汽车发动机工作原理及总体构造
发动机的组成及工作原理

发动机的组成及工作原理引言概述:发动机是现代交通工具中不可或者缺的关键部件,它负责将燃料转化为动力,驱动车辆运行。
本文将对发动机的组成及工作原理进行详细阐述,匡助读者更好地理解发动机的运行机制。
正文内容:1. 发动机的组成1.1 缸体和缸盖:发动机的基本结构,用于容纳活塞、气门和其他关键部件。
1.2 活塞和连杆:活塞在缸体内上下运动,通过连杆将运动转化为旋转运动。
1.3 曲轴和凸轮轴:曲轴将连杆的旋转运动转化为输出轴的旋转运动,凸轮轴控制气门的开闭。
1.4 气门温和门机构:气门控制进出气体的流动,气门机构负责使气门按照规定的时序工作。
1.5 燃油系统和点火系统:燃油系统负责将燃料输送到燃烧室,点火系统提供火花点燃混合气。
2. 发动机的工作原理2.1 进气冲程:活塞下行,气门开启,汽缸内产生负压,进气门打开,混合气进入燃烧室。
2.2 压缩冲程:活塞上行,气门关闭,混合气被压缩,增加燃烧效率。
2.3 燃烧冲程:活塞上行至顶点时,点火系统点燃混合气,产生爆炸,推动活塞下行。
2.4 排气冲程:活塞下行,气门开启,废气从排气门排出,为下一个工作循环做准备。
2.5 循环重复:上述四个冲程循环进行,驱动曲轴旋转,输出动力。
总结:从组成和工作原理来看,发动机是一个复杂的系统,由多个部件协同工作实现动力输出。
发动机的组成包括缸体、活塞、曲轴等关键部件,而工作原理则涉及进气、压缩、燃烧和排气四个冲程。
通过深入理解发动机的组成和工作原理,我们可以更好地理解其运行机制,为日常维护和故障排除提供指导。
同时,对于汽车创造商和工程师而言,深入研究发动机的组成和工作原理也是提升发动机性能和燃油效率的关键。
发动机的工作原理和总体构造

第一章发动机的工作原理和总体构造§1.1发动机的分类§1.2四冲程发动机工作原理§1.2.1四冲程汽油机工作原理一、现代汽车发动机的构造现代汽车发动机的构造如图1-1,气缸内装有活塞,活塞通过活塞销、连杆与曲轴相连接。
活塞在气缸内做往复运动,通过连杆推动曲轴转动。
为了吸人新鲜气体和排除废气,设有进、排气系统等。
二、基本术语1、工作循环2、上、下止点3、活塞行程4、气缸工作容积5、内燃机排量6、燃烧室容积7、气缸总容积8、压缩比9、工况10、负荷率三、四冲程汽油发动机的工作循环图1-2 为发动机示意图。
四冲程发动机的工作循环包括四个活塞行程,即进气行程、压缩行程、膨胀行程(作功行程和排气行程。
通常利用发动机循环的示功图来分析工作循环中气体压力p 和相应于活塞不同位置的气缸容积V 之间的变化关系, 示功图表示了活塞在不同位置时气缸内压力的变化情况。
其中,曲线所围成的面积表示发动机整个工作循环中气体在单个气缸内所作的功。
四冲程汽油机的示功图如图1-3 所示。
(1 进气行程(图1-3a化油器式汽油机将空气与燃料先在气缸外部的化油器中进行混合,形成可燃混合气后吸人气缸。
进气过程中,进气门开启,排气门关闭。
随着活塞从上止点向下止点移动,活塞上方的气缸容积增大,从而气缸内的压力降低到大气压以下,即在气缸内造成真空吸力。
这样,可燃混合气使经进气管道和进气门被吸人气缸。
(2 压缩行程(图1-3b为使吸人气缸的可燃混合气能迅速燃烧,以产生较大的压力,从而使发动机发出较大功率,必须在燃烧前将可燃混合气压缩,使其容积缩小、密度加大、温度升高,故需要有压缩过程。
在这个过程中,进、排气门全部关闭,曲轴推动活塞由下止点向上止点移动一个行程,称为压缩行程。
在示功图上,压缩行程用曲线a c表示。
(3 作功行程(图1-3c在这个行程中,进、排气门仍旧关闭。
当活塞接近上止点时,装在气缸盖上的火花塞即发出电火花,点燃被压缩的可燃混合气。
第一章.汽车发动机工作原理与总体构造

9. 工况:内燃机在某一时刻的运行状况简
称工况,以该时刻内燃机输出的有效功率和 曲轴转速表示。曲轴转速即为内燃机的转速。
10.负荷率: 内燃机在某一转速下发出的有
效功率及相同转速下发出的最大有效功率的 比值成为负荷率,以百分数表示。负荷率通 常简称为负荷。
第十三页,共39页。
三、四冲程汽油机的工作原理 1、进气行程
第一章.汽车发动机工作原理与总 体构造
第一页,共39页。
第一节.汽车发动机的定义及类型
一.汽车发动机的定义及其类型
(一)定义:
1) 发动机:将某一种形式的能量转换为机 械能的机器。 2) 热力发动机(热机):将热能转换为机 械能的机器。包括内燃机和外燃机两种。 3) 内燃机:燃料(气、液体)燃烧的热气 直接将所含热能转变为机械能的一种机器。
压缩终了压力:pco=0.8~1.5 Mpa 压缩终了温度:Tco=600~750 K
第十五页,共39页。
进气门关闭
压缩行程
压缩比:
ε=Va/Vc
排气门关闭
下止点 上止点
温度600~800K, 压力600~1500 kPa
P
c 大气压力线 r
第十六页,共39页。
示功图
a V
3.作功行程
活塞:从上止点移动到下止点 气门:进气门关闭,排气门关闭 曲轴:旋转从360℃A~540℃A 最高压力:pmax=3.0~6.5 Mpa 最高温度:Tmax=2200~2800 K 膨胀终了压力:pex=0.35~0.5Mpa 膨胀终了温度:Tex=1200~1500 K
• 发动机外廓体积及其标定功率的比值称为比容积。
2.比质量
• 发动机的干质量与其标定功率的比值称为比质量。干质 量是指未加注燃油、机油和冷却液的发动机质量。比容 积和比质量越小,发动机结构越紧凑。
第一章汽车发动机工作原理及总体构造

第一章汽车发动机工作原理及总体构造汽车发动机是汽车的动力装置,负责将燃料燃烧后的化学能转化为机械能,驱动汽车前进。
本文将对汽车发动机的工作原理及总体构造进行详细介绍。
一、工作原理汽车发动机的工作原理可以简单概括为四个基本步骤:进气、压缩、燃烧和排气。
1.进气:汽车发动机通过进气门将空气吸入气缸内。
2.压缩:进气门关闭后,活塞向上运动,将空气压缩至高压状态,使燃料更易于燃烧。
3.燃烧:进气阀关闭后,电火花塞产生火花点燃燃料,产生爆发力将活塞推向下方。
4.排气:在活塞向上运动时,排气门打开,将燃烧后产生的废气排出。
这个过程是一个连续循环,每个活塞都会经历这四个步骤。
不同的汽车发动机具有不同的工作原理,根据不同的工作循环可分为四冲程发动机和两冲程发动机。
二、总体构造汽车发动机由许多组件组成,包括气缸、活塞、气门、曲轴、连杆、燃烧室等。
1.气缸:是发动机的主要构件之一,用于容纳活塞、气门和燃烧室。
气缸通常由铸铁或铝合金制成。
2.活塞:是发动机中心运动的部分,与曲轴相连,通过往复运动来压缩和推动气缸内的空气燃料混合物。
3.气门:用于控制气缸内的进气和排气。
进气门控制空气进入气缸,排气门控制废气的排出。
4.曲轴:是将活塞的往复运动转换为旋转运动的关键部件。
曲轴通过连杆与活塞相连接,将活塞运动转化为动力。
5.燃烧室:是燃烧燃料的空间。
燃烧室的形状和设计可以影响燃烧效率和发动机性能。
除了上述主要组件之外,汽车发动机还包括燃料喷射系统、点火系统、冷却系统等辅助设备,以保证发动机的正常工作。
总结:汽车发动机是汽车的心脏,驱动着汽车的运行。
它的工作原理是通过不断循环的进气、压缩、燃烧和排气过程将燃料化学能转化为机械能。
总体构造包括气缸、活塞、气门、曲轴、燃烧室等组件,还包括燃料喷射系统、点火系统、冷却系统等辅助设备。
了解汽车发动机的工作原理及总体构造,有助于我们更好地了解汽车机械原理和性能,对汽车的使用和维护有一定的参考意义。
汽车发动机的工作原理及总体构造

汽车发动机的工作原理及总体构造
一、汽车发动机的工作原理
1.吸气:发动机的活塞下行时,活塞腔内的气门打开,通过气门进入
汽缸的混合气。
2.压缩:活塞上行时,活塞腔内的气门关闭,活塞将混合气压缩成高
压气体。
3.爆燃:在活塞接近顶死点时,火花塞产生火花,将混合气点燃爆炸,释放出能量。
4.排气:活塞下行时,废气通过排气门排出汽缸,为新的混合气提供
空间。
通过这四个基本过程循环运作,汽车发动机可以持续地产生动力,驱
动汽车运行。
二、汽车发动机的总体构造
1.气缸体系:汽缸是发动机燃烧的主要部分,通常由铁合金或铝合金
制成。
汽缸体内设置有活塞和气门,通过这些部件的运动来实现吸气、压缩、爆燃和排气的过程。
2.曲轴与连杆机构:曲轴是将活塞运动转化为有用功的装置,具有一
定的几何结构,可以将来自活塞的线性运动转化为旋转运动。
连杆连接活
塞与曲轴,将活塞的线性运动转化为曲轴的旋转运动。
3.气门机构:气门控制气缸内的进气和排气。
气门通过气门杆与凸轮
轴相连接,由凸轮轴的转动带动气门的开闭。
4.燃油供给系统:燃油供给系统包括燃油箱、燃油泵、喷油器等。
燃油从燃油箱经过燃油泵被送入汽缸,与空气混合后形成可燃气体。
此外,还有点火系统、冷却系统、润滑系统等辅助系统,保证发动机正常运行。
总之,汽车发动机通过吸气、压缩、爆燃和排气这四个基本过程,不断地将化学能转化为机械能,从而驱动汽车运行。
其总体构造包括气缸体系、曲轴与连杆机构、气门机构和燃油供给系统等。
这些构造相互配合,共同完成发动机的工作。
发动机工作原理和总体构造

(四)飞轮的作用: 四冲程发动机工作循环的四个活塞行程中,只有一个行程是作功的,其余三个行程是依靠飞轮的惯性
(b)表面点火: 在火花塞点火之前,由于燃烧室内灼热表面(如排气门头部、火花塞电极处、积碳处)点燃可燃混合气
而产生的另一种不正常燃烧现象,称为表面点火。 表面点火现象:
表面点火发生时,也伴有强烈的敲缸声(较沉闷),产生的高压会使发动机机件机械负荷增加,寿命降 低。
(c)汽油机压缩比的选择: 应在避免引起爆燃和表面点火的前提下尽可能提高压缩比,以提高发动机功率,改善燃油经济性。
冷却系—水泵9由曲轴14上的皮带轮带动,将来自散 热器冷却后的冷却水泵入气缸7燃烧室周围的冷却水 套,经过气缸盖6中的冷却水套,热水由气缸盖上部 的出水口流往散热器。
(三)发动机基本术语
上止点(T.D.C.):
活塞顶离曲轴中心最远处。
下止点(B.D.C.): 活塞行程 S :
活塞顶离曲轴中心最近处。
(b)压缩行程
(a)爆燃: 由于压缩比过高导致压缩终了时气体压力和温度过高,在火花塞点火之后燃烧室内离点燃中心较远处的
末端可燃混合气自燃而造成的一种不正常燃烧现象,称为爆燃。 爆燃现象:
爆燃时,火焰以极高的速率传播,温度和压力急剧升高,形成压力波,以声速推进,当这种压力波撞击 燃烧室壁时就发出尖锐的敲缸声。同时还会引起发动机过热、功率下降、燃油消耗率增加等一系列不良后果, 严重爆燃时甚至造成排气门烧废、轴瓦破裂、活塞顶熔穿、火花塞绝缘体被击穿等机件损坏现象。
发动机构造及工作原理

·组成:活塞、连杆、曲 轴三部分
·作用:将活塞的往复直线 运动—曲轴的旋转运动 对外输出动力
3.供给系统
·组成:燃油供给系统和进、排气系统组成 ·作用:将燃油系统和空气及时地供给气缸, 并将燃烧后的废气及时排除 ·主要部件:化油器(汽)、喷油泵和喷油
器 (柴)、空气滤清器、进气管、排气管、声
be=(B/Pe)×10-3 (g/(KWh)) •B—每小时的燃油消耗量,kg/h •Pe—有效功率,kW 显然燃油消耗率越低,燃油经济性越好
§1.5 发动机的性能指标
三、发动机的速度特性
指发动机的功率、转矩和燃 油消耗率三者随曲轴转速变化 的规律。
发动机外特性:
当节气门开度达到最 大时,所得到的速度 特性称为发动机外特 性
状态 行程
进气行程
压缩行程
作功行程
排气行程
温度(K)
压力
370~440
75~90 kPa
600~800
600~1500 kPa
2200~2800(瞬时最高) 1500~1700(作功终了)
3~5MPa (瞬时最高) 300~500 kPa (作功终了)
900~1200
105~125 kPa
§1.3.2 四冲程柴油机的工作原理
活塞行程(S)
曲柄半径(R)
气缸工作容积(V s )
发动机排量(VL)
燃烧室容积(Vc ) 气缸总容积(Va ) 压缩比ε
Vs= πD2·S ×10-6/4 (L)
D——气缸直径mm S——活塞行程mm
VL= Vs × I
工工况作(循P环、n) 负荷率(%)
ε= Va / Vc
压缩比
定义:压缩前气缸中气体的最大容积与压缩后的最小容积 之比称为压缩比。用ε表示。
汽车知识---发动机构造与原理

1.1发动机的类型
点火方式
冷却方式
发
动
机
汽缸排列方式
类
型
燃料方式
冲程数目
火花式发动机 压燃式发动机
水冷式发动机 风冷式发动机
目前,应用最广、 数量最多的汽车发动机 为水冷、四冲程往复活 塞式内燃机。
直列式发动机 V型发动机
汽油发动机 柴油发动机
二冲程发动机 四冲程发动机
多用于轿车和轻 型客、货车上
1.4发动机的工作原理
进气、压缩、燃烧和排气四个冲程叫做一个循环,有这种 循环的发动机叫做四冲程发动机。
四冲程发动机的特性是:四个冲程中,活塞上下两次,曲 轴旋转两圈
二、曲轴连杆机构
缸体曲轴箱组
发动机类型
活塞连杆组
曲轴飞轮组
气缸体 气缸套 气缸盖和燃烧室 气缸垫
活塞 活塞环 活塞销 连杆
曲轴 飞轮
发动机的冷却方式有水冷和风冷两种,拖拉机汽车发动机多采用水冷 方式。水冷的特点是方便、可靠,同时被冷却水吸收的热能还可用于车内 取暖。
5.1水冷却系统
水冷却系是利用水泵的作用,强制冷却水循环,冷却水在汽缸周围的水套内吸 收热量后,流经散热器,将热量传给散热片,再被流经散热气的空气带走,经过冷却 后的水再流回水套,如此不断循环,保持发动机在最佳温度(水温80~90°C)
装汽缸盖和汽缸垫时,为保证装配质量,缸盖螺栓应使用扭 力板手,并由中间向四周,按规定扭力矩分两三次逐步扭紧。
2.2活塞连杆组
◆活塞 活塞与汽缸盖组成燃烧室,承受燃气压力并通过活塞销和连 杆将压力传递给曲轴。活塞的工作条件很差,一般采用铝合金制成的活塞。 活塞可分为顶部、头部和裙部三部分。汽油机活塞顶部多是平的,也有采用 凹顶或凸顶的;活塞头部制有环横槽,用来安装活塞环;活塞裙部呈椭圆, 壁上开有绝热槽、膨胀槽和销座孔。活塞和汽缸间有“活塞间隙”,一般有 0.02~0.1mm,活塞头部的直径一般少于裙部。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Vh=(πD ²/ 4 ×103)× S (L) ( D:气缸直径,cm. S:活塞冲程,cm.)
5、发动机排量:VL=Vh•ⅰ (ⅰ----气缸数) 整理ppt 6、燃烧室容积:当活塞在上止点时,活塞上方与缸盖围成的容积Vc。
7、气缸总容积:
Va=Vc+Vh
二、可燃混合气的形成及发火方式:
汽油机:汽油粘度小,蒸发性好,在气缸外部形成 混合气,自燃温度高于 380ºC,外火源点燃。 汽油机又称点燃式发动机。
按气缸数及排列方式分:单缸(立式、卧式)发动机
多缸(直列、V型、P型或对置式)发动机
整理ppt
多缸(直列、V型、P型或对置式)发动机
整理ppt
P型或对置式
水冷式发动机 按冷却方式分:
风冷式发动机
整理ppt
增压发动机 按是否装增压装置分:
非增压发动机(自然吸气发动机)
整理ppt
二气门发动机 按每缸气门数分:
柴油机:柴油粘度大,蒸发性差,在气缸内部形成 混合气,自燃度为250ºC左右, 压缩自燃。 柴油机又称压燃式发动机。
整理ppt
整理ppt
整理ppt
三、四冲程(汽油机,柴油机)的工作原理
1、进气行程:
柴油机:新鲜空气。
进入气缸的是
汽油机:汽油与空气的混合物。
活塞被曲轴带动由上止点向下止点移动,此时进气门开启,排气门关闭。
表面点火:由于ε过大 P、T过高,在电火花之前可燃混合气就被燃
烧室炽热的表面点燃的另一种不正常燃烧。表面点火发生时,伴有沉闷的 敲缸声,产生的高压使发动机负荷↑,寿命↓。
* ① 现代汽油机的压缩比一般为ε= 6—9(个别轿车可达9—11)。 ② 柴油机靠压缩自燃,所以压缩比设计等较高ε=16—22。具有较好的 经济性。但高的压缩比带来高的压缩压力、燃烧压力,使柴油机各部 件要承受高的机械负荷,因而需要增加强度及刚度。故柴油机的尺寸、 重量指标不如汽油机。
动机的动力性、经济性提高。但ε过高,对汽油机来说,会引起T过高而造成两
种不正常燃烧即:
整理ppt
爆燃:由于ε过大 P、T过高,远离火焰中心的可燃混合气在火焰尚未
到达就自行发火燃烧的一种不正常燃烧。爆燃时,火焰以1500—2000m/s的 速度向外传播,P、T极剧增加,形成压力波,撞击燃烧室壁,发出尖锐的 敲缸声。同时,引起发动机过热功率↓,气门、火花塞等部件被燃坏。
* 四冲程发动机经过进气、压缩、作功、排气四个冲程完成 一个工作循环。此期间,活塞在上、下止点间往复移动了 四个行程,曲轴旋转了两周。
5、示功图:表示发动机在工作
过程中,其P、V的变化情况,曲线包 围的面积即为发动机的指示功。
P
P0 V
进 气 终 了 P : “ 汽 ” 0.75—0.90 (个大气压) “柴”0.80— 0.95 压缩终了 P: “汽” 6—12
至上百个大气压以上使之雾化,再送至喷
油器,由喷油器把雾状柴油喷入气缸,使
与压缩后的高温空气混合,达自然温度时,
便自行发燃烧。
终了 P、T:“汽” 6—12 ; 300— 400ºC
“柴” 35— 45 ; 500—700ºC
压缩比ε: ε=Va/ Vc= 1+Vh/ Vc 是发动机重要的结构参数。
ε越大,压缩终了的P、T越高,燃烧越快,膨胀作功愈充分。从而使发
第一章 发动机的工作原理和总体构造
第一节 发动机的分类
一、热力发动机即是将燃料的热能转变为机械能的一种动力装置。
①内燃机:可燃混合气在机器内部燃烧而产生热能,
热力发动机
然后再转为机械能。 燃料在机器外部的锅炉内燃烧,将锅内
②外燃机: 的水加热,使之变为高温高压的水蒸气,
然后送至机器内部,使所含热能转变为
机械能。
内燃机的优点:热效率高、体积小、重量轻、广泛应用。 但由于使用的是石油燃料,因而污染较大。城市的大气污染相当 部分来至内燃机所排出的废气整。理ppt
①活塞式内燃机(本书的主要介绍对象。)
1、内燃机: ②燃气轮机:旋转式的内燃机。 活塞式内燃机分类:
按所用燃料 分:
汽油机 液体燃料发动机 柴油机
所以进气终了气体温度↑。来自整理ppt2、压缩行程:为使混合气体能迅速燃烧,产生较大的压力,使发动机发出
较大的功率,必须在燃烧前对可燃混合气进行压缩,使之V↓,T↑。
活塞由下
进关 排关
上
V↓ P↑,T↑
“汽”压缩接近终了,可燃混合气体由火花塞 电极发出的电火花点燃。 “柴”压缩接近终了,由喷油泵把柴油提高
多气门发动机
整理ppt
第四节 四冲程发动机工作原理 (发动机基本术语) 1、上止点:活塞顶部一离曲、轴中心最远处。 3、活塞冲程:上、下止点间的距离S。
2、下止点:活塞顶部离曲轴中心最近处。
气 缸 总 容 积
活塞在上止点位置
活塞在下止点位置
4、气缸排量(气缸工作容积):
8、压缩比:
活塞由上止点到下止点所扫过的气缸容积Vh。
机械能
温度:1000---1300ºC
800---1000ºC
4、排气行程:可燃混合气燃烧后变成废气,为了进行下一
循环,必须把废气排气过程。
活塞由下 进关 上
排开
废气经排气门排出气缸
终了压力:“汽” 1.05---1.25 温度:600---900ºC
“柴” 1.05---1.25
整理ppt
500---700ºC 。
活塞由上
进开
V↑,P↓
新鲜空气(柴油机)
下
被吸入气缸。
排关 气缸内产生真空度 汽油与空气的混合气(汽油机)
终了压力: “汽”0.75— 0.90 温度:100— 130ºC
(个大气压) “柴”0.80— 0.95
60— 80ºC
由于进气有阻力,进气终了的压力略小于大气压力。
由于上一循环留在气缸中的高温残余废气与新鲜气体混合,
气体燃料发动机 天然气发动机 液化石油发动机
点燃式发动机(汽油机) 按点火方式分: 压燃式发动机(柴油机)
四冲程发动机:活塞往复四个单程完成一
按每一工作循环的冲程数 分:
个工作循环。 二冲程发动机:活塞往复二个单程完成一
个工作循环。 一个工作循环:在气缸中完成一次整热理功ppt转换所进行的一系列连续过程。
整理ppt
3、作功行程:压缩终了,气缸容积很小,迅速燃烧的混合气使缸内P、T
急剧升高。
最高压力:“汽”30—50 温度: 1900---2500ºC
“柴”60---90
1700---2200ºC
高温高压气体推动活塞由上 进关
排关
终了压力:“汽”3---5 “柴”2---4
下 曲轴强制 热能
旋转作功