考试固体物理

合集下载

固体物理试题分析及答案

固体物理试题分析及答案

固体物理试题分析及答案一、单项选择题(每题2分,共10分)1. 固体物理中,晶体的周期性结构是由哪种原子排列形成的?A. 金属原子B. 非金属原子C. 金属原子和非金属原子D. 任意原子答案:C解析:晶体的周期性结构是由金属原子和非金属原子按照一定的规律排列形成的,这种排列方式使得晶体具有长程有序性。

2. 哪种类型的晶体具有各向异性?A. 立方晶体B. 六角晶体C. 单斜晶体D. 等轴晶体答案:C解析:单斜晶体属于三斜晶系,其三个轴的长度和夹角均不相同,因此具有各向异性。

3. 固体物理中,电子的能带结构是由什么决定的?A. 原子核B. 电子C. 原子核和电子D. 晶格答案:C解析:电子的能带结构是由原子核和电子共同决定的,它们之间的相互作用导致了电子能级的分裂和能带的形成。

4. 哪种类型的晶体具有完整的布里渊区?A. 立方晶体B. 六角晶体C. 单斜晶体D. 等轴晶体答案:A解析:立方晶体具有完整的布里渊区,这是因为立方晶体的晶格常数相等,使得布里渊区的形状为正八面体。

5. 固体物理中,哪种类型的晶体具有最高的对称性?A. 立方晶体B. 六角晶体C. 单斜晶体D. 等轴晶体答案:A解析:立方晶体具有最高的对称性,这是因为立方晶体的晶格常数相等,且晶格中的原子排列具有高度的对称性。

二、填空题(每题2分,共10分)1. 晶体的周期性结构是由______和______共同决定的。

答案:原子核、电子解析:晶体的周期性结构是由原子核和电子共同决定的,原子核提供了晶格的框架,而电子则填充在晶格中,形成了晶体的周期性结构。

2. 晶体的对称性可以通过______来描述。

答案:空间群解析:晶体的对称性可以通过空间群来描述,空间群是描述晶体对称性的数学工具,它包含了晶体的所有对称操作。

3. 电子的能带结构是由______和______共同决定的。

答案:原子核、电子解析:电子的能带结构是由原子核和电子共同决定的,它们之间的相互作用导致了电子能级的分裂和能带的形成。

初中固体物理试题及答案

初中固体物理试题及答案

初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体物质的分子排列特点是:A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B2. 固体物质的分子间作用力是:A. 引力B. 斥力C. 引力和斥力D. 无作用力答案:C3. 下列物质中,属于晶体的是:A. 玻璃B. 橡胶C. 食盐D. 沥青答案:C4. 晶体与非晶体的主要区别在于:A. 颜色B. 形状C. 熔点D. 分子排列答案:D5. 固体物质的熔化过程需要:A. 吸收热量B. 放出热量C. 保持热量不变D. 无法判断答案:A6. 固体物质的硬度与下列哪项因素有关:A. 分子间作用力B. 分子质量C. 分子体积D. 分子形状答案:A7. 固体物质的导电性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:C8. 晶体的熔点与下列哪项因素有关:A. 晶体的纯度B. 晶体的颜色C. 晶体的形状D. 晶体的密度答案:A9. 固体物质的热膨胀现象说明:A. 分子间距离不变B. 分子间距离减小C. 分子间距离增大D. 分子间距离先增大后减小答案:C10. 固体物质的热传导性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:A二、填空题(每空1分,共20分)1. 固体物质的分子排列特点是________,而非晶体物质的分子排列特点是________。

答案:规则排列;无规则排列2. 固体物质的熔化过程中,分子间________,分子间距离________。

答案:作用力减弱;增大3. 晶体的熔点与________有关,而非晶体没有固定的熔点。

答案:晶体的纯度4. 固体物质的硬度与分子间________有关,分子间作用力越强,硬度越大。

答案:作用力5. 固体物质的热膨胀现象是由于温度升高,分子间距离________。

答案:增大三、简答题(每题10分,共30分)1. 简述晶体与非晶体的区别。

(完整word版)固体物理考试

(完整word版)固体物理考试

)2(sin 422aq m βω=24aq m sin βω=m β42271()(cos cos 2)88E k ka ka ma =-+k a π=ma a E 22)( =π晶态, 非晶态, 准晶态在原子排列上各有什么特点? 答: 晶体是原子排列上长程有序)、非晶体(微米量级内不具有长程有序)、准晶体(有长程取向性, 而没有长程的平移对称性) 晶体:长程有序, 有固定的熔点 单晶体: 分子在整个固体中排列有序。

多晶体: 分子在微米量级内排列有序 非晶体:多晶体:分子在微米量级内排列有序, 整个晶体是由这些排列有序的晶粒堆砌而成的。

准晶体:有长程取向性, 而没有长程的平移对称性。

长程有序:至少在微米量级以上原子、分子排列具有周期性。

晶体结构周期性, 晶体: 基元+布拉维格子 实际的晶体结构与空间点阵之间有何关系? 晶体结构=空间点阵+基元。

原胞和晶胞的区别? 原胞是晶体的最小重复单元, 它反映的是晶格的周期性, 原胞的选取不是唯一的, 但是它们的体积都是相等的, 结点在原胞的顶角上, 原胞只包含1个格点;为了同时反映晶体的对称性, 结晶学上所取的重复单元, 体积不一定最小, 结点不仅可以在顶角上, 还可以在体心或者面心上, 这种重复单元称为晶胞。

掌握立方晶系3个布拉维格子的原胞、晶胞基失导法。

简单立方晶胞基失: 二者一样, 因为格点均在立方体顶角上。

原胞基失: a1=ai a2=bj=aj a3=ck=ak 体心立方除顶角格点外, 还有一个格点在位于立方体的中心。

晶胞基失a=a b=aj c=ak 原胞基失: a1=a/2(-i+j+k ) a 2=a/2(i-j+k ) a 3=a/2(i+j-k) 面心立方除顶角格点外: B 面的中心还有6个格点, (每个格点为相邻晶胞所共有) 原胞基失: a=ai b=aj c=ak 晶胞基失 a 1=a/2(j+k )a 2=a/2(k+i) a 3=a/2(i+j) 常见实际晶体的结构 ①氯化钠的结构: 由Na+和Cl-相间排列组成。

固体物理期末考试题及答案

固体物理期末考试题及答案

固体物理期末考试题及答案一、选择题(每题2分,共20分)1. 晶体中原子排列的周期性结构被称为:A. 晶格B. 晶胞C. 晶面D. 晶向答案:A2. 描述固体中电子行为的基本理论是:A. 经典力学B. 量子力学C. 相对论D. 电磁学答案:B3. 以下哪项不是固体物理中的晶体缺陷:A. 点缺陷B. 线缺陷C. 面缺陷D. 体缺陷答案:D4. 固体物理中,晶格振动的量子称为:A. 声子B. 光子C. 电子D. 空穴答案:A5. 以下哪个不是固体的电子能带结构:A. 价带B. 导带C. 禁带D. 散射带答案:D二、简答题(每题10分,共30分)6. 解释什么是晶格常数,并举例说明。

晶格常数是晶体中最小重复单元的尺寸,通常用来描述晶体的周期性结构。

例如,立方晶系的晶格常数a是指立方体的边长。

7. 简述能带理论的基本概念。

能带理论是量子力学在固体物理中的应用,它描述了固体中电子的能量分布。

在固体中,电子的能量不是连续的,而是分成一系列的能带。

价带是电子能量较低的区域,导带是电子能量较高的区域,而禁带是两带之间的能量区域,电子不能存在。

8. 什么是费米能级,它在固体物理中有什么意义?费米能级是固体中电子的最高占据能级,它与温度有关,但与电子的化学势相等。

在绝对零度时,费米能级位于导带的底部,它决定了固体的导电性质。

三、计算题(每题15分,共30分)9. 假设一个一维单原子链的原子质量为m,相邻原子之间的弹簧常数为k。

求该链的声子频率。

解:一维单原子链的声子频率可以通过下面的公式计算:\[ \omega = 2 \sqrt{\frac{k}{m}} \]10. 给定一个半导体的电子亲和能为Ea,工作温度为T,求该半导体在该温度下的费米-狄拉克分布函数。

解:费米-狄拉克分布函数定义为:\[ f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1} \] 其中,E是电子的能量,E_F是费米能级,k是玻尔兹曼常数,T 是温度。

大学固体物理试题及答案

大学固体物理试题及答案

·考试时间120 分钟试题Array班级学号姓名一、简答题(共65分)1.名词解释:基元,空间点阵,复式格子,密堆积,负电性。

(10分)2.氯化钠与金刚石是复式格子还是单式格子,各自的基元中包含多少原子?分别是什么原子?(6分)3.在固体物理中为什么要引入“倒空间”的概念?(5分)4.在晶体的物相分析中,为什么使用X光衍射而不使用红外光?(5分)5.共价键的定义和特点是什么?(4分)6.声子有哪些性质?(7分)7.钛酸锶是一种常见的半导体材料,当产生晶格振动时,会形成多少支格波,其中声学支和光学支格波各多少支?(5分)8.晶格振动的Einsten模型在高温和低温下都与实验定律符合吗?为什么?(5分)9.试画出自由电子和近自由电子的D~En关系图,并解释二者产生区别的原因。

(8分)10.费米能级E f的物理意义是什么?在绝缘体中费米能级处在导带、禁带、价带的哪个中?两块晶体的费米能级本来不同,E f1≠E f2,当两块晶体紧密接触后,费米能级如何变化?(10分)二、计算题(共35分)1.铜靶发射λ=0.154nm的X射线入射铝单晶(面心立方结构),如铝(111)面一级布拉格反射角θº,试据此计算铝(111)面族的面间距d与铝的晶格常数a。

(10分)2.图示为二维正三角形晶格,相邻原子间距为a。

只计入最近邻相互作用,使用紧束缚近似计算其s能带E(k)、带中电子的速度v(k)以及能带极值附近的有效质量m*。

(15分)提示:使用尤拉公式化简3.用Debye模型计算一维单式晶格的热容。

(10分)参考答案一、简答题(共65分)1. (10分)答:基元:组成晶体的最小结构单元。

空间点阵:为了概括晶体结构的周期性,不考虑基元的具体细节,用几何点把基元抽象成为一点,则晶体抽象成为空间点阵。

复式格子:晶体由几种原子组成,但各种原子在晶体中的排列方式都是相同的(均为B格子的排列),可以说每一种原子都形成一套布拉菲子格子,整个晶体可以看成是若干排列完全相同的子格子套构而成。

固体物理学考试题及答案

固体物理学考试题及答案

固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。

A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。

A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。

A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。

A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。

A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。

A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。

A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。

A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。

A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。

A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。

答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。

答案:带隙3. 金属导电的原因是金属原子的价电子可以______。

固体物理学考试试题及答案

固体物理学考试试题及答案

固体物理学考试试题及答案题目一:1. 介绍固体物理学的定义和基本研究对象。

答案:固体物理学是研究固态物质行为和性质的学科领域。

它主要研究固态物质的结构、形态、力学性质、磁学性质、电学性质、热学性质等方面的现象和规律。

2. 简述晶体和非晶体的区别。

答案:晶体是具有有序结构的固体,其原子、离子或分子排列规则且呈现周期性重复的结构。

非晶体则是没有明显周期性重复结构的固体,其原子、离子或分子呈现无序排列。

3. 解释晶体中“倒易格”和“布里渊区”的概念。

答案:倒易格是晶体中倒格矢所围成的区域,在倒易格中同样存在周期性的结构。

布里渊区是倒易格中包含所有倒格矢的最小单元。

4. 介绍固体中的声子。

答案:声子是固体中传递声波和热传导的一种元激发。

它可以看作是晶体振动的一种量子,具有能量和动量。

5. 解释“价带”和“能带”之间的关系。

答案:价带是材料中的电子可能占据的最高能量带。

能带是电子能量允许的范围,它由连续的价带和导带组成。

6. 说明禁带的概念及其在材料中的作用。

答案:禁带是能带中不允许电子存在的能量范围。

禁带的存在影响着材料的导电性和光学性质,决定了材料是绝缘体、导体还是半导体。

题目二:1. 论述X射线衍射测定晶体结构的原理。

答案:X射线衍射利用了X射线与晶体的相互作用来测定晶体结构。

当X 射线遇到晶体时,晶体中的晶格会将X射线发生衍射,衍射图样可以提供关于晶体的结构信息。

2. 解释滑移运动及其对晶体的影响。

答案:滑移运动是晶体中原子沿晶格面滑动而发生的变形过程。

滑移运动会导致晶体的塑性变形和晶体内部产生位错,影响了晶体的力学性质和导电性能。

3. 简述离子的间隙、亚格子和空位的概念。

答案:间隙是晶体结构中两个相邻原子之间的空间,可以包含其他原子或分子。

亚格子是晶体结构中一个位置上可能有不同种类原子或离子存在的情况。

空位是晶体结构中存在的缺陷,即某个原子或离子缺失。

4. 解释拓扑绝缘体的特点和其应用前景。

答案:拓扑绝缘体是一种特殊的绝缘体,其表面或边界上存在不同于体内的非平庸的拓扑态。

高校物理专业固体物理期末试卷及答案

高校物理专业固体物理期末试卷及答案

高校物理专业固体物理期末试卷及答案一、选择题(每题5分,共30分)1. 以下哪个不是固体物理的研究对象?A. 电荷的导体中的传播B. 物质的晶体结构C. 电子的运动D. 液体的流动性质答案:D2. 在固体物理中,布拉格方程是用来描述什么现象的?A. 光的干涉现象B. 电子的散射现象C. 磁场的分布现象D. 热传导现象答案:A3. 阻塞模型是固体物理中用来解释材料导电性的模型,它主要考虑了以下哪些因素?A. 电子的散射和杨氏模量B. 电子的散射和晶格缺陷C. 杨氏模量和晶体结构D. 晶格缺陷和电子的能带结构答案:B4. 下列哪个参数不是用来描述固体物理中晶格振动的特性?A. 固体的杨氏模量B. 固体的居里温度C. 固体的声速D. 固体的谐振子频率答案:A5. 铁磁体和反铁磁体的主要区别在于它们的:A. 热传导性质B. 磁化曲线形状C. 磁化方向D. 磁化温度答案:C6. 固体物理中的光栅是一种重要的实验工具,它主要用来:A. 进行晶体的结构分析B. 测定材料的电导率C. 测量固体的磁性D. 研究固体的光学性质答案:D二、填空题(每题10分,共40分)1. 固体物理中用于描述材料导电性的基本参量是电阻率和______。

答案:电导率2. 布拉格方程为d*sin(θ) = n*λ中,d表示晶格的______。

答案:间距3. 固体物理中描述材料磁性的基本参量是磁矩和______。

答案:磁化强度4. 固体物理研究中,振动频率最低的模式被称为______模式。

答案:基态5. 根据阻塞模型,材料的电导率与温度的关系满足______定律。

答案:维恩三、简答题(每题20分,共40分)1. 什么是固体物理学中的费米面?它对材料的性质有什么影响?答案:费米面是能带理论中的一个重要概念,表示能量等于费米能级的电子所占据的状态的集合,它将占据态与未占据态分界开来。

费米面对材料的性质有很大影响,如电导率、热导率等。

带有较高电子密度的材料,其费米面形状趋于球形;而低电子密度材料,费米面呈现出不规则的形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考试固体物理1.晶体的结合能,晶体的内能,原子间的相互作用势能有什么区别?答:自由粒子结合成晶体过程中释放出的能量,或者把晶体拆散成一个个自由粒子所需要的能量称为晶体的结合能。

原子的动能与原子间的相互作用势能之和称为晶体的内能。

在0K时,原子有零点振动能。

但原子的零点振动与原子间的相互作用势能的绝对值相比小得多。

所以,在0K时原子间的相互作用势能的绝对值近似等于晶体的结合能。

2.简述线缺陷的类型和区别,并说明理论上临界切应力比实验值大3-4个数量级的原因?答:(1)刃位错,螺位错螺位错线与滑移方向平行,刃位错线与滑移方向垂直。

3.试述导体,半导体和绝缘体能带结构的基本特征?以及在外电场下,为什么他们的导电特性会有不同?答:导体:两种情况:第一,价带未填满而成为导带;第二,价带虽已填满,但禁带宽度为零,满带与导带部分重叠。

除去完全充满的一系列能带外,还有只是部分地被电子填充的能带,后者可以起导电作用,称为导带。

半导体:价带已填满,禁带宽度较小,满带中的电子在不很强的外界影响下即可进入空带,参与导电,同时满带中留下的空穴也可参与导电。

绝缘体:价带已被电子填满,成为满带,在满带和空带之间的禁带宽度很大,满带中很少有电子能被激发到空带中去,在外电场作用下,参与导电的电子极少。

4.金属自由电子论在空间的等能面和费米面是何形状?费米能量与哪些因素有关?在低温下比热容比经典理论给出的结果小得多,为什么?答:(1)都是球形(2)与电子密度和温度有关(3)因为在低温时,大多数电子的能量远低于费米能级,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。

5.晶体结构是如何区分Bravais格子和复式格子的?答:当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表原子,这种晶体结构就称为简单格子或布拉菲格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网络,这些格子相互错开一定距离套构在一起,这种晶体结构叫做复式格子。

6.共价结合为什么有“饱和性”和“方向性”?答:要形成稳定的共价键,必须尽可能使电子云重叠程度大一些,在成键时,要尽可能沿着电子云密度最大的方向发生重叠,形成稳定的共价键,因此共价键具有方向性。

元素的原子行程共价键时,当一个原子的所有未成对电子和另一些原子中自旋方向相反的未成对电子配对成键后,就不再跟其他原子的未成对电子配对成键。

因此,共价键具有饱和性。

7.简要说明简谐近似下晶体不会发生热膨胀的物理原因;势能的非简谐项起了哪些作用?答:由于在简谐近似下,原子间相互作用能在平衡位置附近是对称的,随着温度升高,原子的总能量增高,但原子间的距离的平均值不会增大,因此,简谐近似不能解释热膨胀现象。

势能的非简谐项在晶体的热传导和热膨胀中起了至关重要的作用。

8.一个物体或体系的对称性高低如何判断?有何物理意义?过测角和投影以后,才可对它的对称规律,进行分析研究。

如果一个物体或体系含有的对称操作元素越多,则其对称性越高;反之,含有的对称操作元素越少,则其对称性越低。

9.什么叫声子?特性?子,它是一种玻色子1声子不携带物理动量 2.等价性10.周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样?1.写出倒格子定义及其与正格子的关系解:(1)把倒格基矢平移形成的格子叫倒格子 (2[][][]()方的倒格子正格子与倒格子互为对格原胞体积之积为应,正格原胞体积与倒倒格子与正格子一一对是晶格原胞体积是正格矢,其中=321313212131323222,2,2ππππΩΩ⨯Ω⨯Ω⨯a a a a a a a a a 2.已知某晶体与相邻两原子间的相互作用势能可表示为()n m rr -r u BA +=(1)求出平衡时,两原子间的距离(2)平衡时的结合能解:(1)平衡时,要求晶体的互作用势能取最小值 ()0r n -r m r dr r du 1n 01m 00==++BA1n 01m 0r n r m ++=BAABm n r m -n 0=m-n 10m n r ⎪⎭⎫⎝⎛=∴A B 平衡间距为(2)假设晶体是由N 个原子构成,并且只考虑相邻原子之间的相互作用,平衡时晶体的结合能为()0br u 21N E ≈()⎥⎦⎤⎢⎣⎡===∴n m -12r -r u 21m 00b αN E W 单个原子结合能为3.考虑每格点具有一个质量为m 的原子的二维平衡晶格,仅计及最近邻原子之间的相互作用,力常数为β,设声子色散关系曲线为 ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=2qa sin m4q βω(1)在长波极限下(q →0),求声子态密度D (w ),即单位频率间隔中的点阵震动的 数 (2)在高温频率下(k ,T 》h ω),求二维原子晶体总能量 解:(1)()()βπωββωπωπππωβωββω22a 2m am1am2d dq q 2qdq 22a mdq d aq m 2qa sin m4S SS S D =∙∙∙===∴∙=≈⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=即由已知得:(2)无4.已知一维晶体的电子能带可写成:()⎪⎭⎫⎝⎛+-=ka ka ma k E 2cos 81cos 8722 ,式中a 是晶格常数。

试求:(1)能带的宽度(2)电子在波矢k 的状态时的速度 (3)能带底部和顶部电子的有效质量 解:(1)()()2min max 22max min 2ma 2-ma2a a k 000k a0k 02sin 4sin dk k d==∆∴=⎪⎭⎫ ⎝⎛=======-=E E E E E E E ka ma ka ma E πππ时,当时,当,得由2(2)()()⎪⎭⎫⎝⎛==∇=ka 2sin 41-sinka ma dk k d 1k 1kE E νν得:由(3)m32-ka 2cos 21-coska m k m k k m a k 1-ak 222ak 22=⎪⎭⎫⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂=∂∂∂=±=±=±=**πππβααβE E 得:由m2ka 2cos 21-coska m m 0k 1-0k k 2220k =⎪⎭⎫⎝⎛=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂====*E5.计算在绝对零度下,三维金属中自由电子的费米能和费米半径解:()()()()()()()()()()()312022032220230323020213230202132302213230220020222223320223:2,3223:22,,22:22:,2:2422:2:4:200nk m k E n N n m E NE m V N dE E m V N dE E N E E m V dE dZ E N dE E m V dZ dZ E m k m k dk dE m k E dk k V dk k V dZ dk V Vk dkk k dE E E m k E F F F F FE EF FFπππππππππππ==⋅==⋅⋅=⋅=∴⋅⋅==∴⋅⋅=====⨯=+→=⎰⎰得由是电子密度是电子负极其中即解得即据的量子态全部被电子占能量低于费米能级绝对零度时能态密度得中代入且得则空间中的量子态密度则是晶体体积其中空间中的波矢密度空间体积范围内对应的能量为,则有电子的能量电子可以看成自由电子绝对零度下,金属中的6.维单原子布拉菲品格振动的频率和波矢的色散关系为2sin2qa m ⋅=βω期中m 是原子质量,a 是原子间距,β是原子间的相互作用力的力常数。

(1)按照德拜模型,求出品格比热的表达式; (2)给出低温极限时比热随温度变化的表达式。

解:()()()()()Nk C LVNV Lk T k V T Lk C e e x x dx e e x V T Lk dT dE C T k x d e VL d D e E e VL d dq L D dqLdqL d L L aLa dq d VqmaV q maqam q V V x xT H x xV T k T k T k D 00000202202220000,,11,0,1,:11:1:,:22.,2,2,,,22,0:00000=∴==⋅=∴≈-→-===-=⋅⋅-=-=⋅=====⋅=∴→⎰⎰⎰πωπωωππωωωπωωωωωπωπωππωππωωβββωωωωωω在高温时则设整个晶体热振动能的热振动能频率为模式密度个振动模式范围包括是晶体长度其中个震动模式则单位波矢区间对应个振动模式区间对应小的波矢区间区间对应的两个同样大由色散曲线关系可知则有设由已知得7.已知一维金属晶体共含有N个电子,晶体的长度为L,设:T=0K 试求:(1)电子的状态密度(2)电子的费米能级(3)晶体电子的平均能量解:()()()()()()()()()()()()()()()32324221332242200,022********,22821,2,1,0,2,08)1(002300002200,1,02222222222200000FF E E FFE EF E E E E e kxi E E E Nhm L dE E Nh mL dE E g E Ef N E L N m h E E hmL dE E m h L dE E g E f N K T K E E f K T Emh L E g dEEmh L dE E m L dk Ldk k g dE E g dZ d dEE m dk dk m E kdk m dE m k E k E h m Lk k g n Lnk L x x Ae E hmdx d FF FFF F ====⎪⎭⎫⎝⎛=∴===∴=⎩⎨⎧===∴=====∴======∆=∴±±==∴+===+⎰⎰⎰⎰〈〉)结果得:由()由已知得:(电子填充的最高能级时的费米能级,即为式中的时,)当(能态密度为:电子态数得:得:令得:由ππππππψψψψπψπ9.应用德拜模型,计算(一)二(三)维情况下晶格振动的状态密度、德拜频率、德拜温度、零点能、平均晶格能、晶格比热容。

解:(1)模式密度:波矢空间波矢密度:(三维)(二维),,一维3222)(2⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛πππL L L波矢数目:dq q L qdq L dq L 23242222πππππ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛;;;;;; 振动模式数目:ωωπωωπωπd vV d v S d v L c c c 32222222;;;;;;()ωρ:3222231vV v S v L c c c ωπωππ;;;;;;一维有一支纵波;;;二维有一支纵波一支横波;;;三维有一支纵波两支横波,速度相等 (2)德拜频率:N d v V N d v S N d v L DD Dc c c 32321322200===⎰⎰⎰ωωπωωπωπωωω;;;;;;Dω:v V N v S N L Nvc c c 3122164⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛πππ;;;;;;(3)德拜温度:BDD k ωθ =(4)零点能:()ωωωρωd D⎰021(5)平均晶格能:()ωωωρωωd e E DB T k ⎰⎪⎭⎫ ⎝⎛+-=02111 (6)晶体比热容:TECV∂∂=高温时 低温时()dxee x TNk C TxxDBV D ⎰-=θθ0221B Nk =T ∝()dxee x T Nk C TxxD B V D⎰-⎪⎪⎭⎫⎝⎛=θθ023214B Nk 2=2T ∝()dxee x T Nk C TxxD B V D⎰-⎪⎪⎭⎫⎝⎛=θθ024319 B Nk 3=3T ∝1.反映晶体周期性的重复单元,有两种选取方法:在固体物理学中选取周期最小的重复单元称为原胞,在晶体学中,由对称性选取最小的重复单元称为结晶学原胞2.源自聚集密度较大的品面,他们之间的距离较大,结合力较弱,因而容易分裂开,这样的晶面称为解理面3.晶体中可以独立存在的8种基本对称操作是1,2,3,4,6,i ,m ,44.属于立方晶系的晶胞中所包含的格点数目分别为:简立方1个,体立方2个面心立方4个5.晶体的结合类型分别是共价结合,离子结合,金属结合,分子结合,氢键结合,库伦吸引力是原子结合的动力,它是长程力,晶体原子间还存在排斥力,它是短程力,在平衡时,两者相等6.什么是声子:用独立能量的量子振子的振动来描述格波的独立模式,这就是声子,服从玻尔兹曼统计理论7.晶格振动热容理论中,爱因斯坦模型的基本假设是晶体中所有原子都以相同频率震动,德拜模型的基本假设是把格波看作弹性波来处理8.滑移矢量b与位错线相平行的位错称为螺位错,相垂直的位错称为刃位错9.不允许电子存在的能量范围称为禁带,不被电子占据的能带称为空带,能带中的能量状态均被电子占据的能带称为满带,电子未占满的能带称为导带10.晶格是由N个格点组成,则一个能带有N个不同的波矢状态,能容纳N个电子11.体心立方惯用原胞体积是初级原胞的2倍;面心立方是4倍12.边长为L的立方晶体中,电子波矢取值为k=,电子在k空间的态密度为34πc Vnql13.晶体中离子排列的最大特点是长程有序,非晶体原子排列的最大特点是短程有序14.半导体材料Si和Ge单晶的晶体点阵类型为面心立方,倒易点阵类型为体心立方,每个原子最近邻原子数为415.在波矢空间,能量FE E 的等能面成为费米面,对金属电导有贡献的只是费米能级附近的电子 16.原子晶体是靠共价键结合的,共价键的两个特点是饱和性和方向性17.一个例子的周围最近邻的粒子数称为配位数,他用来描述晶体中粒子排列的紧密程度,晶体结构中最大的配位数为1218.价带中不被电子占据的空状态称为空穴,格点上的原子由于热涨落,脱离格点位置而进入格点间隙位置,产生弗伦克尔缺陷19.单位频率区间的格波振动模式数目称为模式密度,又称角频率的分布函数,单位能量间隔内两等能面间所包含的量子态数目称为能态密度。

相关文档
最新文档