二次函数第一课时PPT课件

合集下载

二次函数复习课第一课时PPT

二次函数复习课第一课时PPT
二次函数复习课第一课时 PPT
本节课为二次函数复习课的第一课时,将重点回顾二次函数的定义及基本形 式,并介绍二次函数的图像特征和性质。
二次函数的图像特征
对称性
二次函数的图像以顶点为对称轴对称。
顶点坐标
顶点坐标为(x,y),其中y为二次函数的最 小值(当开口向上时)或最大值(当开口 向下时)。
开口方向
焦点
焦点是图像上的特殊点,与 抛物线的形状有关。
对称轴
对称轴是二次函数图像的对 称线,通过顶点且垂直于准 线。
二次函数的变形与图像
1
垂直方向缩放
通过改变二次系数a的绝对值,可以
水平方向平移
2
改变二次函数图像的形状与开口大 小。
通过改变二次函数中x的常数项或线
性项,可以使图像左右移动。
3
对称轴变化
通过改变二次函数中x的线性项,可 以改变图像关于y轴的对称轴位置。
3
注意事项
注意事项包括仔细阅读题目、画出 准确的图像以及验证计算结果等。
二次函数的应用举例
抛物线轨迹
抛物线轨迹的运动可以用二次函数来描述, 如投射运动、弹道等。
面积与最大值
通过优化二次函数来求解相关问题,如求最 大面积。
二次函数拟合及其应用
拟合
通过将实际数据点与二次函数图像相拟合, 可以预测用于经济学、物理 学、工程学等领域中的数据模型和问题求 解。
二次函数的常见错误及纠错方法
1
常见错误
常见错误包括图像方向、顶点坐标
纠错方法
2
计算错误等。
纠错方法包括通过复习基本概念、
练习题目以及请教老师等。
当二次系数a为正数时,图像开口向上; 当a为负数时,图像开口向下。

人教版数学九年级上册22 二次函数(第一课时)课件

人教版数学九年级上册22 二次函数(第一课时)课件

4
【典例】下列各式中,y 是 x 的二次函数的是( )
A.y=x12
B.y=2x+1
C.y=x2+x-2
D.y2=x2+3x
分析:y=x12中,x12为分式,不是二次函数,故 A 不符题意;y=2x+1 中,x 的
次数为 1,是一次函数,故 B 不符题意;y=x2+x-2 符合二次函数的定义,是二次
函数解析式是 y=3x+2 或 y=33+215
5x+5+23
5或 y=33-215
5x+5-23
5 .
(2) 若 函 数 y = (m2 - m - 2)xm2 - 5m - 4 + (m + 1)x + m 为 二 次 函 数 , 则
m2-5m-4=2, m2-m-2≠0.
解得 m=6.故当 m=6 时,函数 y=(m2-m-2)xm2-5m-4+(m
• (1)求直线AB的解析式; • (2)若设点P的横坐标为x,矩形PKDH的面积为S,求S关于x的函数解析
式.
17
解:(1)如图所示,∵OE=CD=80 m,OC=ED=100 m,AE=60 m,BC=70 m, ∴OA=20 m,OB=30 m,即 A(0,20)、B(30,0).设直线 AB 的解析式为 y=kx+b(k≠0),
►如果我们不曾相遇,你的梦里就不会有我的出现,我们都在不断地 和陌生人擦肩;如果人生不曾相遇,我的生命里就不会有你的片段,我 们都在细数着自己的日子。 ►当离别的脚步声越来越清晰,我们注定分散两地,继续彼此未完的 人生,如果我说放不下,短短一个月的光景,你是否愿意相信,我的 真诚,我的执着,只源于内心深处那一份沉沉的不舍。
►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►有时候,我们愿意原谅一个人,并不是我们真的愿意原谅他,而是我们 不愿意失去他。不想失去他,惟有假装原谅他。不管你爱过多少人,不管 你爱得多么痛苦或快乐。最后,你不是学会了怎样恋爱,而是学会了,怎 样去爱自己。

二次函数第一课时PPT省公开课获奖课件说课比赛一等奖课件

二次函数第一课时PPT省公开课获奖课件说课比赛一等奖课件
上述三个问题中旳函数解析式具有哪些共同旳 特征?
经化简后都具有y=ax²+bx+c 旳形式. (a,b,c是常数, a≠0 )
下列函数中,哪些是二次函数?
(1)y=3x-1
(2)y=3x2
(3)y=3x3+2x2
(4)y=2x2-2x+1
(5)y=x-2&x)
y ax2 bx c(其中a,b, c是常数),
二次函数旳概念
温故知新
复习: 1、什么是函数?
在某个变化过程中,有两个变量x 和y , 假如对于x 旳每一个可取旳值,都有唯一一 种y 值与它相应,那么y 称为x 旳 函数。 2、什么叫做一次函数?
形如y=kx+b (k、b为常数,k≠0)
3、函数有哪些表达措施?
解析法 列表法 图象法
合作学习,探索新知 :
请用合适旳函数解析式表达下列问题情 境中旳两个变量 y 与 x 之间旳关系:
(1)圆旳面积 y ( cm2)与圆旳半径 x ( cm ) y =πx2
(2)某商店1月份旳利润是2万元,2、3月 份利润逐月增长,这两个月利润旳月平 均增长率为x,3月份旳利润为y
y = 2(1+x)2
合作学习,探索新知 :
当a, b, c满足什么条件时
(1)它是二次函数? (1)a 0
(2)它是一次函数? (2)a 0,b 0
(3)它是正百分比函数?(3)a 0,b 0, c 0
例题精讲
例1 m取哪些值时,函数 y=(m2-m)x2+mx+(m+1)是以x为自变量旳二次
函数?
2: m取何值时,函数y=(m+1)xm2 2m 1
(3)拟建中旳一种温室旳平面图如图,假如

二次函数的应用ppt课件

二次函数的应用ppt课件

②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m

二次函数第一课时PPT教学课件

二次函数第一课时PPT教学课件

富阳永兴中6学
练一练:
考考你
1、说出下列二次函数的二次项系数、
一次项系数和常数项。
(1)y1x22x (2)sr2 2
(3)yx215 (4)y4(x21)
(5)y1(x2)21 4
2020/12/12
九年级 数学
富阳m2m1 是二次函数,
则m的值是
3、k取何值时,y ( k 2 3 k 2 ) x 2 ( k 2 ) x k 1 分
剪去4个全等的直角三角形(图中阴影部分)。设
AE=BF=CG=DH=x(cm),四边形EFGH的面积为
y(cm2),求y关于x的函数解析式和自变量x的取值
范围。
D
GC
解:由题意,0<x<2 ,
H
y 2 2 4 1 x (2 x ) 2 x 2 4 x 4
F
2 即所求函数解析式为
A E
B
y2x24x4(0<x<2 )
1、已知二次函数y=ax2+bx,当x=-1时, 函数值y为10;当x=1时,函数值y为4; 求这个二次函数的解析式。
2、已知二次函数y=x2+px+q,当x=-1时, y=0;当x=2时,y=9,求这个二次函数的 解析式。
待定系数法 关键是列出方程组
2020/12/12
九年级 数学
富阳永兴中10学
(1)yax2 (2)ya2xc
(3)ya2 xbx
(其中a、b、c是常数,a ≠0 )
2020/12/12
九年级 数学
富阳永兴中5学
辨一辨
下列函数关系式中,哪些是二次函数?
(1)y3x22x1 (2)yxx2
(3)sr2
(5)y4x22

人教版九年级数学上册二次函数课件(共15张)

人教版九年级数学上册二次函数课件(共15张)

1、y =6x2
2、
3、y=20x2+40x+20 上述问题中的函数解析式具有
哪些共同的特征?
化简后具有y=ax²+bx+c 的情势.
(a,b,c是常数, a≠0 )
二次函数概念
我们把形如y=ax²+bx+c
(其中a,b,C是常数,a≠0)的函 数叫做二次函数
称:a为二次项系数, b为一次项系数, c为常数项.
(1)写出y关于x的 函数关系式. (2)当x=3时,矩形 的面积为多少?
x
2、已知二次函数 y=x²+px+q,当x=1时,函数 值为4,当x=2时,函数值 为 -5, 求这个二次函数 的解析式.
课堂小结
a≠0
y=ax²+bx+c
二次项 系数
一次项 系数
常数项
每个队要与其他 (n-1) 个球队各比赛一场,甲
队对乙队的比赛与乙队对甲队的比赛是同一场比赛,

所以比赛的场次数
.即
.
上式表示比赛的场次数m与球队数n的关系,对于 n的每一个值,m都有一个对应值,即m是n的函数.
问题2 某种产品现在的年产量是20 t,计划今后 两年增加产量,如果每年都比上一年的产量增加 x倍,那么两年后这种产品的产量 y 将随计划所 定的x的值而确定,y与x之间的关系应怎样表示?
这种产品的原产量是20 t,一年后的产量是 20(1+x)t,
再经过一年后的产量是 20(1+x)(1+x) t,即两年 后的产量 y=20(1+x)2 , 即 y=20x2+40x+20 .
上式表示两年后的产量y与计划增产的倍数x之间 的关系,对于x的每一个值,y都有一个对应值,即y 是x的函数.

二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高

二次函数的图像与性质(第一课时)优质课件

二次函数的图像与性质(第一课时)优质课件
对称轴与抛物 线的交点叫做 抛物线的顶点.
抛物线y=x2在x轴的上方(除顶点外), 顶点是它的最低点,开口向上, 当x=0 时,函数y的值最小,最小值是0.
【内容】独立完成探究点一的针对练习、 探究点二。(5min)
【要求】1.独立思考,认真分析总结; 2.标记好自己的疑难问题,以便讨论 探究; 3.自主独立做题,2min时间到后学 科组长组织组员针对疑难问题及 小组任务进行讨论交流。
2.2 二次函数的图像与性质(一)
我们把物体抛射时所经过的路线叫做抛物线.
1.经历探索二次函数y=x2 的图像的作法
和性质的过程,获得利用图像研究函数性质 的经验;
2.能够利用描点法作出二次函数y=x2的图 像,并能根据图像认识和理解二次函数y=x2 的性质;
3.能够作出二次函数 y=-x2的图像,并能 够y=x2比较出与 的图像的异同,初步建立二 次函数表达式与图像之间的联系.
【内容】快速、独立完成训练案“自测反馈”(8min) 【要求】1.独立思考,认真分析总结
2.标记好自己的疑难问题,以便课后讨论探究
探究内容 展示小组
14组小2源自2组组 合3
6组

4
5组
能力提升1
1组
能力提升2
3组
【要求】1.独立完成训练案的填空题;2.标记好自己的疑难
问题,以便讨论 ;3.针对疑难,自由探讨,互帮互助.
2、剩余时间思考探究案中其他问题,并把你认为正确的答 案写在学案上。
1.列表时注意自变量X的取值是否有意义.
(1)反比例函数: y
2
x
(x≠0)
(2)圆的面积公式:S r 2 (r≥0)
(3)二次函数: y=-x2 (x取全体实数)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次项: ax2 二次项系数: a
一次项: bx 一次项系数: b
常数项: c
2021/3/8
12
1.若y=(a2-1)x2是二次函数则, a的取
值范围是_a_≠_±__1
2021/3/8
13
2. 关于x的函数
y(m1)xm2m
是二次函数, 求m的值.
如果它是二次函数,则m+1应该 __≠_ 0 m2-m=__2,所以m=__2_
y = ax2+bx+c
y x3 x
y5x2 1x5 3 12 6
A. 1个 B.2 个 C.3个 D.4个
2021/3/8
9
4.把函数y=(5x+7)(x-3)+2x-5 化成一
般形式,写出各项系数。
解: y=(5x+7)(x-3)+2x-5
=5x2-8x-21+2x-5
=5x2-6x-26
它是二次函数,二次项系数
注意:二次函数的二次项系数不能为零
2021/3/8
14
3.若函数y(m1)xm23m为2 二次函数,求 m的值。
解:因为该函数为二次函数, 则 m2 3m22(1)
m10(2)
解(1)得:m=4或-1
解(2)得: m1
所以m=4
2021/3/8
15
函数 yax 2bx c其 ( 中 ab , c,是常 ),数
7
2.下列函数关系式中,是二次函数的是(D)
A. y = 2x
B. y = mx2
C. y 1 x2
D. y = (a2+1)x2-ax+a
2021/3/8
驶向胜利的 彼岸
8
B 3.下列函数关系式中,二次函数有 ( )个.
y = (3x-1)2-9x2 y = (x+2)2-4x
y x2 1 x
面自积变量s与是a_之a_间_,它的的函最数高关次系数式是为__2____S__.=(a+2)2
2021/3/8
4
3.再看函数y=(x+1)2-4,自变量是__x_,自变量的 最高次数是_2__,
这些函数和以前学得函数有什么不 同?
这些函数都是二次43;bx+c(其中a,b,c
其中自变量x能取哪些值呢?
注意:当二次函数表示某个实际问题时,还必 须根据题意确定自变量的取值范围.
2021/3/8
20
驶向胜利的 彼岸
你认为今天这节课最需要 掌握的是 ________________ 。
2021/3/8
21
独立 作业
知识的升华
祝你成功!
初三(下)数学课本第4页
• 习题26.1 1. 2. 3. 4.
是常数,a≠0)的函数叫做二次函数
2021/3/8
6
1.下列函数中,哪些是二次函数?
(1) y x 2

1 (2) y x2
不是
( 3 ) y x (1 x ) 是 y=-x2+x
( 4 ) y ( x 1 ) 2 x 2 不是
y=x2-2x+1-x2
=-2x+1
先化简后判断
2021/3/8
2021/3/8
18
5.已知二次函数 y2(x1)24
(1)你能说出此函数的最小值吗?
(2)你能说出这里自变量能取哪些值呢?
2021/3/8
19
开动脑筋
问题:是否任何情况下二次函数中的自变量 的取值范围都是任意实数呢?
例如:圆的面积 y( cm)与2 圆的半径 x(cm)
的函数关系是
y =πx2
2021/3/8
22
素材和资料部分来自 网络,如有帮助请下载!
2021/3/8
1
复习回顾
1.一元二次方程的一般形式是什么?
2。一次函数、正比例函数的定义是 什么?
2021/3/8
2
观察下列函数:
(1)y = 2x+1 (2)y = -x-4
3 y 2
x (5)y = -4x
(4)y = 5x2 (6)y = ax+1
驶向胜利的 彼岸
其中,一次函数有_1_._2_.5_,那么一次函数的一般 形式是_____ y=kx+b(k≠0)
2021/3/8
3
1.函数y=x+1 ,自变量是_x__,自变量的次数是 __1_,y是x的一__次__函数. 2.函数s=-2t-4 ,自变量是t___,自变量的次数 是1___,s是t的_一__次_函数.
写出下列函数的表达式,
1.圆的半径是r(cm)时,面积s(cm2)与半径之间
的是2.正关_2_方系. 形__的S__边=_π长r为2,a自,如变果量边是长__增r_加,它2的,新最图高形次的数
17
例2.写出下列各函数关系,并判断它们是什么类型的函数 (1)写出正方体的表面积S(cm 2)与正方体棱长a(cm) 之间的函数关系; (2)写出圆的面积y(cm )2 与它的周长x(cm)之间的函数 关系; (3)菱形的两条对角线的和为26cm,求菱形的面积S(cm)2 与一对角线长x(cm)之间的函数关系.
当 ab , c,满足什么条件时
(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?
2021/3/8
16
练一练:
练习2、请举1个符合以下条件的y关于x的 二次函数的例子
(1)二次项系数是一次项系数的2倍, 常数项为任意值。
(2)二次项系数为-5,一次项系数为 常数项的3倍。
2021/3/8
及常数项分别是5,-6,-26
2021/3/8
10
5.指出下列函数的二次项系数,一次项系数,常数项 分别是多少?
y = -2-3x2 -3 0 -2
y 3 x2 3
5
5
y = 2(x-2)2+8x 2
00 08
2021/3/8
11
我们把形如y=ax²+bx+c(其中a,b,c是
常数,a≠0)的函数叫做二次函数
相关文档
最新文档