应的 x 的取值是 _____, 此最小值是 _____.(4)如图,在一条数轴上有依次排列的5 台机床 A、 B、 C、 D、 E 在工作,现要设置一个零件供应站 P,使这 5 台机床到供应站P 的距离总和最小,供应站P 建在哪?最小值为多少?(5) 已知 (|x+1|+|x-2|)(|y-3|+|y+2|)=15,求x-2y的最大值和最小值.(6) 已知 |x+2|+|1-x|=9-|y-5|-|1+y| ,求 x+y 的最大值和最小值 .(7) 已知 a 、b 、c 、 d 是有理数, |a-b| ≤9 ,且 |c-d| ≤ 16,且 |a-b-c+d|=25 ,求 |b-a|-|d-c|的值 .28. 化简: 2|x-2|-|x+4| 求|x-1|-4|x+1| 的最大值 .29.(1) 满足 |a-b|+ab=1的非负整数 (a ,b) 的个数是 ( ) A.1 B.2 C.3 D.4(2) 若 a 、 b 、 c 为整数,且 |a-b| 19+|c-a|99=1,试计算 |c-a|+|a-b|+|b-c| 的值 .30. 已知有理数 x,m 满足 |x+4|+|x-9|=13-(m-2) 2,求 |x-2|+|x-8| 的最大值31. 已知 |x| ≤ 1, |y| ≤ 2,且 k=|x+y|+|y+2|+|2y-x-6| ,求 k 的最大值和最小值.考点五:有理数的计算 (☆☆☆ )32. 计算:(直接写出结果) (1) 1 +(- 2 2) =_______; (2)- 2- 22=_____;23(3) (- 0.25 )×(- 1 1 )=______; (4) (-12)÷(- 3)=_____;3-(-1255(5) 9 - 33=_____; (6) ) 2+(- 2) 2=______.233. 计算:(1) ( 1 + 1 + 1 - 4 + 1)×(- 60); (2) (- 1.5 ) 2×( 1 1)2-(- 0.2 ) 3×( +20) 2;2 3 45 63(3)[30 -(7 +5- 11 )× 36] ÷(- 5); (4) - 14-( 1- 0.5 )× 1×[1 -(- 2)2] .9 6 12 3(5)15(10) ( 10 ) (15) (6)15 (3) (15) (7) (2) (8)834考点六:有理数的应用 (☆☆☆ )34. 某工厂某周计划每日生产自行车 100 辆,由于每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的为正数,减少的为负数),则本周是增加还是减少?_______, 生 量_______.星期 一增加/-1二+3三- 2四+4五+7六- 5 日- 1035. 一天小明和冬冬利用温差来 量山峰的高度。
七年级数学上册第2章《有理数及其运算》考点解析(北师大版)

第二章 有理数及其运算考点解析考点1.绝对值: 1. x -=3.6则x=_______,-a =-3.2则a=_______2. 如果a a -=-,则-a 为_______数,a 为_______3.已知x =4,y =12,xy <0,则x y 的值等于_____. 4. 若23310x y ++-=,求x+2y 的值5. ()21262x y -+-=0,则x=____,y=_____6.已知25(6)0x y -+-=,z 的平方为16,求2008()x y -+z 的值7.有理数a 、b 、c 三个数在数轴上的位置如图所示:试化简:11a b b a c c +------8. 有理数a 、b 、c 三个数在数轴上的位置如图所示:试化简:a b a b a c b c ++-+++-c a 0 0考点2.24点游戏:1.四张牌为:-6、-9、2、7将这四个数(每个数只用一次)进行加减乘除乘方运算,使其结果为24,用四种方法表示。
2. 四张牌为:-12、-1、12、3将这四个数(每个数只用一次)进行加减乘除乘方运算,使其结果为24,用三种方法表示。
3. 四张牌为:-1、2、-2、3将这四个数(每个数只用一次)进行加减乘除乘方运算,使其结果为24,用三种方法表示。
考点3.混合运算: 1. 32008311212(2)36⎡⎤--⨯--+-⎣⎦ 2.11111111324354109-+-+-++-L 3.0.25 320092(2)4()1(1)3⎡⎤⨯--÷-++-⎢⎥⎣⎦4.(-2)2008+(-2)20095.计算:(1)1111122334(1)n n++++⨯⨯⨯-L (2)11111121231234123n+++++++++++++++L L考点4探索规律:1. -1-2-3-…-10002.观察以下叙述:1=121+3=221+3+5=321+3+5+7=42…(1) 你能运用上述规律求1+3+5+…+2009的值吗?(2)求1+3+5+…+(2n-1)的值3. 观察算式:13=113+23=913+23+33=3613+23+33+43=100…按规律求下列两式的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章《有理数及其运算》易错题、难题考点一:有理数的分类及应用(☆☆☆)1.下列说法正确的是( ).A.数0是最小的整数B.若│a │=│b │,则a=bC.互为相反数的两数之和为零D.两个有理数,大的离原点远2.若两个有理数的和是正数,那么一定有结论( )A.两个加数都是正数B.两个加数有一个是正数C.一个加数正数,另一个加数为零D.两个加数不能同为负数3、1-2+3-4+5-6+……+2015-2018的结果不可能是 ( )A.奇数B.偶数C.负数D.整数4.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.•2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )A 、0.8kgB 、0.6kgC 、0.5kgD 、0.4kg考点二:数轴(☆☆☆)5.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( )A.a+b<0B.a+c<0C.a -b>0D.b -c<06.在数轴上表示下列各数:﹣5,-|-3.5|,221,|-21|,+4,0,并用“<”号把这些数连接起来.7.-65____-43(填“>”、“=”、“<”) 考点三:相反数(☆☆)8.倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是,绝对值最小的数是________.9.-m 的相反数是,-m+1的相反数是,m+1的相反数是.10.已知-a=9,那么-a 的相反数是;已知a=-9,则a 的相反数是.11.两个非零有理数的和是0,则它们的商为 ( )A.0B.-1C.+1D.不能确定考点四:绝对值(☆☆☆☆☆)12.已知数轴上的三点A 、B 、C 分别表示有理数a ,1,-1,那么|a+1|表示( )A.A 、B 两点的距离B.A 、C 两点的距离C.A 、B 两点到原点的距离之和D.A 、C 两点到原点的距离之和13.已知|m|=-m ,化简|m-1|-|m-2|所得的结果是_______14.若a 是有理数,则|-a|-a 一定是( ) A.零 B.非负数 C.正数 D.负数 ※若|x-2|+x-2=0,那么x 的取值范围是( ) A.x ≤2 B.x ≥2 C.x=2 D.任意实数15.互不相等的有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C ,如果|a-b|+|b-c|=|a-c|,那么点A 、B 、C 在数轴上的位置关系是( )A.点A 在点B 、C 之间B.点B 在点A 、C 之间C.点C 在点A 、B 之间D.以上三种情况均有可能16、(1)若|x+1|=3,则x=_______. (2)绝对值大于1且不大于5的所有整数的和为_______.17.已知|a|=3,|b|=1,且|a-b|=b-a ,那么a+b=______.18.若|2-a|+|b+1.5|+|c+4|=0,则a-b+c ×(b-c)=_____.19.代数式15-|x+y|的最大值是______,当此代数式取最大值时,x 与y 的关系是______.20.若x <0,3x+2|x|=m ,则m____0.(填“>”、“=”、“<”)21.(1)已知有理数a 、b 、c 在数轴上的对应点如图所示,化简:|b-a|+|a+c|-2|c-b|.(2)设a 、b 、c 为非零的有理数,且|a|+a=0,|ab|=ab ,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c|(3)当x=-3π时,求 |x+1|-|x+2|+|x+3|-|x+4|+|x+5|-|x+6|+|x+7|-|x+8|+|x+9|-|x+10|+|x+11|-|x+12|+|x+13|.(4)如图表示数轴上四个点的位置关系,且它们表示的数分别为p ,q ,r ,s ,若|p-r|=10,|p-s|=12,|q-s|=9,则|q-r|=( ) A.7 B.9 C.11 D.1322.设x 是有理数,y=|x-1|+|x+1|,下列结论正确的是( )A.y 没有最小值B.只有一个x,使y 取得最小值C.只有有限多个x,使y 取得最小值D.有无穷多个x,使y 取得最小值23.若|x+2|+|x-4|≥a 恒成立,则a 的取值范围为______.24.设a 、b 同时满足:①(a-2b)²+|b-1|=b-1;②|a-4|=0.那么ab=_____.25.若2x+|4-5x|+|1-3x|+4的值恒为常数,则此常数的值为______.26.(1)若abc ≠0,则+++的可能取值有种(2)有理数a 、b 、c 均不为零,且a+b+c=0,设c b |a |++c a |b |++ba |c |+的最大值是x ,最小值是y ,试求代数式x ²-99xy+2018的值.27.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A 、B 在数轴上分别对应的数为a 、b ,则A 、B 两点间的距离表示为|AB|=|a-b|.根据以上知识解题:(1)若数轴上两点A 、B 表示的数为x 、-1,①A 、B 之间的距离可用含x 的式子表示为_____;②若该两点之间的距离为2,那么x 值为______.(2)|x+1|+|x-2|的最小值为______,此时x 的取值是______;(3)若|x+1|+|x-2|+|x-3|取最小值时,相应的x 的取值是_____,此最小值是_____.(4)如图,在一条数轴上有依次排列的5台机床A 、B 、C 、D 、E 在工作,现要设置一个零件供应站P ,使这5台机床到供应站P 的距离总和最小,供应站P 建在哪?最小值为多少?(5)已知(|x+1|+|x-2|)(|y-3|+|y+2|)=15,求x-2y 的最大值和最小值.(6)已知|x+2|+|1-x|=9-|y-5|-|1+y|,求x+y 的最大值和最小值.(7)已知a 、b 、c 、d 是有理数,|a-b|≤9,且|c-d|≤16,且|a-b-c+d|=25,求|b-a|-|d-c|的值.28.化简:2|x-2|-|x+4| 求|x-1|-4|x+1|的最大值.29.(1)满足|a-b|+ab=1的非负整数(a ,b)的个数是( ) A.1 B.2 C.3 D.4(2)若a 、b 、c 为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.30.已知有理数x,m 满足|x+4|+|x-9|=13-(m-2)²,求|x-2|+|x-8|的最大值31.已知|x|≤1,|y|≤2,且k=|x+y|+|y+2|+|2y-x-6|,求k 的最大值和最小值. 考点五:有理数的计算(☆☆☆)32.计算:(直接写出结果) (1)12+(-223)=_______; (2)-2-22=_____; (3)(-0.25)×(-113)=______; (4)(-1225)÷(-35)=_____; (5) 9-33=_____; (6)-(-12)2+(-2)2=______. 33.计算:(1)(12+13+14-45+16)×(-60);(2)(-1.5)2×(113)2-(-0.2)3×(+20)2; (3)[30-(79+56-1112)×36]÷(-5);(4)-14-(1-0.5)×13×[1-(-2)2]. (5))415()310()10(815-÷-⨯-÷ (6) )8()2()7()15()3(15-++-++--++- 考点六:有理数的应用(☆☆☆)34.某工厂某周计划每日生产自行车100辆,由于每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的为正数,减少的为负数),则本周是增加还是减少?_______35.一天小明和冬冬利用温差来测量山峰的高度。
冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?36.小虫从点O 出发沿着一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否能回到出发点O ? (2)小虫离开出发点O 最远时是多少厘米?(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?37.“十一”黄金周期间,我市植物园在7天长假中,•每天接待游客人数变化如下表(正数(1)若9月30日的游客人数记为a ,请用a 的代数式表示10月2日游客的人数;(2)请判断7天内游客人数最多的是哪一天,共有多少万人?(3)若9月30日的游客人数为3万人,门票每人6元.问黄金周期间云龙山门票收入是多少元?(用科学记数法表示)考点七 找规律(☆☆)38.观察下面一列数,根据规律写出横线上的数,-11;21;-31;41;;;……;第2013个数是。
第n 个数是。
39.观察:1+3+5+7+…+(2n-1)= _____ .(结果用含n 的式子表示,其中n =1,2,3,……)。
40.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察算式之后并用你得到的规律填空:_______×_______+________=502.41.如图,把面积为1的矩形等分成两个面积为12的矩形,•把面积为12的矩形等发成两个面积为14的矩形,再把面积为14的矩形等分成两个面积为18的矩形,如此进行下去,试利用图形揭示的规律计算.12+14+18+116+11113264128256+++=__________.42.已知①f(1)=0,f(2)=1,f(3)=2,f(4)=3,…②f(21)=2,f(31)=3,f(41)=4,…利用以上规律计算:f(20181)-f(2018)=________. 43.431321⨯+⨯+541⨯+…+)2n )(1n (1++=________.。