算法时间复杂度
常用算法时间复杂度

常用算法时间复杂度在计算机科学领域中,算法是解决问题的一种方法。
算法的好坏不仅与其解决问题的准确性相关,而且和其所需的时间和空间复杂度也有关。
时间复杂度是度量算法执行所需时间的数量级,通常用大O符号表示,因此也被称为大O复杂度。
下面介绍一些常用算法的时间复杂度。
1. 常数时间复杂度(O(1))此类算法与输入规模大小无关,执行时间始终相同。
例如,访问数组的某个元素,可以通过索引直接访问,不需要循环遍历整个数组。
2. 线性时间复杂度(O(n))此类算法的执行时间与输入规模成线性关系。
例如,遍历一个数组,需要循环访问每个元素一次,时间复杂度为O(n)。
3. 对数时间复杂度(O(logn))此类算法的执行时间与输入规模成对数关系。
例如,二分查找算法,每次执行都能将待查找元素的搜索区间缩小一半,因此时间复杂度为O(logn)。
4. 平方时间复杂度(O(n^2))此类算法的执行时间与输入规模的平方成正比。
例如,嵌套循环遍历二维数组,需要执行n*n次操作,时间复杂度为O(n^2)。
5. 立方时间复杂度(O(n^3))此类算法的执行时间与输入规模的立方成正比。
例如,嵌套循环遍历三维数组,需要执行n*n*n次操作,时间复杂度为O(n^3)。
6. 指数时间复杂度(O(2^n))此类算法的执行时间随着输入规模的增加呈指数级增长。
例如,求解某些NP问题(非确定性多项式问题)的暴力搜索算法,时间复杂度为O(2^n)。
7. 阶乘时间复杂度(O(n!))此类算法的执行时间随着输入规模的增加呈阶乘级增长。
例如,通过枚举法求解某些问题,每次需要执行n!次操作,时间复杂度为O(n!)。
在实际应用中,时间复杂度是衡量算法效率的重要指标,因此开发人员需要在设计时考虑时间复杂度优化问题。
如果算法复杂度较高,可能会导致程序执行时间过长,甚至无法正常运行。
因此,开发人员需要根据具体情况来选择合适的算法,以达到更好的性能要求。
算法的时间复杂度是指什么

算法的时间复杂度是指什么时间复杂度通常用大O符号表示。
大O表示法表示算法运行时间的上界,即算法最坏情况下的运行时间。
时间复杂度可以分为几个级别,如常数时间O(1)、对数时间O(log n)、线性时间O(n)、线性对数时间O(n log n)、平方时间O(n^2)等。
这些时间复杂度级别代表了问题规模增长时算法所需时间的不同变化速度。
在分析算法的时间复杂度时,通常关注的是算法运行时间随问题规模n的增长而变化的趋势,而不关注具体的运行时间。
因此,时间复杂度是一种抽象的概念,用于比较不同算法的运行效率。
1.基本操作数计数法:通过统计算法执行的基本操作数来估计算法的时间复杂度。
基本操作就是算法中最频繁执行的操作,例如赋值、比较、加法、乘法等。
基本操作数计数法的思路是,通过对算法中的基本操作进行计数,然后选择基本操作数最大的那一部分作为算法的时间复杂度。
2.事后统计法:通过实际运行算法并统计其执行时间来估计算法的时间复杂度。
这种方法通常用于验证理论上估计的时间复杂度是否准确。
然而,事后统计法只能得到特定输入情况下的时间复杂度,不能推断出算法的一般情况下的时间复杂度。
3.算法复杂度分析法:通过对算法中各个语句进行分析,得出算法的时间复杂度。
这种方法可以用数学方法推导出时间复杂度的表达式,通常使用数学归纳法、递推关系、循环求和等方法进行分析。
算法的时间复杂度对于衡量算法的效率非常重要。
较低的时间复杂度意味着算法可以在更短的时间内处理更大规模的问题。
因此,选择合适的算法设计和算法优化可以提高程序的运行效率,并减少资源消耗,对于大规模数据处理和系统性能优化至关重要。
时间复杂度分析及常用算法复杂度排名

时间复杂度分析及常用算法复杂度排名随着计算机技术的不断发展,人们对于算法的效率也提出了更高的要求。
好的算法可以大大地提高程序的运行效率,而坏的算法则会导致程序运行缓慢,浪费更多的时间和资源。
因此,在实际的开发中,需要对算法的效率进行评估和分析。
其中,时间复杂度是评估算法效率的重要指标之一,接下来就让我们来探讨一下时间复杂度分析及常用算法复杂度排名。
一、时间复杂度时间复杂度,简称时间复杂度,是指在算法中用来衡量算法运行时间大小的量。
通常情况下,时间复杂度用 O(n) 来表示,其中n 表示输入数据规模的大小。
由于常数系数和低次项不会对时间复杂度的大致表示产生影响,因此,时间复杂度的精确算法往往会被简化为最高次项的时间复杂度,即 O(n)。
二、时间复杂度的分析时间复杂度可以通过算法中的循环次数来分析。
一般来说,算法中的循环分为两种情况:一种是 for 循环,一种是 while 循环。
因为 for 循环的循环次数一般是固定的,因此可以通过循环次数来估算时间复杂度;而 while 循环的循环次数取决于输入数据的大小,因此时间复杂度的分析需要基于输入数据的规模进行分析和推导。
三、时间复杂度的常见表示法在实际的算法分析中,常常用到以下几种时间复杂度表示法:常数阶 O(1)、对数阶 O(logn)、线性阶 O(n)、线性对数阶 O(nlogn)、平方阶 O(n^2)、立方阶 O(n^3)、指数阶 O(2^n) 等。
常数阶 O(1):表示算法的时间不随着输入规模的增加而增加,即不论输入数据的大小,算法的运行时间都是固定的。
例如,最好的情况下,二分查找的时间复杂度即为 O(1)。
对数阶 O(logn):表示算法的时间复杂度随着输入规模的增加而增加,但增长比较缓慢,即随着输入规模的每增加一倍,算法所需的运行时间大致增加一个常数。
例如,二分查找的时间复杂度即为 O(logn)。
线性阶 O(n):表示算法的时间复杂度随着输入规模的增加而增加,增长速度与输入规模成线性比例关系。
算法时间复杂度的计算公式

算法时间复杂度的计算公式算法时间复杂度是算法效率的一种度量方式,通常用大O符号来表示,例如O(1)、O(n)、O(n^2)等。
在计算算法时间复杂度时,需要考虑算法中各种操作的时间复杂度,并将它们合并为总时间复杂度。
以下是常见的算法操作时间复杂度:1. 常数级别:O(1)2. 对数级别:O(logn)3. 线性级别:O(n)4. 线性对数级别:O(nlogn)5. 平方级别:O(n^2)6. 立方级别:O(n^3)7. 指数级别:O(2^n)计算总时间复杂度的公式如下:1. 顺序执行的操作,时间复杂度直接相加。
例如,若有操作A、B、C,它们的时间复杂度分别为O(a)、O(b)、O(c),则总时间复杂度为O(a + b + c)。
2. 嵌套执行的操作,时间复杂度取最大值。
例如,若有操作A、B,操作A执行了n次,每次的时间复杂度为O(n),操作B的时间复杂度为O(nlogn),则总时间复杂度为O(n*nlogn),即O(n^2logn)。
3. 分支语句的时间复杂度为其中时间复杂度最大的分支的时间复杂度。
例如,若有分支语句,分别包含操作A和操作B,它们的时间复杂度分别为O(a)、O(b),则分支语句的时间复杂度为O(max(a,b))。
4. 循环结构的时间复杂度为循环次数乘以循环体的时间复杂度。
例如,若有循环结构,循环次数为n,循环体包含操作A和操作B,它们的时间复杂度分别为O(a)、O(b),则循环结构的时间复杂度为O(n*max(a,b))。
综上所述,计算算法总时间复杂度需要考虑各个操作的时间复杂度以及它们的执行顺序、嵌套关系、分支和循环结构。
求时间复杂度的方法

①for(i=1;i<=n;i++)②for(j=1;j<=i;j++)③for(k=1;k<=j;k++)④++x;
解:以上算法中频度最大的是语句④,其频度可以通过求和公式求得:
所以,该算法的时间复杂度为立方阶,记作T(n)=O(n3)。例3有如下算法:
例6有如下算法:
voidfun(inta[],intn,intk){inti;
if(k==n-1)
for(i=0;i<n;i++)printf("%d",a[i]);else
{for(i=k;i<n;i++)a[i]=a[i]+i;fun(a,n,k+1);}}
解:设fun(a,n,k)的执行时间为T(k),由算法可以得到时间复杂度的递归关系如下:
则:
所以,该算法的时间复杂度T(n)=O(n2)
例5有如下算法:
i=s=0;while(s<n){i++;s=s+i;}
解:假设循环执行k次,则有:
k=1时,i=1,s=0+1k=2时,i=2,s=0+1+2k=3时,i=3,s=0+1+2+3
…
执行到k次时,。
由于s<n,即
,所以
,该算法的时间复杂度
。
3.迭代法
当算法中包含递归函数时,其时间复杂度也会被转化为一个递归方程,上述两种方法此时不再适用。递归方程的形式多种多样,其求解方法也是不一而足,比较常用是迭代法。其基本步骤是迭代地展开递归方程的右端,使之成为一个非递归的和式,然后通过对和式的估计来得到时间复杂度T(n)。
算法时间复杂度的计算公式

算法时间复杂度的计算公式
算法时间复杂度是衡量算法效率的重要指标,它是指算法运行时间随着问题规模的增大而增长的速度。
计算算法时间复杂度需要考虑以下几个因素:
1. 循环结构的次数:算法中循环结构执行的次数是影响时间复杂度的重要因素之一。
2. 嵌套循环结构:如果算法中有多个嵌套循环结构,那么时间复杂度的计算就要考虑这些循环的嵌套次数。
3. 条件判断语句:如果算法中有条件判断语句,那么时间复杂度的计算需要根据条件的判断次数进行计算。
4. 递归调用:如果算法中有递归调用,那么时间复杂度的计算需要根据递归的次数进行计算。
算法时间复杂度的计算公式可以表示为:
T(n) = O(f(n))
其中,T(n)表示算法的时间复杂度,f(n)表示算法执行的时间,O表示算法的渐进时间复杂度。
根据算法的实际情况,可以通过分析算法中循环结构的次数、嵌套次数、条件判断次数、递归次数等因素,来确定算法的时间复杂度。
- 1 -。
算法时间复杂度计算公式

算法时间复杂度计算公式算法(Algorithm)是指⽤来操作数据、解决程序问题的⼀组⽅法。
对于同⼀个问题,使⽤不同的算法,也许最终得到的结果是⼀样的,但在过程中消耗的资源和时间却会有很⼤的区别。
那么我们应该如何去衡量不同算法之间的优劣呢?主要还是从算法所占⽤的「时间」和「空间」两个维度去考量。
时间维度:是指执⾏当前算法所消耗的时间,我们通常⽤「时间复杂度」来描述。
空间维度:是指执⾏当前算法需要占⽤多少内存空间,我们通常⽤「空间复杂度」来描述。
因此,评价⼀个算法的效率主要是看它的时间复杂度和空间复杂度情况。
然⽽,有的时候时间和空间却⼜是「鱼和熊掌」,不可兼得的,那么我们就需要从中去取⼀个平衡点。
下⾯我来分别介绍⼀下「时间复杂度」和「空间复杂度」的计算⽅式。
⼀、时间复杂度我们想要知道⼀个算法的「时间复杂度」,很多⼈⾸先想到的的⽅法就是把这个算法程序运⾏⼀遍,那么它所消耗的时间就⾃然⽽然知道了。
这种⽅式可以吗?当然可以,不过它也有很多弊端。
这种⽅式⾮常容易受运⾏环境的影响,在性能⾼的机器上跑出来的结果与在性能低的机器上跑的结果相差会很⼤。
⽽且对测试时使⽤的数据规模也有很⼤关系。
再者,并我们在写算法的时候,还没有办法完整的去运⾏呢。
因此,另⼀种更为通⽤的⽅法就出来了:「⼤O符号表⽰法」,即 T(n) = O(f(n))我们先来看个例⼦:for(i=1; i<=n; ++i){j = i;j++;}通过「⼤O符号表⽰法」,这段代码的时间复杂度为:O(n) ,为什么呢?在⼤O符号表⽰法中,时间复杂度的公式是: T(n) = O( f(n) ),其中f(n) 表⽰每⾏代码执⾏次数之和,⽽ O 表⽰正⽐例关系,这个公式的全称是:算法的渐进时间复杂度。
我们继续看上⾯的例⼦,假设每⾏代码的执⾏时间都是⼀样的,我们⽤ 1颗粒时间来表⽰,那么这个例⼦的第⼀⾏耗时是1个颗粒时间,第三⾏的执⾏时间是 n个颗粒时间,第四⾏的执⾏时间也是 n个颗粒时间(第⼆⾏和第五⾏是符号,暂时忽略),那么总时间就是 1颗粒时间 + n颗粒时间 + n颗粒时间,即 (1+2n)个颗粒时间,即: T(n) = (1+2n)*颗粒时间,从这个结果可以看出,这个算法的耗时是随着n的变化⽽变化,因此,我们可以简化的将这个算法的时间复杂度表⽰为:T(n) = O(n)为什么可以这么去简化呢,因为⼤O符号表⽰法并不是⽤于来真实代表算法的执⾏时间的,它是⽤来表⽰代码执⾏时间的增长变化趋势的。
数据结构算法时间复杂度的计算

数据结构算法时间复杂度的计算数据结构和算法时间复杂度的计算是评估算法性能的重要手段之一,通过分析算法的时间复杂度,可以了解算法在处理不同规模的输入时所需的时间。
时间复杂度是用来衡量算法执行时间随输入规模增长的趋势。
它通常用大O表示法来表示,表示算法执行时间的增长速度。
大O表示法中的O 表示"上界",即理想情况下算法的最高执行时间。
在计算时间复杂度时,我们关注算法中的基本操作数,而不是具体的执行时间。
例如,对于一个循环结构,我们关注循环体内的操作次数,而不是循环的执行时间。
下面我们将分别介绍几种常见的数据结构和算法以及它们的时间复杂度计算方法。
1. 数组(Array)数组是最简单、最常见的一种数据结构。
数组由一系列相同类型的元素组成,可以通过索引来访问和修改元素。
对于数组来说,可以通过索引直接访问任何一个元素。
所以数组的访问时间复杂度为O(1)。
2. 链表(Linked List)链表是另一种常见的数据结构,它由一系列节点组成。
节点包含了数据和指向下一个节点的指针。
对于链表来说,需要遍历整个链表来访问或者修改一些节点,所以链表的访问时间复杂度为O(n),其中n是链表的长度。
3. 栈(Stack)和队列(Queue)栈和队列是两种常见的线性数据结构。
对于栈来说,只能从栈顶插入和删除元素,所以栈的插入和删除操作的时间复杂度都是O(1)。
对于队列来说,只能从队列的一端插入元素,从队列的另一端删除元素。
队列的插入和删除操作的时间复杂度也都是O(1)。
4. 散列表(Hash Table)散列表通过将关键字映射为数组的索引,然后将值存储在该索引对应的数组位置上。
对于散列表来说,如果散列函数很好的均匀分布关键字,则散列表的插入、删除和查找操作的时间复杂度都是O(1)。
5. 树(Tree)树是一种非线性数据结构,由节点和边组成。
对于树来说,树的操作通常需要遍历整棵树来完成,所以树的插入、删除和查找操作的时间复杂度都是O(n),其中n是树的节点数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法的时间复杂度
2007年12月02日星期日01:17
定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数T(n)称为这一算法的“时间复杂性”。
当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。
我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。
x++;②
}
解:语句1的频度是n-1
语句2的频度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
该程序的时间复杂度T(n)=O(n^2).
O(n)
2.3.
a=0;
b=1;①
for (i=1;i<=n;i++)②
{
s=a+b;③
b=a;④
a=s;⑤
}
解:语句1的频度:2,
此外,一个问题本身也有它的复杂性,如果某个算法的复杂:在这种描述中使用的基本参数是n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级(order),比如说“二分检索是O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法O ( f(n) )表示当n增大时,运行时间至多将以正比于f(n)的速度增长。
我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最坏情况运行时间是O(n^2),但期望时间是O(nlogn)。通过每次都仔细地选择基准值,我们有可能把平方情况(即O(n^2)情况)的概率减小到几乎等于0。在实际中,精心实现的快速排序一般都能以(O(nlogn)时间运行。
下面是一些常用的记法:
这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。
O(1)
Temp=i;i=j;j=temp;
以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
语句2的频度:n,
语句3的频度:n-1,
语句4的频度:n-1,
语句5的频度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).
O(log2n )
2.4.
i=1;①
while (i<=n)
i=i*2;②
解:语句1的频度是1,
设语句2的频度是f(n),则:2^f(n)<=n;f(n)<=log2n
访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如果能在每个步骤去掉一半数据元素,如二分检索,通常它就取O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对元素相乘并加到一起,所有元素的个数是n^2。
指数时间算法通常来源于需要求出所有可能结果。例如,n个元素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题(如著名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果的算法替代之。
取最大值f(n)= log2n,
T(n)=O(log2n )
O(n^3)
2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j可以取0,1,...,m-1 ,所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n,则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).
O(n^2)
2.1.交换i和j的内容
sum=0;(一次)
for(i=1;i<=n;i++)(n次)
for(j=1;j<=n;j++)(n^2次)
sum++;(n^2次)
解:T(n)=2n^2+n+1 =O(n^2)
2.2.
for (i=1;i<n;i++)
{
y=y+1;①
for (j=0;j<=(2*n);j++)