人教版高中数学选修4-4 教案【第1节】平面直角坐标系
高中数学教案 选修4-4教案 第一讲 坐标系 一、平面直角坐标系

平面直角坐标系第一课时1.平面直角坐标系教学目的:知识目标:回顾在平面直角坐标系中刻画点的位置的方法能力目标:体会坐标系的作用教学重点:体会直角坐标系的作用教学难点:能够建立适当的直角坐标系,解决数学问题授课类型:新授课教学模式:启发、诱导发现教学.教具:多媒体、实物投影仪教学过程:一、复习引入:情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。
要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?问题2:如何创建坐标系?二、学生活动学生回顾刻画一个几何图形的位置,需要设定一个参照系1、数轴它使直线上任一点P都可以由惟一的实数x确定2、平面直角坐标系在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
它使平面上任一点P都可以由惟一的实数对(x,y)确定3、空间直角坐标系在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
它使空间上任一点P都可以由惟一的实数对(x,y,z)确定二、讲解新课:1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置2、确定点的位置就是求出这个点在设定的坐标系中的坐标四、数学运用例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
变式训练如何通过它们到点O 的距离以及它们相对于点O 的方位来刻画,即用”距离和方向”确定点的位置例2 已知B 村位于A 村的正西方1公里处,原计划经过B 村沿着北偏东600的方向设一条地下管线m.但在A 村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W 周围100米范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?变式训练1一炮弹在某处爆炸,在A 处听到爆炸的时间比在B 处晚2s,已知A 、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程2在面积为1的PMN ∆中,2tan ,21tan -=∠=∠MNP PMN ,建立适当的坐标系,求以M ,N 为焦点并过点P 的椭圆方程例3 已知Q (a,b ),分别按下列条件求出P 的坐标(1)P 是点Q 关于点M (m,n )的对称点(2)P 是点Q 关于直线l:x-y+4=0的对称点(Q 不在直线1上)变式训练用两种以上的方法证明:三角形的三条高线交于一点。
最新人教版高三数学选修4-4电子课本课件【全册】

四 柱坐标系与球坐标系简介
最新人教版高三数学选修4-4电子 课本课件【全册】
第二讲 参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】目录
0002页 0066页 0118页 0187页 0243页 0338页
引言 一 平面直角坐标系 三 简单曲线的极坐标方程 第二讲 参数方程 二 圆锥曲线的参数方程 四 渐开线与摆线
引言
最新人教版高三数学选修4-4电子 课本课件【全册】
第一讲 坐标系
一 曲线的参数方程
最新人教版高三数学选修4-4电子 课本课件【全册】
最新人教版高三数学选修4-4电子 课本课件【全册】
一 平面直角坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
二 极坐标系
最新人教版高三数学选修4-4电子 课本课件【全册】
三 简单曲线的极坐标方程
高二数学之人教版高中数学选修4-4课件:1

2.四边形ABCD为矩形,P为矩形ABCD所在平面内的任意 一点,求证:PA2+PC2=PB2+PD2.
【证明】如图所示, 以A为原点,AB所在直线为x轴,AD所在 直线为y轴,建立平面直角坐标系,设 A(0,0),B(a,0),C(a,b),D(0,b),P(x,y), 则PA2=x2+y2,PB2=(x-a)2+y2, PC2=(x-a)2+(y-b)2,PD2=x2+(y-b)2.
x = 2 0 1 6 x , 2与.直将线曲x线=0y,=xs=iπn(,2y0=106围x)成按图φ形: 的y =面12 积y 为__变__换__后__的.曲线
【解析】设曲线y=sin(2016x)上任意一点的坐标为 P(x,y),按φ变换后的对应点的坐标为P′(x′,y′),
由代入φy: =xys= = in212(0y2106x1, 6得 x),xy得= =222yy01, ′1=6xsi, nx′,所以y′=
2.伸缩变换的类型与特点 伸缩变换包括点的伸缩变换,以及曲线的伸缩变换,曲 线经过伸缩变换对应的曲线方程就会变化,通过伸缩变 换可以领会曲线与方程之间的数形转化与联系. 特别提醒:实数与数轴上的点是一一对应的,所以一个 实数就能确定数轴上一个点的位置.
类型一 坐标法求轨迹方程 【典例】已知△ABC的边AB长为2a,若BC的中线为定长m, 求顶点C的轨迹方程.
【解析】曲线x2+y2=1经过φ:x 3 x变, 换后,
即
x
代x3 ,入到圆的方程,可得
即所பைடு நூலகம்y 求 新y4 , 曲线的方程为
y
4y
x2 y2 1, 9 16
人教A版数学【选修4-4】ppt课件:1-1第一讲-坐标系

【分析】
解决这一问题的关键,在于确定遗址 W 与地下管
线 m 的位置关系, 即求出 W 到直线 m 的距离 d 与 100 米进行比较.
【解】 依题意,以 A 点为原点,正东方向和正北方向分别为 x 轴和 y 轴的正方向,建立平面直角坐标系.如下图.
则 A(0,0),B(-1 000,0),由|AW|=400,得
∴水面与抛物线拱顶相距 3 5 3 |y|+ = + =2(m). 4 4 4 即水面上涨到与抛物线形拱顶相距 2 m 时,船开始不能通航.
【例 2】 用解析法证明:任意四边形两组对边中点连线及两 对角线中点连线三线共点,且互相平分.
【证明】 如下图所示,建立直角坐标系.设四边形各点的坐 标分别为 A(0,0),B(a,0),C(b,c),(d,e).
2 2 2 2 2
1 1 ∴λ=3,μ=2. 1 x′=3x, ∴ y′=1y, 2 1 即将椭圆 4x +9y =36 上的所有点的横坐标变为原来的 ,纵 3
2 2
1 坐标变为原来的 ,即可得到圆 x′2+y′2=1. 2
规律技巧
求满足图象变换的伸缩变换, 实际上是让我们求出
变换公式,将新旧坐标分清,代入对应的曲线方程,然后比较系数 可得.
2.坐标法的应用 (1)坐标法的基本思想就是在平面上引进“坐标”的概念,建 立平面上的点和坐标之间的一一对应,从而建立曲线的方程,并通 过方程研究曲线的性质. (2)坐标法解决几何问题的“五步骤”: ①建立适当的平面直角坐标系,设动点 M(x,y); ②根据题设条件,找出动点 M 满足的等量关系式;
第一讲 坐标系
一 平面直角坐标系
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础
人教课标版高中数学选修4-4第一讲-坐标系一-平面直角坐标系教案

人教课标版高中数学选修4-4第一讲 坐标系一 平面直角坐标系教案考纲要求 备考指津1.会画直角坐标系,并能根据点的坐标描出点的位置,由点的位置写出点的坐标. 2.掌握坐标平面内点的坐标特征. 3.了解函数的有关概念和函数的表示方法,并能结合图象对实际问题中的函数关系进行分析. 4.能确定函数自变量的取值范围,并会求函数值. 中考题型以选择题、填空题为主,有时也作为函数综合题的一个方面来考查,难度较低.这部分知识常以生活实际为背景,与生活实际应用相联系进行命题,解题时往往要用数形结合、分类讨论等数学方法进行思考.考点一 平面直角坐标系与点的坐标特征1.平面直角坐标系如图,在平面内,两条互相竖直的数轴的交点O 称为原点,水平的数轴叫x 轴(或横轴),竖直的数轴叫y 轴(或纵轴),整个坐标平面被x 轴、y 轴分割成四个象限. 2.各象限内点的坐标特征点P (x ,y )在第一象限x >0,y >0;点P (x ,y )在第二象限x <0,y >0;点P (x ,y )在第三象限x <0,y <0; 点P (x ,y )在第四象限x >0,y <0.3.坐标轴上的点的坐标的特征 点P (x ,y )在x 轴上y =0,x 为任意实数; 点P (x ,y )在y 轴上x =0,y 为任意实数;点P (x ,y )在坐标原点x =0,y =0.考点二 特殊点的坐标特征1.对称点的坐标特征点P (x ,y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称点P 2的坐标为(-x ,y );关于原点的对称点P 3的坐标为(-x ,-y ).2.与坐标轴平行的直线上点的坐标特征平行于x 轴:横坐标不同,纵坐标相同;平行于y 轴:横坐标相同,纵坐标不同.3.各象限角平分线上点的坐标特征第一、三象限角平分线上的点横坐标与纵坐标相同,第二、四象限角平分线上的点横坐标与纵坐标互为相反数.考点三 距离与点的坐标的关系1.点与原点、点与坐标轴的距离(1)点P (a ,b )到x 轴的距离等于点P 的纵坐标的绝对值,即|b |;点P (a ,b )到y 轴的距离等于点P 的横坐标的绝对值,即|a |.(2)点P (a ,b )到原点的距离等于点P 的横、纵坐标的平方和的算术平方根,即a 2+b 2.2.坐标轴上两点间的距离(1)在x轴上两点P1(x1,0),P2(x2,0)间的距离|P1P2|=|x1-x2|.(2)在y轴上两点Q1(0,y1),Q2(0,y2)间的距离|Q1Q2|=|y1-y2|.(3)在x轴上的点P1(x1,0)与y轴上的点Q1(0,y1)之间的距离|P1Q1|=x12+y12.考点四函数有关的概念及图象1.函数的概念一般地,在某一变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说y是x的函数,x是自变量.2.常量和变量在某一变化过程中,保持一定数值不变的量叫做常量;可以取不同数值的量叫做变量.3.函数的表示方法函数主要的表示方法有三种:(1)解析法;(2)列表法;(3)图象法.4.函数图象的画法(1)列表:在自变量的取值范围内取值,求出相应的函数值;(2)描点:以x的值为横坐标,对应y的值作为纵坐标,在坐标平面内描出相应的点;(3)连线:按自变量从小到大的顺序用光滑曲线连接所描的点.考点五函数自变量取值范围的确定确定自变量取值范围的方法:1.自变量以分式形式出现,它的取值范围是使分母不为零的实数.2.当自变量以二次方根形式出现,它的取值范围是使被开方数为非负数;以三次方根出现时,它的取值范围为全体实数.3.当自变量出现在零次幂或负整数次幂的底数中,它的取值范围是使底数不为零的实数.4.在一个函数关系式中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分.1.在平面直角坐标系中,点P(-1,3)位于().A.第一象限B.第二象限C.第三象限D.第四象限2.点A(2,-3)关于x轴的对称点的坐标为().A.(2,3) B.(-2,-3) C.(-2,3) D.(2,-3)3.点P在第四象限内,P到x轴的距离是2,到y轴的距离是3,则P的坐标为__________.4.函数y=1x-2的自变量x的取值范围是__________.5.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h,水流速度为5 km/h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间内,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是().6.甲、乙两人准备在一段长为1 200 m的笔直公路上进行跑步,甲、乙跑步的速度分别为4 m/s和6 m/s.起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y (m)与时间t (s)的函数图象是( ).一、平面直角坐标系内点的坐标特征【例1】 在平面直角坐标系中,若点(2x +1,x -2)在第四象限,则x 的取值范围是( ).A .x >-12B .x <2C .x <-12或x >2D .-12<x <2 解析:根据平面直角坐标系中点的坐标特征可得⎩⎪⎨⎪⎧2x +1>0,x -2<0,解得-12<x <2. 答案:D掌握平面直角坐标系中各象限及坐标轴上点的坐标特征,构造不等式(组)是解决此类问题的常用方法.在平面直角坐标系中,如果mn >0,那么点(m ,|n |)一定在( ).A .第一象限或第二象限B .第一象限或第三象限C .第二象限或第四象限D .第三象限或第四象限二、距离与点坐标的关系【例2】 如图,直角坐标系中,△ABC 的顶点都在网格点上,其中,A 点坐标为(2,-1),则△ABC 的面积为__________平方单位.解析:利用数轴得出B 点坐标为(4,3),C 点坐标为(1,2),然后利用割补法,结合点的坐标与距离的关系求出△ABC 的面积.答案:5图形的割补法是解决有关图形面积的常用方法,需要同学们在解题时合理地利用图形进行巧妙分割,此类题型的解法往往不唯一.三、函数图象的应用【例3】 如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为s ,则s 关于t 的函数图象大致为( ).解析:本题是典型的数形结合问题,通过对图形的观察,可以看出s 与t 的函数图象应分为三段:(1)当蚂蚁从点O 到点A 时,s 与t 成正比例函数关系;(2)当蚂蚁从点A 到点B 时,s 不变;(3)当蚂蚁从点B 回到点O 时,s 与t 成一次函数关系,且回到点O 时,s 为零.答案:C利用函数关系和图象分析解决实际问题,要透过问题情境准确地寻找出问题的自变量和函数,探求变量和函数之间的变化趋势,合理地分析变化过程,准确地结合图象解决实际问题.四、函数自变量取值范围的确定【例4】 函数y =x +2x -2的自变量x 的取值范围是( ). A .x ≥-2且x ≠2 B .x >-2且x ≠2 C .x =±2 D .全体实数解析:要使函数有意义,必须同时满足二次根式的被开方数是非负数,分式的分母不能为零,即⎩⎪⎨⎪⎧x +2≥0,x -2≠0,解得x ≥-2且x ≠2. 答案:A求函数自变量的取值范围,往往通过解不等式或不等式组来确定.因此,掌握一元一次不等式、一元一次不等式组的解法,是求函数自变量取值范围的基础,同时要学会这种转化的思想方法.1.(2012四川成都)如图,在平面直角坐标系xOy 中,点P (-3,5)关于y 轴的对称点的坐标为( ).A .(-3,-5)B .(3,5)C .(3,-5)D .(5,-3)2.(2012重庆)2012年“国际攀岩比赛”在重庆举行,小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t ,小丽与比赛现场的距离为s ,下面能反映s 与t 的函数关系的大致图象是( ).3.(2011广东湛江)如图,在平面直角坐标系中,菱形OACB 的顶点O 在原点,点C 的坐标为(4,0),点B 的纵坐标是-1,则顶点A 的坐标是( ).A .(2,-1)B .(1,-2)C .(1,2)D .(2,1)4.(2011内蒙古呼和浩特)函数y =1x +3中,自变量x 的取值范围为__________. 5.(2011江苏盐城)有六个学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去距学校60 km 的博物馆参观,10分钟后到达距离学校12 km 处有一辆汽车出现故障,接着正常行驶的一辆车先把第一批学生送到博物馆再回头接第二批学生,同时第二批学生步行12 km 后停下休息10分钟恰好与回头接他们的小汽车相遇,当第二批学生到达博物馆时,恰好已到原计划时间.设汽车载人和空载时的速度分别保持不变,学生步行速度不变,汽车离开学校的路程s (千米)与汽车行驶时间t (分钟)之间的函数关系如图所示,假设学生上下车时间忽略不计.(1)汽车载人时的速度为__________km/min ;第一批学生到达博物馆用了__________分钟.(2)求汽车在回头接第二批学生途中(即空载时)的速度.(3)假设学生在步行途中不休息且步行速度每分钟减小0.04 km ,汽车载人时和空载时速度不变,问能否经过合理的安排,使得学生从学校出发全部到达目的地的时间比原计划时间早10分钟?如果能,请简要说出方案,并通过计算说明;如果不能,简要说明理由.1.如图所示,小手盖住的点的坐标可能为( ).A .(5,2)B .(-6,3)C .(-4,-6)D .(3,-4)2.若点P (a ,a -b )在第四象限,则点Q (b ,-a )在( ).A .第四象限B .第三象限C .第二象限D .第一象限3.如图是中国象棋棋盘的一部分,若在点(1,-1)上,在点(3,-1)上,则的坐标是( ).A.(-1,1) B.(-1,2) C.(-2,1) D.(-2,2)4.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是().5.点P(1,2)关于x轴的对称点P1的坐标是__________,点P(1,2)关于原点O的对称点P2的坐标是__________.6.已知一条直线l平行于x轴,P1(-2,3),P2(x2,y2)是直线l上的两点,且P1,P2的距离为4,则P2的坐标为__________.7.如图所示,正方形ABCD的边长为10,点E在CB的延长线上,EB=10,点P在边CD上运动(C,D两点除外),EP与AB相交于点F,若CP=x,四边形FBCP的面积为y,则y关于x的函数关系式是__________.8.如图,在平面直角坐标系中,菱形OABC的顶点C坐标是(3,4),求顶点B的坐标.9.在如图所示的方格纸中,把每个小正方形的顶点称为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,解决下面的问题:(1)请描述图中的格点△A′B′C′是由格点△ABC通过哪些变换方法得到的?(2)若以直线a,b为坐标轴建立平面直角坐标系后,点C的坐标为(-3,1),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.参考答案基础自主导学自主测试1.B 2.A 3.(3,-2) 4.x ≠2 5.C 6.C规律方法探究变式训练 A 知能优化训练中考回顾1.B 2.B 3.D 4.x >-35.(1)1.2 50 (2)1.8 km/min(3)解:能够合理安排.方案:从故障点开始,在第二批学生步行的同时出租车先把第一批学生送到途中放下,让他们步行,再回头接第二批学生,当两批学生同时到达博物馆,时间可提前10分钟. 理由:设从故障点开始第一批学生乘车t 1分钟,汽车回头时间为t 2分钟,由题意得:⎩⎪⎨⎪⎧1.2t 1+0.2(t 1+t 2)=48,0.2(t 1+t 2)+1.8t =1.2t 1. 解得⎩⎪⎨⎪⎧t 1=32,t 2=16. 从出发到达博物馆的总时间为:10+2×32+16=90(分钟),即时间可提前100-90=10(分钟).模拟预测1.D 2.A 3.D 4.C 5.(1,-2) (-1,-2) 6.(2,3)或(-6,3)7.y =152x (0<x <10) 8.(8,4) 9.解:(1)先将△ABC 绕点C 按顺时针方向旋转90°,再向右平移5个单位得到△A ′B ′C ′(或先平移再旋转也可).(2)D (0,-2),E (-4,-4),F (2,-3).S △DEF =6×2-12×4×2-12×2×1-12×6×1=4.。
人教版高中选修4-4一平面直角坐标系课程设计

人教版高中选修4-4一平面直角坐标系课程设计一、设计目的本次课程设计旨在通过对一平面直角坐标系的学习和掌握,使学生能够熟练运用一平面直角坐标系解决各种数学问题,同时锻炼学生的逻辑思维能力和创新能力。
二、设计内容本次课程设计共分为五个部分,分别为:一、一平面直角坐标系的基本概念;二、一元二次方程的图像和性质;三、直线与圆的位置关系;四、正多边形的坐标和对称性;五、三角函数的概念和性质。
2.1 一平面直角坐标系的基本概念本部分主要介绍一平面直角坐标系的基本概念,包括坐标轴、坐标和坐标系等概念,同时讲解如何在一平面直角坐标系中表示点、线段、向量等数学概念,并通过实例演示如何计算两点之间的距离、点到直线的距离等问题。
2.2 一元二次方程的图像和性质本部分主要介绍一元二次方程的图像和性质,包括一元二次方程的标准式、顶点式和根式等,以及如何利用一平面直角坐标系表示一元二次方程的图像。
同时,通过实例演示如何求解一元二次方程的顶点、轴、对称轴等问题,培养学生分析和解决问题的能力。
2.3 直线与圆的位置关系本部分主要介绍直线与圆的位置关系,包括直线与圆的相离、相切和相交等情况,同时演示如何利用一平面直角坐标系求解直线与圆的位置关系的问题。
通过实例演示,培养学生观察和判断几何关系的能力,提高学生的实际应用能力。
2.4 正多边形的坐标和对称性本部分主要介绍正多边形的坐标和对称性,包括正三、四、五边形等多边形的坐标和对称性特点。
同时通过实例演示如何在一平面直角坐标系中表示正多边形的顶点和对称轴等问题,培养学生分类和归纳问题的能力。
2.5 三角函数的概念和性质本部分主要介绍三角函数的概念和性质,包括正弦函数、余弦函数、正切函数等的定义、周期、对称性和图像等特性。
同时,演示如何利用一平面直角坐标系表示三角函数图像和解决三角函数的应用问题。
通过实例演示,培养学生掌握三角函数的基本技能,并锻炼学生的抽象思维和推理能力。
三、教学方法本次课程设计采用传统教学法与探究式教学法相结合的教学方法。
人教版选修4-4教案新部编本【第1节】平面直角坐标系

精选教课教课设计设计| Excellent teaching plan教师学科教课设计[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校第一部分坐标系第 1 节:平面直角坐标系教课目的:1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的地点的方法。
2.掌握坐标法解决几何问题的步骤;领会坐标系的作用。
教课要点:领会直角坐标系的作用。
教课难点:能够成立适合的直角坐标系,解决数学识题。
讲课种类:新讲课教课模式:启迪、引诱发现教课.教具:多媒体、实物投影仪教课过程:一、复习引入:情境 1:为了保证宇宙飞船在预约的轨道上运转,并在按计划达成科学观察任务后,安全、正确的返回地球,从火箭升空的时辰开始,需要随时测定飞船在空中的地点机器运动的轨迹。
情境 2:运动会的开幕式上经常有大型集体操的表演,此中不停变化的背景图案是由看台上座位摆列齐整的人群不停翻着手中的一本画布组成的。
要出现正确的背景图案,需要弊端不一样的画布所在的地点。
问题 1:怎样刻画一个几何图形的地点?问题 2:怎样创立坐标系?二、学生活动学生回首刻画一个几何图形的地点,需要设定一个参照系1、数轴它使直线上任一点P 都能够由唯一的实数x 确立2、平面直角坐标系在平面上,当取定两条相互垂直的直线的交点为原点,并确立了胸怀单位和这两条直线的方向,就成立了平面直角坐标系。
它使平面上任一点 P 都能够由唯一的实数对( x,y)确立。
3、空间直角坐标系在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确立了胸怀单位和这三条直线方向,就成立了空间直角坐标系。
它使空间上任一点P 都可以由唯一的实数对(x,y,z)确立。
三、解说新课:1、成立坐标系是为了确立点的地点,所以,在所建的坐标系中应知足:随意一点都有确立的坐标与其对应;反之,依照一个点的坐标就能确立这个点的地点2、确立点的地点就是求出这个点在设定的坐标系中的坐标四、数学运用例 1 选择适合的平面直角坐标系,表示边长为 1 的正六边形的极点。
2014年人教A版选修4-4课件 1.平面直角坐标系

问题2. 上述思考充分体现了坐标法的思想. 其结 果有如下的两种表述, 各种表述由哪几个元素确定? 你认为各种表述有什么意义? 表述 1: 巨响位于 P(-680 5, 680 5 ) 处. 表述 2: 巨响位于信息中心北偏西45, 相距信息 中心 680 10 米处. 表述 1 用 x、y 的坐标这两个元素确定位置. 表述 2 用相对于信息中心的方位角和距离这两个 元素确定位置. 表述 1 便于书面和图纸上的标注. 这样的表述在 语言的传递中缺了坐标系, 点的坐标就显得无意义. 表述 2 便于语言传递和描述, 是相对于参照位置 的描述, 易于理解和想像.
O 设点 C 的坐标为 C (x, y), 由中点坐标求得 E ( x , y ), F ( c , 0). 2 2 2 由 b2+c2=5a2 得 |AC|2+|AB|2=5|BC|2, 代入坐标整理得 2x2+2y2+2c2-5cx=0. (A) F B x
O F B 设点 C 的坐标为 C (x, y), 2+c2=5a2, y x c 例 1. 已知△ ABC 的三边 a , b , 满足 b 由中点坐标求得 E ( , ), F ( , 0). 2 上的中线 2 2, 建立适当的平 BE, CE 分别为边 AC , AB 由 b2+c2=5a2 得 |AC|2+|AB|2=5|BC|2, 面直角坐标系探究 BE 与 CF 的位置关系. 代入坐标整理得 解: 以△ ABC 的顶点 A= 为原点 , AB 所在直线 2+2y2 2x +2c2-5cx 0. y 为 x 轴, 建立平面直角坐标系 . x y C BE = ( - c, ), 2 2 则各点的坐标为 c E CF = ( x , y ), A(0, 0), B(c, 20), 2 y x c O(A) F B x 则 BE CF = ( - c )((xx )设点 C 的坐标为 C , y ), 2 2 2 y2 x c 1 2 2 由中点坐标求得 E F ).) = 0, = - (2 x( 2 +,2 2 y ), +2 c(2 - ,50 cx 4 2+c2=5a2 得 |AC|2+|AB|2=5|BC|2, 由 b ∴BF 与 CE 互相垂直. 代入坐标整理得 (请同学们用斜率试一试) 2x2+2y2+2c2-5cx=0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分坐标系
第1节:平面直角坐标系
教学目标:
1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。
2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。
教学重点:体会直角坐标系的作用。
教学难点:能够建立适当的直角坐标系,解决数学问题。
授课类型:新授课
教学模式:启发、诱导发现教学.
教具:多媒体、实物投影仪
教学过程:
一、复习引入:
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运
动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。
要出现正确的背景图案,需
要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
二、学生活动
学生回顾
刻画一个几何图形的位置,需要设定一个参照系
1、数轴它使直线上任一点P都可以由惟一的实数x确定
2、平面直角坐标系
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
它使平面上任一点P都可以由惟一的实数对(x,y)确定。
3、空间直角坐标系
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。
三、讲解新课:
1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置
2、确定点的位置就是求出这个点在设定的坐标系中的坐标
四、数学运用
例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。
变式训练
如何通过它们到点O 的距离以及它们相对于点O 的方位来刻画,即用”距离和方向”确定点的位置
例2 已知B 村位于A 村的正西方1公里处,原计划经过B 村沿着北偏东600的方向设一条地下管线m.但在A 村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W 周围100米范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?
变式训练
1一炮弹在某处爆炸,在A 处听到爆炸的时间比在B 处晚2s,已知A 、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程
2在面积为1的PMN ∆中,2tan ,2
1tan -=∠=∠MNP PMN ,建立适当的坐标系,求以M ,N 为焦点并过点P 的椭圆方程
例3 已知Q (a,b ),分别按下列条件求出P 的坐标
(1)P 是点Q 关于点M (m,n )的对称点
(2)P 是点Q 关于直线l:x-y+4=0的对称点(Q 不在直线1上)
变式训练
用两种以上的方法证明:三角形的三条高线交于一点。
思考 通过平面变换可以把曲线14
)1(9)1(2
2=-++y x 变为中心在原点的单位圆,请求出该复合变换?
五、小 结:本节课学习了以下内容:
1.平面直角坐标系的意义。
2. 利用平面直角坐标系解决相应的数学问题。
六、课后作业:。