量子化学的主要计算方法及软件

合集下载

化学物理学中的量子化学计算方法

化学物理学中的量子化学计算方法

化学物理学中的量子化学计算方法量子化学计算方法在现代化学物理学领域中得到了广泛的应用,它们通过模拟分子的量子力学行为来预测其各种性质。

在本文中,我们将探讨几种常见的量子化学计算方法,并介绍它们的优缺点。

1. 分子轨道方法(MO)分子轨道方法是一种较为传统的量子化学计算方法。

它是由 H.F. Danian和 R. S. Mulliken 开发的,主要通过数学方法来描述分子的电子结构和反应性质。

分子轨道方法的核心思想是基于分子轨道理论,将由分子内电子的原子轨道线性组合(LCAO)得到分子轨道。

一般情况下,分子轨道与原子轨道的线性组合是根据哈密顿量进行的线性组合,再用量子化学算法处理。

分子轨道方法的优点是其基于一种可视,简化的模型,能够很好地预测分子各种性质,如结构、振动频率、离子化能、化学反应机理等。

然而,分子轨道方法也有其缺点,它对大型体系较差,对于存在多个等价的结构,则需要用多重方法进行计算,这使得计算大型分子的计算时间和计算资源消耗都较大。

2. 密度泛函方法(DFT)密度泛函理论是在密度泛函方法(DFT)的基础上发展的,它是一种基于能量泛函的电子结构计算方法。

与分子轨道方法不同,密度泛函方法不关注电子的轨道,而是以电子密度为基础,描述化学反应的机理。

密度泛函方法的优点是其对大型分子的计算较为准确,其计算速度比分子轨道方法快。

此外,密度泛函方法对于某些化学反应及其器件的模拟也更加准确。

但密度泛函方法也存在一些缺点,它对于某些特定类型的分子结构,如杂环分子、金属配合物和化学键的缺陷部分计算结果较差。

3. 第一性原理计算方法(FP)第一性原理计算方法(FP)是一种基于量子力学原理的计算方法。

它不依赖于实验数据,可以对任何化学体系进行完全计算。

相对其他方法,第一性原理计算的结果更真实,尤其是在低温等关键萃取过程中。

但第一性原理计算方法也有一定的缺点,它计算时间较长、计算量大,在处理复杂问题时更容易出现计算误差。

量子化学模拟的实验操作指南

量子化学模拟的实验操作指南

量子化学模拟的实验操作指南量子力学是计算化学中的一门重要学科,它通过解析性或计算性的方法,研究分子和原子的性质,以及化学反应的机理。

量子化学模拟是一种基于量子力学原理的计算方法,可以预测化学反应速率、反应路径、电荷分布等重要的化学性质。

本文将为您提供量子化学模拟的实验操作指南,以帮助您更好地进行相关的研究工作。

实验准备在进行量子化学模拟实验之前,您需要准备以下材料和软件:1. 一台电脑:量子化学模拟需要大量的计算资源,因此一台性能较好的电脑是必须的。

2. 量子化学软件:常见的量子化学软件包括Gaussian、GAMESS、NWChem等。

您可以根据自己的需要选择合适的软件。

3. 分子结构文件:您需要准备待模拟的分子的结构文件,通常为XYZ、PDB、MOL格式等。

这些文件可以通过实验或其他理论模拟得到。

4. 初始参数:对于某些计算方法,您可能需要提供一些初始参数,例如基组、波函数的形式等。

这些信息可以在文献中找到。

实验步骤1. 软件安装和配置:首先,您需要将量子化学软件安装到您的电脑上。

安装过程通常比较简单,您只需要按照软件提供的安装向导进行操作即可。

安装完成后,您还需要配置一些软件的参数,例如计算资源的使用、文件输入输出路径等。

2. 导入分子结构文件:打开量子化学软件,在软件界面中导入您准备好的分子结构文件。

确保文件格式正确,软件能够正确读取到分子的几何结构信息。

3. 选择计算方法:选择适合您研究对象的计算方法。

在量子化学软件中,提供了各种不同的计算方法,例如密度泛函理论(DFT)、哈特里-福克方法(HF)等。

您可以根据您的需求和研究目标,选择合适的计算方法。

4. 设置计算参数:根据所选的计算方法,设置合适的计算参数。

例如,对于密度泛函理论,您需要选择适当的密度泛函和基组;对于哈特里-福克方法,您需要选择合适的基组和波函数形式等。

在设置参数时,您可以参考相关的文献和先前的研究成果。

5. 运行计算:设置完计算参数后,您可以运行计算。

量子化学计算的基本原理和操作步骤

量子化学计算的基本原理和操作步骤

量子化学计算的基本原理和操作步骤量子化学计算是一种借助于量子力学原理和计算机技术进行分子和原子的性质计算的方法。

它在大分子、催化剂设计、材料科学等领域具有重要的应用价值。

本文将介绍量子化学计算的基本原理和操作步骤。

一、基本原理1.量子力学原理量子力学是描述微观领域中粒子行为的物理理论。

在量子力学中,粒子的状态由波函数表示,波函数满足薛定谔方程。

量子化学计算利用波函数来描述分子和原子的状态,通过求解薛定谔方程得到它们的能量、结构和性质等信息。

2.哈密顿算符哈密顿算符是量子力学描述体系能量的算符。

量子化学计算中,通过构建分子或原子的哈密顿算符来描述它们的能量变化。

哈密顿算符包含了分子或原子的动能和势能项,通过求解哈密顿方程得到体系的波函数和能谱。

3.基组与基函数基组是一组用来展开波函数的基函数集合。

在量子化学计算中,常用的基组包括杜-汉特、高斯基组等。

基组的选择对计算结果的精确性和计算效率有着重要影响。

更大的基组可以提高计算精度,但也会增加计算复杂度。

4.密度泛函理论密度泛函理论是一种在量子化学计算中广泛应用的方法。

它通过电子密度来描述分子和原子的性质。

密度泛函理论基于基态电子密度确定了能量泛函,并通过最小化能量泛函来求解系统的基态能量和电子密度。

二、操作步骤1.确定研究对象量子化学计算可以用来研究分子、原子以及其间的相互作用。

首先需要确定研究对象,对于复杂的体系可以通过分子建模软件构建其结构。

2.选择计算方法根据研究对象的特点和目的,选择合适的计算方法。

常用的量子化学计算方法包括密度泛函理论、哈特里-福克方法、多配置自洽场方法等。

不同的方法有不同的适用范围和精确性。

3.构建计算模型根据研究对象和选择的计算方法,构建相应的计算模型。

包括选择适当的基组、优化分子结构、确定计算参数等。

优化分子结构可以通过几何优化算法来实现。

4.计算体系能量通过求解薛定谔方程或基于密度泛函理论的算法,计算体系的能量和其他性质。

计算量子化学的最新方法

计算量子化学的最新方法

计算量子化学的最新方法随着计算机技术的不断进步,计算量子化学的方法也在不断地更新和发展。

量子化学作为一门研究分子和化学反应的学科,旨在解释和预测分子的结构、性质、反应和谱学等方面,为新材料、新药物和化学反应的设计等提供依据。

本文将介绍一些最新的计算量子化学方法。

1. DFTB方法密度泛函理论(DFT)是量子化学中常用的计算方法之一,它具有计算速度快、可扩展性强等优点。

但是DFT方法在对分子中包含的大量电子进行计算时,计算时间和计算复杂度就会大幅增加。

因此,发展一种基于DFT的计算方法,能够减少计算量和时间,是当下量子化学研究的一个热门方向。

而DFTB(Density Functional Tight Binding)方法就是一种基于DFT理论的快速和简单的计算方法。

它采用了一个紧束缚近似(Tight Binding Approximation),把分子中的电子分为一些局部核心态和一些非局部的价态,并对价态中的电子采用真实的DFT密度泛函作为能量函数。

相对于DFT方法,DFTB方法具有计算速度快,计算复杂度低等优点。

2. MP2方法及其改进Møller – Plesset 2(MP2)是一种广泛使用的从头计算方法,它基于哈特里-福克方程的描述。

在MP2方法中,通过对哈特里-福克算符的展开得到截断级别为二次的微扰项来计算电子关联能。

虽然MP2方法在计算小分子体系的电子关联能方面非常准确,但当分子体系更加复杂时,计算将变得非常困难。

因此,MP2方法的改进也是当前研究的焦点之一。

一些改进的MP2方法如:ER-MP2 (Explicitly Correlated MP2)方法,通过引入相对位置的正则变量,用与距离的一次幂成反比的截断函数,对展开的电子关联能做一个函数拟合,从而提高MP2方法的精度。

3. CCSD(Couple Cluster Singles and Doubles)方法及其改进耦合簇方法(CC)是一个基于波函数理论的计算方法,其核心思想是以一定的方式组合单激发和双激发簇,以描述多电子体系的电子关联效应。

量子化学的基本原理和计算方法

量子化学的基本原理和计算方法

量子化学的基本原理和计算方法量子化学(Quantum Chemistry)是应用量子力学原理和方法研究分子和原子体系的学科。

它揭示了分子和原子的结构、性质和反应机制,为材料科学、生物化学、环境科学等领域的研究提供了基础。

本文将介绍量子化学的基本原理和计算方法。

一、量子化学的基本原理1. 波粒二象性量子化学的起点是波粒二象性原理。

根据波粒二象性,光既可以表现为波,也可以表现为粒子(光子)。

类似地,电子也表现出波粒二象性。

2. 薛定谔方程薛定谔方程是描述量子体系的基本方程,它由Schrödinger提出。

薛定谔方程可以得到体系的波函数,从而揭示体系的能量和性质。

3. 波函数波函数是描述量子体系的数学函数,它包含了体系的全部信息。

根据波函数,可以计算体系的性质,如能量、电荷分布等。

4. 经典力学与量子力学的区别经典力学和量子力学描述了不同尺度下的物理现象。

在经典力学中,物体的位置和动量可以同时确定,而在量子力学中,由于不确定原理的存在,不能同时确定一个粒子的位置和动量。

二、量子化学的计算方法1. 基组理论基组是用来近似描述分子的波函数的一组基函数。

常用的基组有Slater基组、Gaussian基组等。

通过多个基函数的线性组合,可以得到较准确的波函数。

2. 近似方法由于薛定谔方程的求解往往困难,常用的方法是采用近似求解。

常见的近似方法有哈特里-福克方法、密度泛函理论等。

3. 分子轨道理论分子轨道理论是一种近似描述分子波函数的方法,它将分子波函数表示为原子轨道的线性组合。

通过计算得到分子的轨道能级和轨道系数,进而得到各种性质。

4. 动力学模拟方法动力学模拟方法用来研究分子和原子的动力学行为。

常见的方法有分子动力学模拟、蒙特卡洛模拟等。

它可以模拟分子的结构变化、反应动力学等。

三、量子化学在实际应用中的意义1. 预测和解释化学反应量子化学可以预测和解释化学反应的速率常数、活化能等。

通过计算分子的反应途径和反应路径,可以指导实验设计和反应优化。

量子化学计算方法HFMP2DFT

量子化学计算方法HFMP2DFT

量子化学计算方法HFMP2DFT量子化学计算方法是一种基于量子力学原理的计算方法,用于研究分子和化学反应。

其中,HF (Hartree-Fock)、MP2 (Møller-Plesset 2nd order perturbation) 和 DFT (Density Functional Theory) 是常用的量子化学计算方法。

以下是对这三种方法的详细介绍。

HF方法是一种基于非相对论量子力学的近似方法,它将多电子波函数用一系列单电子波函数的乘积形式表示。

HF方法通过最小化哈密顿量的期望值来得到波函数的最佳近似。

HF方法的优点是计算速度较快,适用于中小型分子体系。

然而,HF方法忽略了电子相关性的贡献,因此在描述强关联体系时可能不准确。

MP2方法是一种基于微扰论的方法,通过对HF波函数进行二阶微扰展开来考虑电子相关性。

MP2方法通过计算电子相关能的修正来提高HF波函数的精确度。

相比于HF方法,MP2方法能够更好地描述分子间相互作用和电子相关性。

然而,MP2方法的计算复杂度较高,适用于中等大小的分子体系。

DFT方法是一种基于密度泛函理论的方法,它通过电子密度来描述系统的性质和行为。

DFT方法通过最小化总能量的泛函来得到系统的基态电子密度分布。

DFT方法的优点是可以同时考虑电子相关性和强关联效应,因此适用于各种分子体系的计算。

然而,DFT方法的精确性依赖于所采用的密度泛函的选择,选择不当可能导致不准确的结果。

综上所述,HF、MP2和DFT是常用的量子化学计算方法。

HF方法适用于中小型分子体系,计算速度较快;MP2方法能够更好地描述电子相关性,适用于中等大小的分子体系;DFT方法能够同时考虑电子相关性和强关联效应,适用于各种分子体系的计算。

在实际应用中,根据具体的研究对象和研究目的,选择合适的方法进行计算,以获得准确的结果。

量子化学-3.1

量子化学-3.1

Value
0.001235
Threshold
0.000450
Converged?
NO
RMS
Force
0.000234
0.103483
0.000300
0.001800
YES
NO
Maximum Displacement
RMS
Displacement
0.012763
0.001200
NO
Maximum Force:力的收敛标准是0.00045;
• 势能面把能量与分子的每个何结构联系起来 • 这对应于在解分子体系的Schrö dinger 方程时采用了
Born-Oppenheimer近似
• 因此, 势能面是Born-Oppenheimer(核固定)近似的必然结果
对于体系的最小点或鞍点,其能量的一阶导(也就是梯度) 为零。所有成功的优化都会找到一个极小点。
RMS Force:力的均方根的收敛标准为0.0003;
Maximum Displacement:位移的收敛标准为0.0018; RMS Displacement:位移均方根的收敛标准是0.0012。
例:乙烷的优化(计算执行路径行:# B3LYP/6-31G* Opt)
输出结果的解释:
2.3.2 频率计算(Freq)
2.3.3 单点算(SP Calculation)
单点能计算是指在给定的构型上计算分子的能量和相关性质 (包括电荷密度、偶极距和分子轨道等)。和频率计算不同 的是,单点能计算可以在由较低级别计算得到的优化构型上 进行更高级别的能量计算。
C (6-31G**)
I (Lanl2DZ)
PhI (6-311++G**-lanl2dz)

量子化学计算方法

量子化学计算方法

量子化学计算方法量子化学计算方法是指利用量子力学原理对分子的结构、性质和反应进行计算和模拟的一种方法。

通过计算,可以得到分子的能量、电子结构、振动频率、反应速率等信息,从而揭示分子的行为和性质。

量子化学计算方法已经成为现代化学研究的重要工具,广泛应用于药物研发、催化剂设计、材料科学等领域。

量子化学计算方法主要包括两类:基于波函数的方法和基于密度的方法。

基于波函数的方法主要是通过求解薛定谔方程来计算分子的波函数和能量。

其中,最常用的方法是从头算法,如Hartree-Fock (HF) 方法和密度泛函理论 (DFT) 方法。

HF 方法是一种较为简单的方法,通过将多电子波函数近似为一个单电子波函数的乘积形式,从而简化了计算。

但是由于HF 方法无法考虑电子间的相关性,其精度有限。

DFT 方法通过引入电荷密度的概念,将多电子系统的描述转化为电荷密度的描述,从而大大提高了计算的效率和精度。

基于密度的方法主要是通过计算分子的电子密度来得到分子的性质。

其中,最常用的方法是密度泛函理论(DFT)方法。

DFT方法通过引入交换-相关泛函来描述电子间的相互作用,从而计算分子的能量和电子结构。

DFT方法具有计算效率高、精度较高的优点,已经成为量子化学计算的主流方法。

此外,还有一些改进的DFT方法,如扩展的DFT方法和半经验的DFT方法等,可以通过引入更多的参数来提高计算的精度。

除了波函数和密度的计算方法外,还有一些其他的量子化学计算方法,如耦合簇方法、多体展开方法和分子动力学方法等。

耦合簇方法是一种高精度的方法,可以考虑电子间的相关性,但计算复杂度较高。

多体展开方法是一种将波函数分解为一组“几何填充”函数的方法,可以通过引入更多的“几何填充”函数来提高计算的精度。

分子动力学方法是一种通过模拟分子的运动来计算分子的性质的方法,可以考虑分子的动力学过程,但计算复杂度较高。

总的来说,量子化学计算方法是一种利用量子力学原理对分子进行计算和模拟的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂练习: 1. 安装G03 Linux版本 2. 采用vi命令编辑Gaussian输入文件,具体内容如下: %mem=32mb #p b3lyp/6-311++G** opt
*
章永凡
福州大学化学系 2009年2月
*
一、有限尺度体系(分子、团簇等)电子结构计算 方法-G03程序的使用 二、无限周期体系(一维链状化合物、二维层状 化合物或固体表面、三维固体体相)电子结 构计算方法-VASP/CASTEP程序的使用
主要参考资料: G03用户手册或G03的帮助文件 VASP程序用户手册 相应网址:
d. 运行g03过程: (1)编写输入文件: 用vi命令编写或在Windows下编写完毕后ftp至Linux系统; vi test.gjf (2)运行g03: g03<输入文件名>输出文件名& 例:g03 < test.gjf > test.out & 说明:1)末尾的&符号表示将作业提交到后台计算,否则 在用户退出Linux时,作业将终止; 2)若运行g03出错,请检查环境变量是否设置正确, 尤其是用户权限上的问题; c.观看计算结果: 使用vi命令,或采用tail命令跟踪计算输出: tail -f 输出文件名 d.运行过程的控制: 采用top命令观察g03运行到那个模块; 通过renice命令改变进程的优先级来调整g03的运行速度;
该命令也可用于同一台计算机不同用户之间的文件 传输
(11) vi-文本编辑命令 该命令常用但较为复杂,它有2种模式:命令模式和插入 模式,二者之间关系为: i Esc command mode insert mode command mode 在命令模式下,可实现以下功能及其对应按键: delete a character: x delete a line: dd search a string : /(向后) ?(向前) save the change: :w save the change and quit: :wq quite without saving : :q! page down: Ctrl+d page up: Ctrl+u go to file end: shift+g go to n line: :n
*
研究对象
本研究室目前常用的量化软件: Gaussian 98/03: 由Pople等人编写,经过几十年的发展和完善, 该软件已成为国际上公认的、计算结果具有较高 可靠性的量子化学软件,它包含从头算、半经验 以及分子力学等多种方法,可适用于不同尺度的 有限体系,除了部分稀土和放射性元素外,它可 处理周期表中其它元素形成的各种化合物; Crystal 98/03: 该软件由意大利都灵大学理论化学研究所开发, 采用基于原子轨道线性组合的从头算方法来研究 固体及表面的电子结构; VASP: 该软件由奥地利维也纳大学开发,采用基于平面波 基组的密度泛函理论来研究固体及表面的构型以及 动力学过程; CASTEP: MS软件模块之一,与VASP程序类似; Dmol: MS软件模块之一,主要用于有限尺度体系电子结 构研究;
* G03的安装和运行; * G03的功能和程序结构; * 输入文件的编写与主要功能的使用; * 补
1. G03程序的安装:
(1).确定运行平台:Windows或Linux? (2).对Windows平台: 直接运行setup.exe,其余步骤按提示操作即可;也可将其它 机 器上将已安装好的G03直接拷贝到本机,但需设置运行环境。 对Linux平台: a.若G03是经过压缩过的(文件结尾为gz),用gunzip命令解压: 例如: gunzip g03.linux.tar.gz b.若G03是打包的(文件结尾为tar),用tar命令将其释放: 例如: tar xvf g03.linux.tar ab两步合成一步方法: tar zxvf g03.linux.tar.gz
(12) tar-文件打包命令(适用文件扩展名为tar) 该命令用于多个文件/目录的打包或解包,常用格式有: 文件打包:tar cvf 要打包成的文件名 要打包的文件 例:tar cvf model.tar * 生成 model.tar文件 解包: tar xvf 要解包的文件名 例:tar xvf model.tar (13) gzip/gunzip-文件压缩/解压命令(文件扩展名为gz) 例:gzip model.tar 生成 model.tar.gz 文件 gunzip model.tar.gz 生产model.tar文件 (14) du—察看当前目录所占硬盘空间大小(类似命令df) 例:du –h df –h (察看硬盘各分区大小)
量子化学软件目的在于将量子化学复杂计算过程程序化,从而便
于人们的使用、提高计算效率并具有较强的普适性。 绝多数量子化学程序是采用Fortran语言编写的(Fortran 77或
Fortran 90),通常由上万行语句组成。
*
计算原理
基于从头算或第一性原理方法 (ab initio/first principles) Gaussian、ADF、Dalton、Gamess、 Crystal、VASP、Wien、Dmol等 基于半经验或分子力学方法 MOPAC、EHMO、NNEW3等 有限尺度体系(分子、簇合物等) Gaussian、ADF、Dalton、 Gamess、MOPAC、EHMO等 无限周期重复体系(晶体、固体 表面、链状聚合物等) Crystal、NNEW3、VASP、 Wien等
c.设置环境变量,以c shell为例,在用户根目录下的.cshrc文件 添加下列内容:(也可在执行g03前逐条运行) setenv g03root /home/$USER(设置g03所在目录,根据实际情况修改) source $g03root/g03/bsd/g03.login(激活g03运行时所需环境变量) setenv GAUSS_SCRDIR /home/$USER/g03_tmp(设置临时目录) d.运行bsd/install,自动配置并行计算环境 注:对Linux平台,运行g03时,需注意权限问题,可用chmod
c. Linux常用命令: (1)ls-显示文件清单,相当于DOS下的dir命令:
文件属性
所属用户
大小 创建时间
注:Linux系统下字符是大小写区分的
(2)cp-复制文件命令,相当于DOS下的copy命令: cp -rf
(3)mkdir-创建目录,相当于DOS下的md命令:
(4)rm-删除文件或目录,相当于DOS下的del命令: 删除文件
计算作业提交过程:
a. 用户登录网关-通过SSH远程登录软件实现
SSH软件(SSHSecureShellClient-3.2.9.exe)可从网络上免费 下载,安装过程与通常软件安装类似。安装完毕后,设置 网关外部网的IP地址以及账号名即可使用。
点击Profiles设置IP地址及用户名
b. 从网关登录到计算节点-采用telnet命令实现 例如:telnet 134.14.83.5
(15) rsh或ssh—用于从某个节点登录到其它节点 例:rsh c0102 登录到c0102节点上,为当前用户名 rsh zyf@c0102 与上相同,但用户名为zyf ssh c0102 ssh zyf@c0102 根据rsh或ssh服务的具体设置来确定是否需要提供密码 (16) su—从当前用户转变为超级用户或其它用户 例:su 转变为超级用户 su zyf 将用户转变为zyf用户 (17) ifconfig—察看网络设置 (18) dmesg—察看系统日志 (19) adduser ,passwd
(2). Linux平台:
基于Linux系统的计算拓扑结构 计 算 节 点 计 算 节 点
计 算 节 点
交换机 Linux系统 网 关 外部网(普通) 内部网(高速) Window系统
用户终端
说明: 网关作用类似于防火墙,用于保证内部网的安全和稳定, 作为网关的计算机通常配有2个网卡,分别用于外部网和 内部网的连接。 本实验室网关机子IP地址: 219.229.140.103(非固定IP,可能发生改变)
删除目录
(5)top-显示当前进程和CPU以及内存使用情况
(6)kill-终止某个进程,格式为:kill PID号 (PID号由top命令可得,受权限限制) (7)renice-调整某个进程优先级,格式为:renice 级别 PID号 (级别为0~19整数,数值越大优先级越低) renice 19 79
计算过程
1.文 献 调 研 2.确 定 计 算 目 的 3.计 算 模 型 的 构 造 4.计 算 方 法 和 程 序 的 选 取 5.计 算 结 果 的 分 析 和 整 理
当前的研究状况,包括实验和理 论研究现状、已解决和尚未解决 的问题 采用理论方法要解决的问题 化合物构型的确定,具体途径 包括:利用实验测定结果、或 者采用软件进行构造等 根据现有的计算条件、模型的大 小以及所要解决的问题,选择可 行的计算方法和相应程序 对计算结果进行加工和提取有用 的信息,一般包括构型描述、 能量分析、轨道组成、电荷和成 键分析等,并与实验结果比较
计算模型和方法的选取是保证计算结果可靠性的关键, 理想的情况是:1.所选取的计算模型与实际情形一致;2.采用 高级别的计算方法。但是,由于受到计算软硬件的限制,在多数 情况下,很难同时做到上述两点要求,实际操作中,当计算模 型较大时,只能选择精确度较低的计算方法,只有对较小的模 型才能选取高级的计算方法。 因此,当确定了一种计算模型和方法后,最好对其进行验证, 以保证计算结果的可靠性。假设当前的研究对象是化合物A, 可通过下列途径进行验证: 1. 与A化合物现有实验结果之间的比较; 2. 若无实验方面的报道,可对与A类似的化合物B进行研究,此 时以B的实验结果作为参照; 3. 当上述方法行不通时,可以采用较大模型和较为高级的计算 方法得到的计算结果作为参照,该方法主要用于系列化合物 的研究:如对A1, A2, A3,先用大模型和基组对A1进行研究, 然后以该结果为参照,确定计算量适中的模型和方法并应用 于A1,A2,A3。
相关文档
最新文档