(整理)BP神经网络识别.

合集下载

BP神经网络详解-最好的版本课件(1)

BP神经网络详解-最好的版本课件(1)

月份 1
销量 月份 销量
2056 7
1873
2
2395 8
1478
3
2600 9
1900
4
2298 10
1500
5
1634 11
2046
6
1600 12
1556
BP神经网络学习算法的MATLAB实现
➢%以每三个月的销售量经归一化处理后作为输入
P=[0.5152
0.8173 1.0000 ;
0.8173
计算误差函数对输出层的各神经元的偏导

。 o ( k )
p
e e yio w ho y io w ho
(
yio(k) h who
whohoh(k)bo)
who
hoh(k)
e
yio
(12oq1(do(k)yoo(k)))2 yio
(do(k)yoo(k))yoo(k)
(do(k)yoo(k))f(yio(k)) o(k)
1.0000 0.7308;
1.0000
0.7308 0.1390;
0.7308
0.1390 0.1087;
0.1390
0.1087 0.3520;
0.1087
0.3520 0.0000;]';
➢%以第四个月的销售量归一化处理后作为目标向量
T=[0.7308 0.1390 0.1087 0.3520 0.0000 0.3761];
BP神经网络模型
三层BP网络
输入层 x1
x2
隐含层
输出层
-
y1
z1
1
T1
y2
z2
-
2

BP神经网络算法

BP神经网络算法

BP神经网络算法一、算法原理在BP神经网络中,每个神经元都与上一层的所有神经元以及下一层的所有神经元相连。

每个连接都有一个权重,表示信息传递的强度或权重。

算法流程:1.初始化权重和阈值:通过随机初始化权重和阈值,为网络赋予初值。

2.前向传播:从输入层开始,通过激活函数计算每个神经元的输出值,并将输出传递到下一层。

重复该过程,直到达到输出层。

3.计算误差:将输出层的输出值与期望输出进行比较,计算输出误差。

4.反向传播:根据误差反向传播,调整网络参数。

通过链式求导法则,计算每层的误差并更新对应的权重和阈值。

5.重复训练:不断重复前向传播和反向传播的过程,直到达到预设的训练次数或误差限度。

优缺点:1.优点:(1)非线性建模能力强:BP神经网络能够很好地处理非线性问题,具有较强的拟合能力。

(2)自适应性:网络参数可以在训练过程中自动调整,逐渐逼近期望输出。

(3)灵活性:可以通过调整网络结构和参数来适应不同的问题和任务。

(4)并行计算:网络中的神经元之间存在并行计算的特点,能够提高训练速度。

2.缺点:(1)容易陷入局部最优点:由于BP神经网络使用梯度下降算法进行权重调整,容易陷入局部最优点,导致模型精度不高。

(2)训练耗时:BP神经网络的训练过程需要大量的计算资源和耗时,特别是对于较大规模的网络和复杂的输入数据。

(3)需要大量样本:BP神经网络对于训练样本的要求较高,需要足够多的训练样本以避免过拟合或欠拟合的情况。

三、应用领域1.模式识别:BP神经网络可以用于图像识别、手写字符识别、语音识别等方面,具有优秀的分类能力。

2.预测与回归:BP神经网络可以应用于股票预测、销量预测、房价预测等问题,进行趋势预测和数据拟合。

3.控制系统:BP神经网络可以用于自适应控制、智能控制、机器人运动控制等方面,提高系统的稳定性和精度。

4.数据挖掘:BP神经网络可以应用于聚类分析、异常检测、关联规则挖掘等方面,发现数据中的隐藏信息和规律。

BP神经网络研究综述【文献综述】

BP神经网络研究综述【文献综述】

文献综述电气工程及自动化BP神经网络研究综述摘要:现代信息化技术的发展,神经网络的应用范围越来越广,尤其基于BP算法的神经网络在预测以及识别方面有很多优势。

本文对前人有关BP神经网络用于识别和预测方面的应用进行归纳和总结,并且提出几点思考方向以作为以后研究此类问题的思路。

关键词:神经网络;数字字母识别;神经网络的脑式智能信息处理特征与能力使其应用领域日益扩大,潜力日趋明显。

作为一种新型智能信息处理系统,其应用贯穿信息的获取、传输、接收与加工各个环节。

具有大家所熟悉的模式识别功能,静态识别例如有手写字的识别等,动态识别有语音识别等,现在市场上这些产品已经有很多。

本文查阅了中国期刊网几年来的相关文献包括相关英文文献,就是对前人在BP神经网络上的应用成果进行分析说明,综述如下:(一)B P神经网络的基本原理BP网络是一种按误差逆向传播算法训练的多层前馈网络它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阀值,使网络的误差平方最小。

BP网络能学习和存贮大量的输入- 输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer),如图上图。

其基本思想是通过调节网络的权值和阈值使网络输出层的误差平方和达到最小,也就是使输出值尽可能接近期望值。

(二)对BP网络算法的应用领域的优势和其它神经网络相比,BP神经网络具有模式顺向传播,误差逆向传播,记忆训练,学习收敛的特点,主要用于:(1)函数逼近:用输入向量和相应的输出向量训练一个网络以逼近一个函数;(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;(3)数据压缩:减少输出向量维数以便于传输或存储;(4)分类:把输入向量所定义的合适方式进行分类;]9[BP网络实质上实现了一个从输入到输出的映射功能,,而数学理论已证明它具有实现任何复杂非线性映射的功能。

BP神经网络PPT全文

BP神经网络PPT全文
常要求激活函数是连续可微的
输出层与隐含层的激活函数可以不同,并且输出层
各单元的激活函数可有所区别
2024/8/16
26
2 多层网络的表达能力
按照Kolmogorov定理,任何一个判决均可用 前式所示的三层神经网络实现。
即: 只要给定足够数量的隐含层单元、适 当的非线性函数、以及权值, 任何由输入向输 出的连续映射函数均可用一个三层前馈神经网络 实现。
神经网络的计算通过网络结构实现;
不同网络结构可以体现各种不同的功能;
网络结构的参数是通过学习逐渐修正的。
2024/8/16
7
(1)基本的人工神经元模型
McCulloch-Pitts神经元模型
输入信号;链接强度与权向量;
信号累积
2024/8/16
激活与抑制
8
人工神经元模型的三要素 :
一组连接 一个加法器 一个激励函数
➢ 树突(dendrites), 接收来自外接的信息 ➢ 细胞体(cell body), 神经细胞主体,信息加工 ➢ 轴突(axon), 细胞的输出装置,将信号向外传递,
与多个神经元连接 ➢突触 (synapsse), 神经元经突触向其它神经元(胞体 或树突)传递信号
2024/8/16
5
(2)生物神经元的基本特征
5 假定:第l层为当前处理层;
其前一层l 1、当前层l、后一层l 1的计算单元序号为i, j,k;
位于当前层第j个计算单元的输出为Olj,j 1,..., nl
前层第i个单元到本层第j个单元的连接权值为ilj , i 1,..., nl1
本层第j个单元到后层第k个单元的连接权值为
l 1 jk
,
连接权值,突触连接强度

BP神经网络概述

BP神经网络概述

BP神经网络概述BP神经网络由输入层、隐藏层和输出层组成。

输入层接收外界输入的数据,隐藏层对输入层的信息进行处理和转化,输出层输出最终的结果。

网络的每一个节点称为神经元,神经元之间的连接具有不同的权值,通过权值的调整和激活函数的作用,网络可以学习到输入和输出之间的关系。

BP神经网络的学习过程主要包括前向传播和反向传播两个阶段。

前向传播时,输入数据通过输入层向前传递到隐藏层和输出层,计算出网络的输出结果;然后通过与实际结果比较,计算误差函数。

反向传播时,根据误差函数,从输出层开始逆向调整权值和偏置,通过梯度下降算法更新权值,使得误差最小化,从而实现网络的学习和调整。

BP神经网络通过多次迭代学习,不断调整权值和偏置,逐渐提高网络的性能。

学习率是调整权值和偏置的重要参数,过大或过小的学习率都会导致学习过程不稳定。

此外,网络的结构、激活函数的选择、错误函数的定义等也会影响网络的学习效果。

BP神经网络在各个领域都有广泛的应用。

在模式识别中,BP神经网络可以从大量的样本中学习特征,实现目标检测、人脸识别、手写识别等任务。

在数据挖掘中,BP神经网络可以通过对历史数据的学习,预测未来的趋势和模式,用于市场预测、股票分析等。

在预测分析中,BP神经网络可以根据历史数据,预测未来的房价、气温、销售额等。

综上所述,BP神经网络是一种强大的人工神经网络模型,具有非线性逼近能力和学习能力,广泛应用于模式识别、数据挖掘、预测分析等领域。

尽管有一些缺点,但随着技术的发展,BP神经网络仍然是一种非常有潜力和应用价值的模型。

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。

BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。

关键词:BP神经网络、算法分析、应用1 引言人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。

人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。

人工神经网络最有吸引力的特点就是它的学习能力。

因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。

最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。

因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。

人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。

现在分别介绍人工神经元模型及人工神经网络模型。

1.1 人工神经元模型仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。

人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts在分析总结神经元基本特性的基础上首先提出的MP模型。

基于BP神经网络的手写数字识别

基于BP神经网络的手写数字识别

基于BP神经网络的手写数字识别手写数字识别是人工智能领域中一个重要的研究方向。

它是指通过计算机对手写数字的图像进行识别和分类,从而实现对手写数字的自动识别。

BP神经网络是一种常用的模式识别方法,可以应用于手写数字识别任务中。

BP神经网络,全称为反向传播神经网络,是一种多层前馈神经网络。

其核心思想是通过训练来调整网络中连接权重的值,从而实现对输入模式的分类和识别。

BP神经网络由输入层、隐藏层和输出层组成,其中每个神经元与其他层的神经元相连。

手写数字识别任务的基本步骤如下:1. 数据预处理:需要对手写数字图像进行预处理,包括图像的灰度化、二值化、降噪等操作。

这样可以使得输入的图像数据更加规范化,便于网络的学习和训练。

2. 网络的构建:根据手写数字识别的需求,设计一个合适的BP神经网络结构。

一般来说,输入层的神经元数量与图像的像素数量相等,隐藏层的神经元数量可以根据实际情况进行设置,输出层的神经元数量一般为10,对应于0-9这10个数字的分类。

3. 训练网络:通过反向传播算法对网络进行训练。

随机初始化网络中的连接权重,并将输入的样本数据通过网络前向传播,得到网络的输出结果。

然后,计算输出结果与样本标签之间的误差,并根据误差调整网络中的连接权重。

通过多次迭代训练,直到网络的输出结果与样本标签的误差达到预定的阈值或者收敛。

4. 测试与评估:使用测试集对训练好的网络进行测试,并评估网络的性能。

可以计算识别准确率、召回率、精确率等指标,来评估网络的性能。

手写数字识别任务是一个典型的图像分类问题,其难点主要在于图像的非结构化和特征的高度变异性。

BP神经网络通过多次迭代训练,不断调整网络中的连接权重,可以逐渐提高网络的分类性能和准确度。

BP神经网络也存在一些问题,如容易陷入局部极小值、训练时间较长等。

为了提高手写数字识别任务的性能,可以采用一些改进的方法,如卷积神经网络(CNN)。

卷积神经网络通过引入卷积层和池化层,可以自动提取图像的局部特征,从而提高网络的特征表示能力和分类准确率。

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。

它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。

1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。

输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。

线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。

非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。

激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。

2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。

常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。

3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。

反向传播算法的核心思想是使用链式法则。

首先计算输出层的梯度,即损失函数对输出层输出的导数。

然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。

接着继续向输入层传播,直到更新输入层的权重和偏置。

在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。

4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。

权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。

梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Abstract 2一引言: (3)二字符图像获取: (3)三字符预处理 (4)3.2 字符区域 (4)3.2 字符区域分割: (4)3.3 单个字体分割: (4)3.4 单个字体裁剪 (5)四模板字符识别 (5)4.2 字符模板归一化 (5)五BP神经网络字符识别 (5)5.1 训练样本制作 (6)5.2设计BP神经网络 (6)5.3 BP训练 (7)六识别结果发送下位机 (7)5.1 MATLAB下的串口工具: (7)5.2 下位机处理 (7)5.2. 3 串口通信图: (9)七总结: (9)摘要在MATLAB环境下利用USB摄像头采集字符图像,读取一帧保存为图像,然后对读取保存的字符图像,灰度化,二值化,在此基础上做倾斜矫正,对矫正的图像进行滤波平滑处理,然后对字符区域进行提取分割出单个字符,识别方法一是采用模板匹配的方法逐个对字符与预先制作好的字符模板比较,如果结果小于某一阈值则结果就是模板上的字符;二是采用BP神经网络训练,通过训练好的net对待识别字符进行识别。

最然后将识别结果通过MATLAB下的串口工具输出51单片机上用液晶显示出来。

关键字:倾斜矫正,字符分割,模板匹配,BP神经网络,液晶显示AbstractIn the MATLAB environmentusing USB camera capture the character images, saved as an image reading, thenread the saved character images, grayscale, binary, on this basis do tilt correction,the correction image smoothing filter, and then extract the character regionsegmentation of a single character, and then one by one using a templatematching method of character with good character template is a pre-production,if the result is less than a certain threshold, the result is a template of thecharacter. Second, the BP neural network trained by the trained net to identifythe character towards recognition The results will identify the most and thenthe serial port through the MATLAB tool output 51 under microcontroller withLCD display.Keyword: Tilt correction, character segmentation,template matching, liquid crystal display一引言:光学字符识别(OCR,Optical Character Recognition)是指对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程。

已有30多年历史,近几年又出现了图像字符识别(image character recognition,ICR)和智能字符识别(intelligent character recognition,ICR),实际上这三种自动识别技术的基本原理大致相同。

关于字符识别的方法有很多种,最简单的就是模板匹配,还有根据采集到的字符用BP神经网络或者SVM来训练得到结果的方式。

本文主要针对模板匹配的方式,在MATLAB环境下编程实现。

二字符图像获取:在MATLAB下利用image acquisition toolbox获取视频帧,并保存图像在工程文件夹内。

摄像头采用普通的USB 摄像头,由于这种摄像头拍摄的照片延时比较大,所以先用image acquisition toolbox下的对视频进行预览,调整出最佳的效果来,采集的图像效果越好则识别率越高。

根据测试,实验选择640*480的视频获取窗口,颜色空间选取为RGB空间,获取一帧后保存为jpg的存储格式。

三字符预处理3.1字符矫正由于摄像头拍摄的图像存在一定存在的倾斜度,在分割字符区域时,应先对字符进行矫正。

过程如下:将通过摄像头获取的保存帧图像灰度化,然后对其进行边缘提取,再在1到180度角内对图像进行旋转,记录下边缘提取后的图像在x轴方向上的投影,当x轴方向上的投影最小的时候即表示图像中字符平行于y轴,已经完成矫正,此时记录下旋转的倾斜角。

然后利用imrotate函数实现对字符图像的矫正。

3.2 字符区域分割:在第三步完成对字符图像的倾斜矫正后,将图像分别做x轴和y轴方向上的投影既可以知道字符区域在x轴上的像素分布范围和y轴上的像素分布范围,然后对根据这个范围对图像做分割,在MATLAB中表示为:goal=I(ix1:iy1,jx1:jy1);其中goal为分割后的图像,I为分割前的图像,ix1和ix2分别为x轴上投影的像素范围的起始坐标值和终止坐标值,iy1和iy2分别为y轴上投影的像素范围的起始坐标值和终止坐标值。

3.3 单个字体分割:在分割得到的字符区域图像上,只需要做y轴上的投影就可以知道每个字符在y轴上的分布区间,然后利用这个分布区间就可以分割出单个字符。

3.4 单个字体裁剪在第五步分割出来的字符基础上进一步对字符的像素区域进行裁剪,原理也是分别做x轴,y轴方向上的投影,求的字符的区间再做剪裁。

四模板字符识别4.1字符模板制作:模板的要求是与要识别的字符的字体格式一致,实验中采用word上的标准字符,通过截图软件截图后按照3-6步的处理过程制作出需要的字符模板,从0到9共10个数字,A到Z共26个字母。

4.2 字符模板归一化在满足识别率的条件下,尽量采用小模板识别可以提神运算速度,具体的模板大小,可以根据后面的与待识别字符的比较中调节。

4.3识别过程:将待识别字符与字符模板做同样的归一化处理,然后遍历与字符模板比较,处理方法为先和字符模板做差,然后计算做差后的图像的总像素值,如果小于每一个阈值,则表示该待识别字符和该模板是同一个字符,这样就完成了一次识别。

循环对要识别的字符做同样的处理就可以识别出所有的字符,将结果保存在字符串中。

五BP神经网络字符识别BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(outputlayer)。

BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。

输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。

当实际输出与期望输出不符时,进入误差的反向传播阶段。

误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。

周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。

BP神经网络模型BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。

(1)节点输出模型隐节点输出模型:Oj=f(∑Wij×Xi-qj) (1)输出节点输出模型:Yk=f(∑Tjk×Oj-qk) (2)f-非线形作用函数;q -神经单元阈值。

图1 典型BP网络结构模型(2)作用函数模型作用函数是反映下层输入对上层节点刺激脉冲强度的函数又称刺激函数,一般取为(0,1)内连续取值Sigmoid 函数:f(x)=1/(1+e) (3)(3)误差计算模型误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数:Ep=1/2×∑(tpi-Opi) (4)tpi- i节点的期望输出值;Opi-i节点计算输出值。

(4)自学习模型神经网络的学习过程,即连接下层节点和上层节点之间的权重拒阵Wij的设定和误差修正过程。

BP网络有师学习方式-需要设定期望值和无师学习方式-只需输入模式之分。

自学习模型为△Wij(n+1)= h ×Фi×Oj+a×△Wij(n) (5)h -学习因子;Фi-输出节点i的计算误差;Oj-输出节点j的计算输出;a-动量因子。

5.1 训练样本制作:在不同分辨率和不同倾斜角度下分别采集几组图片作为训练样本,本实验为了节省计算时间,根据需要只做12345ABCDE这10个字符的识别,因此只各采集了10组数据。

不同分辨率下5组,不同倾斜角度下5组。

然后按照2-4上的操作过程的对字符进行处理,获得32*32大小的训练样本共100个。

5.2设计BP神经网络利用MATLAB下的神经网络工具设计一个,以字符图像的x轴y轴像素值为输入特征作为输入层的输入;以logsig 函数作为隐含层,隐含层设计节点25个,输出层就是预期的结果,共十种可能,所以有输出层有十种输出。

net=newff(pr,[25 1],{'logsig' 'purelin'},'traingdx', 'learngdm');net.trainParam.epochs=250;%训练步数net.trainParam.goal=0.001;%目标误差net.trainParam.show=10;%系统每10步显示一次训练误差的变化曲线net.trainParam.lr=0.05; %学习速度net=train(net,p,t)%训练并保存训练结果save name net5.3 BP训练首先对待识别字符预处理,然后读取读取训练好的网络load name net,通过sim函数对字符进行识别,结果输出,保存在一个字符串内。

相关文档
最新文档