固体物理期末套试题
固体物理期末复习题目

一、名词解释:1、晶体 ;2、非晶体;3、点阵;4、晶格;5、格点;6、晶体的周期性;7、晶体的对称性8、密勒指数;9、倒格子;10、配位数;11、致密度;12、固体物理学元胞;13、结晶学元胞;14、布拉菲格子;15、复式格子;16、声子;17、布洛赫波 ;18、布里渊区;19、格波;20、电子的有效质量二、计算证明题1. 晶体点阵中的一个平面hkl ,试证:(1)晶格的两个相邻平行平面(这些平面通过格点)之间的距离为2||hkl d K π=此处123K hb kb lb =++;(2)利用上述关系证明,对于简单立方格子,22d l =+ a 为晶格常数;(3)说明什么样的晶面容易解理,为什么?2、金刚石晶胞的立方边长为m 101056.3-⨯,求最近邻原子间的距离、平均每立方厘米中的原子数和金刚石的密度。
(碳原子的重量为2310*99.1-g )3. 试证:在晶体中由于受到周期性的限制,只能有1、2、3、4、6重旋转对称轴,5重和大于6重的对称轴不存在。
4、晶体点阵中的一个平面.hkl(a )证明倒易点阵矢量321b l b k b h G ++=垂直于这个平面。
(b )证明正格子原胞体积与倒格子原胞体积互为倒数5. 证明体心立方格子和面心立方格子互为正、倒格子。
6. 在六角空间格子中选取一平行六面体为原胞,试求:(1)基矢321,,a a a的表示式;(2)原胞的体积;(3)倒格子基矢321,,b b b 。
7、氪原子组成惰性晶体为体心立方结构,其总势能可写为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=6612122R A R A N R U σσε,其中N 为氪原子数,R 为最近邻原子间距离,点阵和A 6=12.25,A 12=9.11;设雷纳德—琼斯系数ε=0.014eV ,σ=3.65。
求:(1)平衡时原子间最近距离R 0及点阵常数a ;(2)每个原子的结合能(eV )。
8. 设两原子间的互作用能可表示为()n m r r r u βα+-=式中,第一项为引力能;第二项为排斥能;βα,均为正常数。
固体物理期末卷子

一、1.半导体的迁移率比金属高,为什么金属导电性更好?2.用能带理论解释为什么绝缘体满带不导电,导体半满带导电。
3.什么是bloch电子,它所遵循的bloch定律是什么4.Drude和索莫非模型的区别?请写出他们各自的电子热容。
5.设在t=0时,除能带E和G的位置以外,所有的态都被充满,此时能带中的电流为零。
在外加电场E下,在单位时间△t下,电子空轨道可向前或向后走一步(如从E走到F 或是走到D处)。
若沿K x方向上加一电场E,1)试画出空穴能带,并标明经过2△t后空穴所在位置;2)写出电流密度大小,已知电子在G处的速度可写为v(G)。
(v为向量)6.金属有离子有电子,请问在常温下那个对热容贡献更大?对热导率呢?请说明理由。
二、作业5,第3题;(2018年改为作业5-4)三、(1)证明受主热电离p=√NaNc exp(-Ea/2KbT);(2)求化学势μ(利用上面的表达式和本征半导体的p公式相等)。
四、作业7,第1题改版:银的密度为10.5g/cm3,原子质量是107.87,在绝对零度下。
(1)求每个电子的平均能量;(2)银的体积弹性模量要求:写出公式推导过程,再代入计算。
五、作业8,第3题与第5题结合一简立方晶体,a=3埃,沿着FBZ 的[100]方向的紧束缚的能带具有如下形式:(1)计算并画出电子在这个方向的群速度。
(2)计算简单立方FBZ 的中心Г点和面心X 点处的有效质量。
(3)如果在x 方向上施加5 伏/米的外电场,每个原胞含一个价电子,在不考虑碰撞的情况下,计算电子沿[100]方向由费米面运动至带顶所需的时间。
(注意不同于作业改成了费米面)20172018。
固体物理期末试卷及参考解答B

课程编号: 课程名称: 固体物理试卷类型:、卷 卷 考试时间: 120 分钟 1.什么是晶面指数?什么是方向指数?它们有何联系?2.请写出布拉格衍射条件,并写出用波矢和倒格矢表示的衍射条件。
3. 为什么组成晶体的粒子(分子、原子或离子)间的相互作用力除吸引力还要有排斥力?排斥力的来源是什么?4.写出马德隆常数的定义,并计算一维符号交替变化的无限长离子线的马德隆常数。
5.什么叫声子?长光学支格波与长声学支格波的本质上有何区别?6.温度降到很低时。
爱因斯坦模型与实验结果的偏差增大,但此时,德拜模型却与实验结果符合的较好。
试解释其原因。
7. 自由电子模型的基态费米能和激发态费米能的物理意义是什么?费米能与那些因素有关?8.什么是弱周期场近似?按照弱周期场近似,禁带产生的原因是什么?9. 什么是本征载流子?什么是杂质导电?10.什么是紧束缚近似?按照紧束缚近似,禁带是如何产生的?二、计算题(本大题共5小题,每小题10分,共50分) 1. 考虑一在球形区域内密度均匀的自由电子气体,电子系统相对于等量均匀正电荷背景有一小的整体位移,证明在这一位移下系统是稳定的,并给出这一小振动问题的特征频率。
2. 如将布拉维格子的格点位置在直角坐标系中用一组数),,(321n n n 表示,证明:对于面心立方格子,i n 的和为偶数。
3. 设一非简并半导体有抛物线型的导带极小,有效质量m m1.0=*,当导带电子具有k T 300=的平均速度时,计算其能量、动量、波矢和德布罗意波长。
4. 对于原子间距为a ,由N 个原子组成的一维单原子链,在德拜近似下,(1)计算晶格振动频谱;(2)证明低温极限下,比热正比于温度T 。
5. 对原子间距为a 的由同种原子构成的二维密堆积结构,(1)画出前三个布里渊区;(2)求出每原子有一个自由电子时的费米波矢;(3)给出第一布里渊区内接圆的半径;(4)求出内接圆为费米圆时每原子的平均自由电子数;(5)平均每原子有两个自由电子时,在简约布里渊区中画出费米圆的图形。
高校物理专业固体物理学期末考试试卷及答案

高校物理专业固体物理学期末考试试卷及答案一、选择题(每题2分,共40分)1. 下列哪种材料是典型的固体?A. 水B. 空气C. 玻璃D. 油2. 表征物质导电性质的关键因素是:A. 导热系数B. 形变C. 导电子数D. 电阻率3. 相互作用力程远大于它的大小尺度的物质状态是:A. 液体B. 气体C. 等离子体D. 固体4. 根据原子内部粒子组织排列方式的不同,将固体分为晶体和非晶态,以下哪种属于非晶态?A. 钻石B. 石英C. 玻璃D. 铜5. 材料的抗拉强度指的是:A. 材料在拉伸过程中发生断裂的能力B. 材料的硬度C. 材料的耐磨性D. 材料的延展性(以下为第6题至第40题的选项省略)二、填空题(每题3分,共30分)1. 固体的最基本由原子、分子或离子组成的单位结构叫作_____________。
2. 点阵是固体晶体结构中原子、离子或分子的_____________组成的排列方式。
3. 若一堆物体在某种温度下开始熔化,则该温度即为该物质的_____________点。
4. 固体由于结构的紧密性,其密度通常较_____________。
5. 金属中导电电子为材料的_____________。
6. 非晶态材料的特点是_____________无规律的原子组织结构。
(以下为第7题至第30题的空格省略)三、问答题(共30分)1. 简述固体物理学研究的基本内容和意义。
解答:固体物理学研究的基本内容主要包括固体材料的结构、性质和应用等方面。
它通过研究固体的微观结构和宏观性质,探索物质内部的相互作用和运动规律,从而深入了解固体物质的特性和行为。
固体物理学的研究对于提高材料的功能和性能具有重要意义。
通过深入研究固体的结构和性质,我们可以开发出更好的材料,改善材料的导电、导热、机械强度等性能,为社会发展和工业生产提供重要支持。
同时,固体物理学的研究还能够为其他领域的科学研究提供基础和支撑,如电子学、光学、磁学等。
固体物理期末试题及答案

固体物理期末试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体的说法,错误的是:A. 晶体具有规则的几何外形B. 晶体内部原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 电子在金属中的自由运动是金属导电的主要原因,这种现象称为:A. 金属键B. 离子键C. 共价键D. 范德华力答案:A3. 半导体材料的导电性介于导体和绝缘体之间,这是因为:A. 半导体材料中的电子不能自由移动B. 半导体材料中的电子在特定条件下才能自由移动C. 半导体材料中的电子数量少于导体D. 半导体材料中的电子数量多于绝缘体答案:B4. 根据泡利不相容原理,一个原子轨道中最多可以容纳的电子数是:A. 1个B. 2个C. 4个D. 8个答案:B二、填空题(每题5分,共20分)1. 晶体的三种基本类型是________、________和________。
答案:单晶体、多晶体、非晶体2. 根据能带理论,固体中的能带可以分为________和________。
答案:导带、价带3. 固体物理中,费米能级是指在绝对零度时,电子占据的最高能级,其对应的温度是________。
答案:0K4. 根据德布罗意波理论,物质粒子也具有波动性,电子的波长与其动量成________关系。
答案:反比三、简答题(每题10分,共30分)1. 简述布拉格定律及其在晶体结构分析中的应用。
答案:布拉格定律是指当X射线或电子波以一定角度入射到晶体表面时,如果满足nλ=2d*sinθ的条件,其中n为整数,λ为波长,d为晶面间距,θ为入射角,那么会发生衍射现象。
这个定律在晶体结构分析中非常重要,因为它允许科学家通过测量衍射角来确定晶体的晶面间距和晶体结构。
2. 解释什么是超导现象,并简述其应用。
答案:超导现象是指某些材料在低于临界温度时,电阻突然降为零的现象。
这意味着在超导状态下,电流可以在材料内部无损耗地流动。
超导现象的应用非常广泛,包括但不限于磁悬浮列车、粒子加速器中的超导磁体、以及医疗成像设备如MRI。
固体物理期末考试题及答案

固体物理期末考试题及答案一、选择题(每题2分,共20分)1. 晶体中原子排列的周期性结构被称为:A. 晶格B. 晶胞C. 晶面D. 晶向答案:A2. 描述固体中电子行为的基本理论是:A. 经典力学B. 量子力学C. 相对论D. 电磁学答案:B3. 以下哪项不是固体物理中的晶体缺陷:A. 点缺陷B. 线缺陷C. 面缺陷D. 体缺陷答案:D4. 固体物理中,晶格振动的量子称为:A. 声子B. 光子C. 电子D. 空穴答案:A5. 以下哪个不是固体的电子能带结构:A. 价带B. 导带C. 禁带D. 散射带答案:D二、简答题(每题10分,共30分)6. 解释什么是晶格常数,并举例说明。
晶格常数是晶体中最小重复单元的尺寸,通常用来描述晶体的周期性结构。
例如,立方晶系的晶格常数a是指立方体的边长。
7. 简述能带理论的基本概念。
能带理论是量子力学在固体物理中的应用,它描述了固体中电子的能量分布。
在固体中,电子的能量不是连续的,而是分成一系列的能带。
价带是电子能量较低的区域,导带是电子能量较高的区域,而禁带是两带之间的能量区域,电子不能存在。
8. 什么是费米能级,它在固体物理中有什么意义?费米能级是固体中电子的最高占据能级,它与温度有关,但与电子的化学势相等。
在绝对零度时,费米能级位于导带的底部,它决定了固体的导电性质。
三、计算题(每题15分,共30分)9. 假设一个一维单原子链的原子质量为m,相邻原子之间的弹簧常数为k。
求该链的声子频率。
解:一维单原子链的声子频率可以通过下面的公式计算:\[ \omega = 2 \sqrt{\frac{k}{m}} \]10. 给定一个半导体的电子亲和能为Ea,工作温度为T,求该半导体在该温度下的费米-狄拉克分布函数。
解:费米-狄拉克分布函数定义为:\[ f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1} \] 其中,E是电子的能量,E_F是费米能级,k是玻尔兹曼常数,T 是温度。
固体物理学考试题及答案

固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。
A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。
A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。
A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。
A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。
A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。
A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。
A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。
A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。
A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。
A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。
答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。
答案:带隙3. 金属导电的原因是金属原子的价电子可以______。
高校物理专业固体物理期末试卷及答案

高校物理专业固体物理期末试卷及答案一、选择题(每题5分,共30分)1. 以下哪个不是固体物理的研究对象?A. 电荷的导体中的传播B. 物质的晶体结构C. 电子的运动D. 液体的流动性质答案:D2. 在固体物理中,布拉格方程是用来描述什么现象的?A. 光的干涉现象B. 电子的散射现象C. 磁场的分布现象D. 热传导现象答案:A3. 阻塞模型是固体物理中用来解释材料导电性的模型,它主要考虑了以下哪些因素?A. 电子的散射和杨氏模量B. 电子的散射和晶格缺陷C. 杨氏模量和晶体结构D. 晶格缺陷和电子的能带结构答案:B4. 下列哪个参数不是用来描述固体物理中晶格振动的特性?A. 固体的杨氏模量B. 固体的居里温度C. 固体的声速D. 固体的谐振子频率答案:A5. 铁磁体和反铁磁体的主要区别在于它们的:A. 热传导性质B. 磁化曲线形状C. 磁化方向D. 磁化温度答案:C6. 固体物理中的光栅是一种重要的实验工具,它主要用来:A. 进行晶体的结构分析B. 测定材料的电导率C. 测量固体的磁性D. 研究固体的光学性质答案:D二、填空题(每题10分,共40分)1. 固体物理中用于描述材料导电性的基本参量是电阻率和______。
答案:电导率2. 布拉格方程为d*sin(θ) = n*λ中,d表示晶格的______。
答案:间距3. 固体物理中描述材料磁性的基本参量是磁矩和______。
答案:磁化强度4. 固体物理研究中,振动频率最低的模式被称为______模式。
答案:基态5. 根据阻塞模型,材料的电导率与温度的关系满足______定律。
答案:维恩三、简答题(每题20分,共40分)1. 什么是固体物理学中的费米面?它对材料的性质有什么影响?答案:费米面是能带理论中的一个重要概念,表示能量等于费米能级的电子所占据的状态的集合,它将占据态与未占据态分界开来。
费米面对材料的性质有很大影响,如电导率、热导率等。
带有较高电子密度的材料,其费米面形状趋于球形;而低电子密度材料,费米面呈现出不规则的形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体物理期末套试题 Revised as of 23 November 20201. Si 晶体是复式格子,由两个面心立方结构的子晶格沿体对角线位移1/4套构而成;其固体物理学原胞包含8个原子,其固体物理学原胞基矢可表示)(21k j a a +=,)(22k i a a +=, )(23j i a a +=。
假设其结晶学原胞的体积为a 3,则其固体物理学原胞体积为341a 。
2. 由完全相同的一种原子构成的格子,每个格点周围环境相同称为布拉菲格子; 倒格子基矢与正格子基矢满足)(2)(0{2j i j i ij j i b a ==≠==⋅ππδ ,由倒格子基矢b l b l b l K ++=(l 1, l 2, l 3为整数),构成的格子,是正格子的傅里叶变换,称为倒格子格子;由若干个布拉菲格子套构而成的格子称为复式格子。
最常见的两种原胞是固体物理学原胞和结晶学原胞。
3.声子是格波的能量量子,其能量为,动量为q 。
二.问答题(共30分,每题6分)1.晶体有哪几种结合类型?简述晶体结合的一般性质。
答:离子晶体,共价晶体,金属晶体,分子晶体及氢键晶体。
晶体中两个粒子之间的相互作用力或相互作用势与两个粒子的距离之间遵从相同的定性规律。
2.晶体的结合能, 晶体的内能, 原子间的相互作用势能有何区别?答:自由粒子结合成晶体过程中释放出的能量,或者把晶体拆散成一个个自由粒子所需要的能量称为晶体的结合能;原子的动能与原子间的相互作用势能之和为晶体的内能;在0K时,原子还存在零点振动能,但它与原子间的相互作用势能的绝对值相比小很多,所以,在0K时原子间的相互作用势能的绝对值近似等于晶体的结合能。
3.什么是热缺陷?简述肖特基缺陷和弗仑克尔缺陷的特点。
答:在点缺陷中,有一类点缺陷,其产生和平衡浓度都与温度有关,这一类点缺陷称为热缺陷,热缺陷总是在不断地产生和复合,在一定地温度下热缺陷具有一定地平衡浓度。
肖特基缺陷是晶体内部格点上的原子(或离子)通过接力运动到表面格点的位置后在晶体内留下空位;弗仑克尔缺陷是格点上的原子移到格点的间隙位置形成间隙原子,同时在原来的格点位置留下空位,二者成对出现。
4.简述空穴的概念及其性质.答:对于状态K空着的近满带,其总电流就如同一个具有正电荷e的粒子,以空状态K的电子速度所产生的,这个空的状态称为空穴;空穴具有正有效质量,位于满带顶附近,空穴是准粒子。
5.根据量子理论简述电子对比热的贡献,写出表达式,并说明为什么在高温时可以不考虑电子对比热的贡献在低温时必须考虑?答:在量子理论中,大多数电子的能量远远低于费米能量E F ,由于受到泡利不相容原理的限制,不能参与热激发,只有在E F 附近约~K B T 范围内电子参与热激发,对金属的比热有贡献。
C V e=γT在高温时C V e 相对C V l 来说很小可忽略不计;在低温时,晶格振动的比热按温度三次方趋近于零,而电子的比热与温度一次方正比,随温度下降变化缓慢,此时电子的比热可以和晶格振动的比热相比较,不能忽略。
1、晶格常数为的面心立方晶格,原胞体积等于 D 。
A. B. C. D. 2、体心立方密集的致密度是 C 。
A. B. C. D.3、描述晶体宏观对称性的基本对称元素有 A 。
A. 8个B. 48个 个 个4、晶格常数为的一维双原子链,倒格子基矢的大小为 D 。
A. B. C. D.5、晶格常数为a 的简立方晶格的(110)面间距为 A 。
A. aB. 3aC. 4aD. 5a6、晶格振动的能量量子称为 CA. 极化子B. 激子C. 声子D. 光子7、由N 个原胞组成的简单晶体,不考虑能带交叠,则每个s 能带可容纳的电子数为C 。
A. N/2B. NC. 2ND. 4N8、三维自由电子的能态密度,与能量的关系是正比于 C 。
A. B. C. D.9、某种晶体的费米能决定于A. 晶体的体积B. 晶体中的总电子数C. 晶体中的电子浓度D. 晶体的形状10、电子有效质量的实验研究方法是 C 。
A. X 射线衍射B. 中子非弹性散射C. 回旋共振D. 霍耳效应二、简答题(共20分,每小题5分)1、波矢空间与倒易空间有何关系 为什么说波矢空间内的状态点是准连续的波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为321 b b b 、、, 而波矢空间的基矢分别为32N N / / /321b b b 、、1N , N1、N2、N3分别是沿正格子基矢321 a a a 、、方向晶体的原胞数目.倒格空间中一个倒格点对应的体积为*321) (Ω=⨯⋅b b b ,波矢空间中一个波矢点对应的体积为N N b N b N b *332211)(Ω=⨯⋅,即波矢空间中一个波矢点对应的体积, 是倒格空间中一个倒格点对应的体积的1/N. 由于N 是晶体的原胞数目,数目巨大,所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的。
也就是说,波矢点在倒格空间看是极其稠密的。
因此, 在波矢空间内作求和处理时,可把波矢空间内的状态点看成是准连续的。
2、简述处理固体比热的德拜模型的基本出发点和主要结论。
目的:考核对晶格热容量子理论的掌握。
答案:德拜把晶格当作弹性介质来处理,晶格振动采取格波的形式,它们的频率值是不完全相同的而频率有一个分布。
同时,他假设频率大于某一个频率m ω的短波实际上是不存在的,m ω是格波振动频率的上限。
固体比热由德拜模型的结果,在高温时满足杜隆-珀替定律,在低温时满足于V C 与3T 成正比,这恰是德拜定律。
(6分)3、为什么说原胞中电子数目若为奇数,相应的晶体具有金属导电性目的:考核电子在能带中的填充及固体的分类。
答案: 一条能带允许有2倍原胞数目的电子占据,原胞中电子的数目为奇数必有未填满的能带,有被部分填充的能带结构的晶体具有导电性。
4、什么是回旋共振它有什么用途?目的:考核晶体中电子在磁场中运动规律的掌握。
答案:在恒定外磁场的作用下,晶体中的电子(或空穴)将做螺旋运动,回旋频率*0m /qB =ω。
若在垂直磁场方向加上频率为ω的交变电场,当0ωω=,交变电场的能量将被电子共振吸收,这个现象称成为回旋共振。
用途:确定电子的有效质量;确定晶体的能带结构。
(6分)2、平面正三角形晶格,相邻原子间距是a 。
试求正格子基矢和倒格子基矢,并画出第一布里渊区。
目的:考核对布里渊区的理解。
解:正格子基矢 k a j a i a a i a a =+==321232 (4分)倒格子基矢[][]i aa a a a ab j a i a a a a a a b πππππ2332.22332.2321132321321=⨯⨯=-=⨯⨯= (6分) 第一布里渊区由1b ,-1b ,2b ,-2b ,1b + 2b ,-1b -2b 的垂直平分面所夹的区域,平面图中由正六边形所围成。
1、晶格常数为的体心立方晶格,原胞体积等于 C 。
A. B. C. D. 2、面心立方密集的致密度是 B 。
A. B. C. D.3、表征晶格周期性的概念是 A 。
A. 原胞或布拉伐格子B. 原胞或单胞C. 单胞或布拉伐格子D. 原胞和基元4、晶格常数为的一维单原子链,倒格子基矢的大小为 D 。
A. B. C. D.5、晶格常数为a 的简立方晶格的(010)面间距为 A 。
A. aB. 3aC. 4aD. 5a6、晶格振动的能量量子称为 CA. 极化子B. 激子C. 声子D. 光子7、由N 个原胞组成的简单晶体,不考虑能带交叠,则每个s 能带可容纳的电子数为C 。
A. N/2B. NC. 2ND. 4N8、二维自由电子的能态密度,与能量的关系是正比于 B 。
A. B. C. D.9、某种晶体的费米能决定于 C 。
A. 晶体的体积B. 晶体中的总电子数C. 晶体中的电子浓度D. 晶体的形状10、晶体结构的实验研究方法是 A 。
A. X 射线衍射B. 中子非弹性散射C. 回旋共振D. 霍耳效应二、简答题(共20分,每小题5分)2、在甚低温下, 德拜模型为什么与实验相符在甚低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在甚低温下, 德拜模型与事实相符, 自然与实验相符.3、解释导带、满带、价带和带隙对于导体:电子的最高填充能带为不满带,称该被部分填充的最高能带为导带,在电场中具有被部分填充的能带结构的晶体具有导电性。
对于绝缘体、半导体:称电子占据了一个能带中所有状态的允带为满带;没有任何电子占据(填充)的能带,称为空带;最下面的一个空带称为导带;导带以下的第一个满带,或者最上面的一个满带称为价带;两个能带之间,不允许存在的能级宽度,称为带隙。
4、金属自由电子论与经典理论对金属热电子发射的功函数的微观解释有何不同,为什么?经典理论认为,金属热电子发射时,需克服的势垒高度即功函数为 χ=W ,其中χ是真空势垒;金属自由电子论认为,金属热电子发射时,需克服的势垒高度即功函数为f E W -χ=,f E 是电子气的费米能级。
其差别源于经典理论认为,电子是经典粒子,服从玻尔兹曼统计理论,在基态时,电子可以全部处于基态,因此热电子发射时,电子需克服的势垒高度是χ=W 。
而金属自由电子理论认为,电子是费米粒子,服从费米-狄拉克统计理论,在基态时,电子可以由基态能级填充至f E ,因此热电子发射时,电子需克服的势垒高度是f E W -χ=。
某金刚石结构晶体,其立方单胞体积为Ω,试求其布里渊区体积。
三、简答题(共20分,每小题10分)1、设晶格常数为a , 求立方晶系密勒指数为(hkl )的晶面族的面间距。
立方晶系密勒指数为(hkl )的晶面族的面间距----填空题 (共20分,每空2分)目的:考核基本知识。
1、金刚石晶体的结合类型是典型的 共价结合 晶体, 它有 6 支格波。
2、晶格常数为a 的体心立方晶格,原胞体积Ω为 23a 。
3、晶体的对称性可由 32 点群表征,晶体的排列可分为 14 种布喇菲格子,其中六角密积结构 不是 布喇菲格子。
4、两种不同金属接触后,费米能级高的带 正 电,对导电有贡献的是 费米面附近 的电子。
5、固体能带论的三个基本近似:绝热近似 、_单电子近似_、_周期场近似_。
一、 判断题 (共10分,每小题2分)目的:考核基本知识。
1、解理面是面指数高的晶面。
(×)2、面心立方晶格的致密度为π61 ( ×) 3、二维自由电子气的能态密度()21~E E N 。
(×)4、晶格振动的能量量子称为声子。
( √)5、 长声学波不能导致离子晶体的宏观极化。