【985高校难度】2017年高考及大学自主招生高三奥数班模拟(浙江)

合集下载

浙江省杭州市萧山区2017年高考模拟命题比赛数学试卷27含答案

浙江省杭州市萧山区2017年高考模拟命题比赛数学试卷27含答案

2017年高考模拟试卷数学卷考试时间120分钟,总分值150分 一、选择题〔本大题共10小题,每题4分,共40分〕1.设复数z 满足(1)2i z i -=,那么z = A .1i -+ B .1i -- C .1i + D .1i - 2.函数()|3sin 4cos |f x x x =+的最小正周期为 A .2πB .πC .2π D .4π 3.集合{|tan cos }A y y x x ==⋅,集合[1,1]B =-,那么“a A ∈〞是“a B ∈〞的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4. 假设函数3()3f x x x =-在区间(,)a a -存在最小值,那么a 可以取的值为 A .12 B .1 C .32D .3 5.数列{}n a 满足: 1 2 n a n nn =⎧⎨⎩为奇数为偶数,那么当n 为偶数时,前n 项和n S 为A .22(12)212nn -+- B .24(12)212n n -+- C .22(14)214n n -+- D .24(14)214n n -+- 6.锐二面角l αβ--中,异面直线,a b 满足:,,a a l b αβ⊂⊥⊂,b 与l 不垂直,设二面角l αβ--的大小为1θ,a 与β所成的角为2θ,异面直线,a b 所成的角为3θ,那么A .123θθθ>>B .321θθθ>>C .123θθθ=>D .321θθθ>=7.函数()f x ax b =+的图象如下图,那么函数()log ()a f x x b =-+的图象为A B C D8.假设椭圆11022=+a y x 与圆锥曲线122=-by x 有相同的焦点,它们的一个公共点为),310(0y P ,那Oy x-11Oy x-11Oyx-11Oyx-11么A .9=+b aB .9-=+b aC .7=-a bD .7-=-a b9.实数,x y 满足1040440x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩, 2z x ay =+,a R ∈,那么以下表达正确的选项是A .假设当且仅当35,22x y ==时,z 取到最大值,那么02a << B .假设当且仅当35,22x y ==时,z 取到最大值,那么02a <≤C .假设当且仅当35,22x y ==时,z 取到最小值,那么2a <-D .假设当且仅当35,22x y ==时,z 取到最小值,那么2a ≤-10.函数2()f x x tx t =+-,集合{|()0}A x f x =<,假设A 中为整数的解有且仅有一个,那么t 的取值范围为A .9(,4)2--B .9[,4)2--C . 1(0,]2 D .91[,4)(0,]22--二、填空题〔本大题共7个小题,11-14每空3分,15-17每空4分,共36分〕11.袋中有3个白球,2个红球,现从中取出3球,其中每个白球计1分,每个红球计2分,记X 为取出3球总的分值,那么(4)P X == ▲ ;()E X = ▲ ; 12.ABC ∆的三边分别为,,a b c ,那么AB AC ⋅= ▲ ,设ABC ∆的重心为G , 那么:2AG = ▲ ;13.点(1,0)A -, 点,P Q 在抛物线22(0)y px p =>上,且APQ ∆为正三角形,假设满足条件的APQ ∆唯一,那么p = ▲ ,此时APQ ∆的面积为 ▲ .14.在锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,cos 2cos 0A A +=,那么角A = ▲ ;那么bc的取值范围为 ▲ . 15.假设,a b 为给定的单位向量,夹角为α,假设随着λ〔0λ>〕的变化,向量||a b λ+的最小值为|sin 2|α,那么α= ▲ ;16.设矩形()ABCD AB BC >的周长为20,P 为边CD 上的点,使PAD ∆的周长是矩形周长的一半,那么PAD ∆的面积到达最大时AB 边的长为 ▲ ;17.矩形ABCD ,3,1AB AD ==,现将ACD ∆沿对角线AC 向上翻折,假设翻折过程中BD 在713[,]22范围内变化,那么同时D 在空中运动的路程为 ▲ . 三、解答题〔本大题共5小题,18题14分,其他每题15分,共74分〕18.〔此题总分值14分〕 函数()cos()cos 3f x x x π=-;〔Ⅰ〕假设函数在[,]a a -上单调递增,求a 的取值范围; 〔Ⅱ〕假设5(),(0,)212f ααπ=∈,求sin α. 19.〔此题总分值15分〕如图,矩形ABCD 中,43AB AD ==,,现将DAC ∆沿着对角线AC 向上翻折到PAC 位置,此时PA PB ⊥.〔Ⅰ〕求证:平面PAB ⊥平面ABC〔Ⅱ〕求直线AB 与平面PAC 所成的正弦值.ABCPD C B A20.〔此题总分值15分〕函数2()(1)ln(21)ln f x x a x b x =-+-+,,a b 为常数〔Ⅰ〕假设0a =时,()f x 在定义域内有且只有一个极值点,求b 的取值范围; 〔Ⅱ〕假设2b a =-,[1,)x ∈+∞,()0f x ≥恒成立,求a 的取值范围。

浙江省杭州市萧山区2017年高考模拟命题竞赛数学试卷17Word版含答案

浙江省杭州市萧山区2017年高考模拟命题竞赛数学试卷17Word版含答案

2017年高考模拟试卷数学卷本试卷分选择题和非选择题两部份。

总分值150分,考试时刻120分钟。

选择题部份(共40分)一. 选择题(本大题共10小题,每题4分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1. [原创] 已知集合{|2}xP x R y =∈=,2{|1}Q y R y x =∈=-,那么P Q ⋂=( ▲ )A .[1,1]-B .[0,)+∞C .(,1][1,)-∞⋃+∞D .(0,1]2. [原创] 已知复数34i z i ⋅=+,其中i 为虚数单位,那么z =( ▲ )A .43i -+B .43i --C .43i -D .43i +3. [原创] 假设命题P :关于任意的x ,有|1||21|x x a ++-≥恒成立,命题Q :3a ≤,那么P 是Q 的( ▲ )A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也没必要要条件4. [原创] 在平面直角坐标系XOY 中,曲线()ln f x a x x =+在x a =处的切线过原点,那么a =( ▲ )A .1B .eC . 1eD .05. [原创] 已知正整数,x y 知足不等式组2252x y x y y -≤⎧⎪+≥⎨⎪≤⎩,那么221x y x +++的取值范围为( ▲ )A .77[,]42B .7[2,]2C .7[,2]4D .57[,]226. [原创] 在三角形ABC ∆中,=4AB ,0AC λλ=>(),假设2CA CB ⋅≥-对任意的0λ>恒成立,那么角A 的取值范围为( ▲ )A .[]42ππ,B .3[]44ππ,C .3(0,]4πD .3[4ππ,)7. [原创] 浙江省高考制度改革以来,学生能够从7门选考科目中任意选取3门作为自己的选考科目。

目前C 学校的A 专业需要物理、技术、化学科目,B 专业需要技术、政治、历史科目,甲同窗想报考C 学校的A 和B 专业,其中A 、B 专业只要考生的选考科目中有一门知足条件即可报考,现请问甲同窗选择选考科目种类是( ▲ )种A .15B .35C .31D .198. [原创] 已知1(,0)F c -,2(,0)F c 别离为双曲线2222:1(,0)x y a b a bΓ-=>的左、右核心,过点1F 作直线l 切圆222()x c y r -+=于点P ,l 别离交Γ右支于A 、B 两点(A 、B 位于线段1F P 上),假设1||:||:||2:2:1F A AB BP =,那么双曲线Γ的离心率的值为( ▲ )A .5B .2655C .2623+D .263+ 9. [原创] 在四面体A BCD -中,,EF 别离为棱,AB CD 的中点,过EF 的平面α交,BC AD 于,GH ,那么,EGF EHF S S ∆∆知足以下哪一种关系( ▲ )A .EGF EHF S S ∆∆=B .EGF EHF S S ∆∆>C .EGF EHF S S ∆∆<D .,EGF EHF S S ∆∆随着平面α的转变而转变10、[原创]已知二次函数2(),,,f x ax bx c a b c N +=++∈,函数()f x 在11(,)44-上有两个零点,那么a b c ++的最小值为()A .38B .39C .40D .41非选择题部份(共110分) 二. 填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 11. [原创] 27log 83= ▲ ; 已知函数22()log (1)f x x x =++,那么221(log 3)(log )3f f += ▲ ; 12. [原创] 已知()2sin()cos 6f x x a x π=++的最大值为2,那么a = ▲ ;假设12,x x R ∀∈,12|()()|f x f x m -≤,那么m 的取值范围是 ▲13. [原创] 已知立体几何体的三视图如右图所示, 那么该立体几何体的体积是 ▲ ; 立体几何体的表面积是 ▲ .14. [原创] 已知数列{}n a 中,12a =,122(2)n a a na n n +++=≥,那么n a = ▲ ;假设数列1{}n n a a +的前n 项和为n S ,那么n S = ▲ .15. [原创] 已知函数()||f x x a m =-+,现规定1()()f x f x =,1()(())(1)n n f x f f x n +=≥,那么方程()0n f x =存在实数根的充要要条件是 ▲ (,,n a m 三者关系)16. [原创] 已知20c b >>,那么22(2)a b a c b -的最小值是 ▲17. [原创] 已知向量,,a b c 知足||1,||||,()()0a a b b a c b c =-=-⋅-=.关于确信的b ,记c 的长度的最大值和最小值别离为,m n ,那么当b 转变时,m n -的最小值是 ▲ .三. 解答题(本大题共5大题,共74分,解许诺写出文字说明、证明进程或演算步骤.) 18. [原创] 在ABC ∆中,角,,A B C 对应的边别离是,,a b c ,已知3B π∠=,4c =(Ⅰ)若3sin 5C =,求ABC ∆的面积. (Ⅱ)1CB CA ⋅=-,求b 的值.19. [原创] 如图,在底面是平行四边形的四棱锥P ABCD -中,,E F 别离是,AB PC 的中点,平面PDE ⊥平面PCD ,1PD DE ==,2PE AB ==(Ⅰ)证明:直线//BF 面PDE(Ⅱ)求直线PA 与平面PBC 所成角的正弦值.20. [原创] 已知函数2()xf x e ax x =--,2()231g x ax bx a =+-+.(Ⅰ)假设函数()f x 在R 上是单调递增的,求实数a 的值. (Ⅱ)当[4,4]x ∈-时,()0g x ≥恒成立,求5a b +的取值范围.21. [原创] 如图,在直角坐标系xoy 中,,A B 别离是椭圆22221x y a b +=2,P 是椭圆上的任意一点(异于左、右极点),直线AP 与直线l :2a x c =相交于M 点,当P 在椭圆上的上极点时,3AP BP ==.(Ⅰ)求椭圆标准方程.(Ⅱ)设BP 的斜率为1k ,BM 的斜率为2k ,(i )求证:12k k 为定值.(ii )假设BP 平分ABM ∠,求2212k k +的值.22. [原创]对任意正整数n ,设n a 是关于x 的方程31x nx -=的最大实数根 (1)12n n n a a n +<<<+(2)、当4n ≥时,对任意的正整数m 2()n m n n m na a n m n ++-<-<+(3)、设数列21{}n a 的前n 项和为n S ,求证:2ln(1)133n n n S +<<2016年高考模拟试卷数学答卷一、选择题(每小题4分,共10小题,共40分)题号12345678910答案二、填空题(此题共有7小题,其中第1一、1二、13、14题每空3分,第1五、1六、17题每空4分,共36分)11. ,_____________. 12.___________ ,13., 14.,15.____ _ _ 16, 17三、解答题(本大题共5小题,共74分.解许诺写出文字说明,证明进程或演算步骤)18.(本小题满分14分)19.(本小题满分15分)题号1-1011-171819202122总分得分2017年高考模拟试卷数学参考答案与评分标准1.【答案】B【解析】由{|}P x x R =∈,{|0}Q y y =≥,得{|0}P Q x x ⋂=≥.2.【答案】D【解析】由已知,得z =43i +,3443iz i i+==-. 3.【答案】A【解析】由|1||21|x x ++-恒成立,得min (|1||21|)a x x ≤++-,利用各绝对值的零点,别离画出函数的大致图像,即当32x =时,min 3(|1||21|)2x x ++-=,现在命题P :32a ≤;又由于命题Q :3a ≤,得P Q ⇒. 4.【答案】B【解析】由()ln f x a x x =+,得'()1a f x x =+,即'()2k f a ==。

浙江省杭州市萧山区2017年高考模拟命题比赛数学试卷19 Word版含答案

浙江省杭州市萧山区2017年高考模拟命题比赛数学试卷19 Word版含答案

2017年高考模拟试卷 数学本试卷分为选择题和非选择题两部分。

考试时间120分种。

请考生按规定用笔将所有试题的答案标号涂、写在答题纸上。

参考公式:球的表面积公式 柱体的体积公式24πS R = V=Sh球的体积公式 其中S 表示锥体的底面积,h 表示锥体的高34π3V R =台体的体积公式: 其中R 表示球的半径 V=31h (2211S S S S ++)棱锥的体积公式 其中21,s s 分别表示台体的上、下底面积,V=31Sh h 表示台体的高 其中S 表示锥体的底面积, 如果事件A B ,互斥,那么h 表示锥体的高 ()()()P A B P A P B +=+选择题部分一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 若a R ∈,则“0a >”是“||a a =”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件【命题意图】:主要考察充分条件与必要条件。

【预设难度系数】0.85【答案】A------------【原创】 2.已知复数Z 的共轭复数34=1iZ i-+,则复数Z 的虚部是( ) A .72 B .72- C .72i D .72i -【命题意图】:主要考察复数的定义与运算。

【预设难度系数】0.85【答案】A------------【原创】3. 已知三条不同直线l m n 、、 ,三个不同平面αβγ、、,有下列命题: ①若m ∥α,n ∥α,则m ∥n ; ②若α∥β,l α⊂,则l ∥β;③若αγβγ⊥⊥,,则α∥β;④若,m n 为异面直线,m α⊂,n β⊂,m ∥β,n ∥α,则α∥β.其中正确的命题个数是( )A .0B .1C .2D .3 【命题意图】:本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察。

浙江省杭州市萧山区2017年高考模拟命题比赛数学试卷22含答案

浙江省杭州市萧山区2017年高考模拟命题比赛数学试卷22含答案

2017年高考模拟试卷数学卷(本卷满分150分 考试时间120分钟 )参考公式:如果事件,A B 互斥,那么 棱柱的体积公式()()()P A B P A P B +=+ V Sh =如果事件,A B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高 ()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 此的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()(1),(0,1,2,)k kn k n n P k C p p k n -=-=⋅⋅⋅ 棱台的体积公式球的表面积公式121()3V S S h =24S R π= 其中12,S S 分别表示棱台的上、下底面积 球的体积公式 h 表示棱台的高343V R π=其中R 表示球的半径选择题部分(共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有 一项是符合题目要求的.) 1. 设集合2{||1|1},{|log 2}A x x B x x =-≤=≤,则R C AB =( )A. [2,4]B. (2,4]C. [0,4]D. (2,4](,0)-∞(原创) 2. 定义运算a b ad bc c d=-,则符合条件102z i i i+=的复数z 对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 (原创)3. 已知2*012(31)()n n n x a a x a x a x n N -=+++⋅⋅⋅+∈,设(31)nx -的展开式的二项式系数和为n S ,*12()n n T a a a n N =++⋅⋅⋅+∈,则( )A. n n S T >B. n n S T <C. n 为奇数时,n n S T <;n 为偶数时,n n S T >D.n n S T =(改编)4. 设函数,20,4)(3<<+-=a a x x x f 若()f x 的三个零点为321,,x x x ,且321x x x <<,则 ( )A. 11->xB. 02<xC. 02>xD. 23>x (原创)5. 设函数()sin()sin()sin()f x a x b x c x αβγ=+++++,则“()02f π=”是“()f x 为偶函数”的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 (改编)6. 下列命题中,正确的命题的个数为( )①已知直线,,a b c ,若a 与b 共面,b 与c 共面,则若a 与c 共面; ②若直线l 上有一点在平面α外,则l 在平面α外;③若,a b 是两条直线,且//a b ,则直线a 平行于经过直线b 的平面; ④若直线a 与平面α不平行,则此直线与平面α内所有直线都不平行; ⑤如果平面αβ⊥,过α内任意一点作交线的垂线,那么此垂线必垂直于β.A. 0B. 1C. 2D. 3 (原创)7. 某人进行驾驶理论考试,每做完一道题,计算机自动显示已做题的正确率,记已做题的正确率为n a ,*n N ∈,则下列结论不可能成立的是( )A. 数列{}n a 是递增数列B. 1238a a a a =<<⋅⋅⋅<C. 482a a =D.678a a a <=(改编)8. 已知1=xy ,且220<<y ,则y x y x 2422-+的最小值为( )A .4B .29C .22D .24(改编)9.正四面体ABCD ,CD 在平面α内,点E 是线段AC 的中点,在该四面体绕CD 旋转的过程中,直线BE 与平面α所成的角不可能是 ( ) A .0 B .6π C .3π D .2π (原创)10. 已知1F ,2F 是双曲线C :)0,0(12222>>=-b a by a x 的左、右焦点,4||21=F F ,点A 在双曲线的右支上,线段1AF 与双曲线左支相交于点B ,AB F 2∆的内切圆与 边2BF 相切于点E .若||2||12BF AF =,22||=BE ,则双曲线C 的离心率为 ( ) A .22 B .2 C .3D .2(改编)非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11. 1024cos ππ-++= ,2log 33log 92-= .(原创)12. 已知抛物线方程为214y x =,其焦点F 坐标为 ,A B 、是抛物线上两点且满足||||3AF BF +=, 则线段AB 的中点到y 轴的距离为 .(原创)13. 某四面体的三视图如右图所示,其中侧视图与俯视图都是腰长为1的等腰直角三角形,正视图是边长为1的正方形,则此四面体的体积为 ,表面积为 . (原创)14. 从1,2,3,4,5中挑出三个不同的数字能组成 个不同的五位数,有两个数字各用两次(如:12233)的概率为 .(原创)15. 等腰三角形ABC ,AB AC =,D 为AC 的中点,2BD =,则ABC ∆面积的最大值为 . (改编)16. 记,,max{,},.a ab a b b a b ≥⎧=⎨<⎩,已知向量,,a bc 满足||1,||3,a b ==0a b ⋅=,c a b λμ=+,其中,01λμλμ≥+=且,则当max{,}c a c b ⋅⋅取最小值时,||c = . (改编)17. 已知,,a b c R ∈,若21|sin sin |2a xb xc ++≤对x R ∈恒成立,则|sin |a x b +的 最大值为 . (改编)三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18. 已知0ϕπ≤<,函数2())sin f x x x ϕ=++. (1)若6πϕ=,求()f x 的单调递增区间;(2)若()f x 的最大值是32,求ϕ的值. (原创)19. 在四棱锥ABCD P -中,底面ABCD 是边长为2的正方形,BD PA ⊥ (1)求证:PD PB =(2)若F E ,分别为AB PC ,的中点,⊥EF 平面PCD ,求直线PB 与平面PCD 所成角的大小.(改编)20. 已知函数2()ln ,()2,af x xg x x a R x==-∈.(1)证明:()1f x x ≤-;(2)若()()f x g x <在1(,)2+∞上恒成立,求a 的取值范围. (原创)21. 已知椭圆2222:1(0)x y C a b a b+=>>的焦距为2,离心率为3,过右焦点F 作两条互相垂直的弦,AB CD .设,AB CD 的中点分别为,M N . (1)求椭圆C 的标准方程;(2)证明:直线MN 必经过定点,并求此定点.(改编)22. 已知数列}{n a 满足521=a ,n n n a a a -=+321,*∈N n .(1)求2a ,并求数列}1{na 的通项公式; (2)设}{n a 的前n 项的和为n S ,求证:1321))32(1(56<≤-n n S .(改编)2017年高考模拟试卷数学答题卷本次考试时间120分钟,满分150分,所有试题均答在答题卷上一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11、 , ; 12、 , ; 13、 , ;14、 , ; 15、 ; 16、 ;17、 .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤._________班级 学号 姓名18. (本题满分14分)2017年高考模拟试卷数学 参考答案与评分标准一、选择题:本题考查基本知识和基本运算。

2017年浙江省重点高中自主招生数学试卷及答案

2017年浙江省重点高中自主招生数学试卷及答案

2017年浙江省重点高中自主招生考试数 学 试 题 卷本次考试不能利用计算器,没有近似计算要求的保留准确值.一、选择题(此题有10小题,每题4分,共40分。

每题只有一个选项是正确的,不选,多项选择,错选,均不给分)1.“红灯停,绿灯行”是咱们必需遵守的交通规那么.小刚天天从家骑自行车上学都通过两个路口,且每一个路口只安装了红灯和绿灯,假设每一个路口红灯和绿灯亮的时刻相同,那么小刚从家随时动身去学校,他碰到一次红灯一次绿灯的概率是( ▲ ) A .14 B .13 C .12 D .232.假设关于x 的一元一次不等式组 ⎩⎨⎧>≤<m x x 21 有解,那么m 的取值范围为( ▲ )A .2<mB .2m ≤C .1<mD .21<≤m3.点M (2-,a ),N (4-,b )是所给函数图像上的点,那么能使b a >成立的函数是 ( ▲ ) A .32+-=x yB .4)3(22++-=x yC .1)2(32--=x y D .xy 2-= 4.据报导,日本福岛核电站发生在我市环境空气中检测出一种微量的放射性核素“碘-131”,含量为每立方米0.4毫贝克(这种元素的半衰期是8天,即每8天含量减少一半,如8天后减少到0.2毫贝克),那么要使含量降至每立方米0.0004毫贝克以下,以下天数中,能达到目标的最少的天数是( ▲ ) A .64 B .71 C .82 D .1045.十进制数2378,记作)10(2378,其实)10(2378=0123108107103102⨯+⨯+⨯+⨯,二进制数1001)2(=012321202021⨯+⨯+⨯+⨯.有一个(010k <≤为整数)进制数()165k ,把它的三个数字顺序倒置取得的k 进制数()561k 是原数的3倍,那么k =( ▲ ) A .10 B .9 C .8 D .7 6.正方形ABCD 、正方形BEPKRF 的位置如下图,点G 在线段DK 上,正方形BEFG 的边长为2,那么△DEK 的面积为( ▲ ) A .4 B .3 C .2 D .2 7.如图,在Rt △ABC 中,AC =3,BC =4,D 为斜边AB 上一动点,DE ⊥cos EFD ∠=BC ,DF ⊥AC ,垂足别离为E 、F 。

浙江省2017自主招生数学模拟试卷(二)及答案

浙江省2017自主招生数学模拟试卷(二)及答案

浙江省2017自主招生数学模拟试卷(二)姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题4分,共48分)1.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A.0.612×107B.6.12×106C.61.2×105D.612×1042.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2 3.如图所示的几何体,其左视图是()A.B.C.D.4.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A.5 B.7 C.5或7 D.65.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.5x 中自变量x的取值范围为()6.函数y=1A.x≥0B.x≥-1 C.x>-1 D.x≥17.下列四个图形分别是四届国际数学家大会的会标:其中属于中心对称图形的有( )A . 1个B . 2个C . 3个D . 4个8.在长方形ABCD 中AB =16,如图所示裁出一扇形ABE ,将扇形围成一个圆锥(AB 和AE 重合),则此圆锥的底面半径为( )A .4B . 16C . 4D . 89.如图,直线l 1∥l 2,∠A =125°,∠B =85°,则∠1+∠2=( )A .30°B . 35°C . 36°D . 40°10.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分)变化的图象(全程)如图,根据图象判定下列结论不正确的是( ) A .甲先到达终点 B .前30分钟,甲在乙的前面 C .第48分钟时,两人第一次相遇; D .这次比赛的全程是28千米11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )O 14 12 1096 86 66 30 x /分y /千米 A BC D乙甲A .64B .77C .80D .8512.已知一次函数y 1=ax +c 和反比例函数y 2=的图象如图所示,则二次函数y 3=ax 2+bx +c 的大致图象是( )A .B .C .D .二 、填空题(本大题共6小题,每小题4分,共24分)13.如果互为,a b 相反数,,x y 互为倒数,则()20142015a b xy +-的值是__________。

浙江省2017自主招生数学模拟试卷(一)及答案

浙江省2017自主招生数学模拟试卷(一)及答案

浙浙江省2017自主招生数学模拟试卷(一)姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题4分,共48分)1.一粒芝麻约有0.000002千克,0.000002用科学记数学法表示为()千克.A.2×10﹣4B.0.2×10﹣5C.2×10﹣7D.2×10﹣62.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C. D.3.下列计算正确的是()A.(a4)3=a7B.3﹣2=﹣32C.(2ab)3=6a3b3D.﹣a5•a5=﹣a104.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个不相等的实数根,则一次函数y=kx﹣k的大致图象是()A. B.C.D.5.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()6.下列命题中,真命题的个数是()①同位角相等; ②经过一点有且只有一条直线与这条直线平行;③长度相等的弧是等弧; ④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个7.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17.2,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班8.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4 D.59.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长10.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过l0千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:其中正确的个数是( ).A.1个B.2个C.3个D.4个11.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文的26个字母a、b、c,…,z依次对应1、2、3,…,26这26个自然数(见表格),当明码对应的序号x为奇数时,密码对应的序号;当明码对应的序号x为偶数时,密码对应的序号.按上述规定,将明码“bird”译成密码是()A.bird B.nove C.sdri D.nevo12.已知函数y=,则下列函数图象正确的是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)13.﹣1的相反数是__________,倒数是__________.14.若x<2,化简+|3﹣x|的正确结果是.15.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有 人.16.已知在平面直角坐标系中,点A (﹣3,﹣1)、B (﹣2,﹣4)、C (﹣6,﹣5),以原点为位似中心将△ABC 缩小,位似比为1:2,则点B 的对应点的坐标为 . 17.如图,正方形ABCD 的边长为1,分别以A .D 为圆心,1为半径画弧BD 、AC ,则图中阴影部分的面积__________________18.如图,在▱ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F 处.若△FDE 的周长为5,△FCB 的周长为17,则FC 的长为__________.三 、解答题(本大题共8小题,共78分) 19.计算:60sin 32)2(201593⨯+-++20.先化简22522()443x x x x x x +++⨯+++,然后选择一个你喜欢的数代入求值.21.某人的钱包内有10元钱、20元钱和50元钱的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.22.小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)23.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.24.观察下表:我们把某格中字母和所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y.回答下列问题:(1)第3格的“特征多项式”为________,第4格的“特征多项式”为__________,第n格的“特征多项式”为________________;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16.①求x,y的值;②在此条件下,第n个特征多项式是否有最小值?若有,求出最小值和相应的n值.若没有,请说明理由.25.如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DA B.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.26.如图,抛物线y=ax2+bx+c(a≠0)经过点A(-3,0)、B(1,0)、C(-2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A.N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.答案解析一、选择题1.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 002=2×10﹣6;故选:D.2.分析:根据轴对称图形与中心对称图形的概念求解.解:A.不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形.故选C.3. 分析:根据幂的乘方法则:底数不变,指数相乘可得(a4)3=a12;根据负整数指数幂:a﹣p=(a≠0,p为正整数)可得3﹣2=;根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可得(2ab)3=8a3b3,根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加可得﹣a5•a5=﹣a10.解答:解:A.(a4)3=a12,故原题计算错误;B、3﹣2=,故原题计算错误;C、(2ab)3=8a3b3,故原题计算错误;D、﹣a5•a5=﹣a10,故原题计算正确;故选:D.4. 分析:首先根据一元二次方程有两个不相等的实数根确定k的取值范围,然后根据一次函数的性质确定其图象的位置.解:∵关于x的一元二次方程x2﹣2x﹣k+1=0有两个不相等的实数根,∴(﹣2)2﹣4(﹣k+1)>0,即k>0,∴一次函数y=kx﹣k的图象位于一、三、四象限,故选B.5. 分析:设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.6. 分析:根据平行线的性质对①进行判断;根据平行公理对②进行判断;根据等弧的定义对③进行判断;根据中点四边的判定方法可判断顺次连接菱形各边中点得到的四边形为平行四边形,加上菱形的对角线垂直可判断中点四边形为矩形.解:两直线平行,同位角相等,所以①错误;经过直线外一点有且只有一条直线与这条直线平行,所以②错误;在同圆或等圆中,长度相等的弧是等弧,所以③选项错误;顺次连接菱形各边中点得到的四边形是矩形,所以④正确.故选A.7. 分析:直接根据方差的意义求解.解:∵S>S>S>S,∴四个班体考成绩最稳定的是甲班.故选A.8. 分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.9. 分析:分别利用平移的性质得出各图形中所用铁丝的长度,进而得出答案.解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选:D.10. 分析: ①由图可知,购买10千克种子需要50元,由此求出一次购买种子数量不超过10千克时的销售价格;②由图可知,超过10千克以后,超过的那部分种子的单价降低,而由购买50千克比购买10千克种子多付100元,求出超过10千克以后,超过的那部分种子的单价,再计算出一次购买30千克种子时的付款金额;③根据一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以可以求出打的折数;④先求出一次购买40千克种子的付款金额为125元,再求出分两次购买且每次购买20千克种子的付款金额为150元,然后用150减去125,即可求出一次购买40千克种子比分两次购买且每次购买20千克种子少花的钱数.解:①由图可知,一次购买种子数量不超过10千克时,销售价格为:50÷10=5元/千克,正确;②由图可知,超过10千克的那部分种子的价格为:(150-50)÷(50-10)=2.5元/千克,所以,一次购买30千克种子时,付款金额为:50+2.5×(30-10)=100元,正确;③由于一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以打五折,正确;④由于一次购买40千克种子需要:50+2.5×(40-10)=125元,分两次购买且每次购买20千克种子需要:2×[50+2.5×(20-10)]=150元,而150-125=25元,所以一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱,正确.故选D.11. 分析:根据明码与密码的对应关系,分别求出bird四个字母所对应的密码字母,即可得解.解:b对应2,y=+13=14,对应的密码是n,i对应9,y==5,对应的密码是e,r对应18,y=+13=22,对应的密码是v,d对应4,y=+13=15,对应的密码是o,所以,明码“bird”译成密码是nevo.故选D.12. 分析:y=x2+1在x≥﹣1时的性质和y=在x<﹣1时的性质,选出正确选项即可.解:y=x2+1,开口向上,对称轴是y轴,顶点坐标是(0,1),当x≥﹣1时,B、C、D正确;y=,图象在第一、三象限,当x<﹣1时,C正确.故选:C.二、填空题13. 分析:根据相反数与倒数的概念解答即可.解:∵﹣1的相反数是1,∵﹣1=﹣,∴﹣1倒数是﹣.故答案为:1,﹣.14. 分析:先根据x的取值范围,判断出x﹣2和3﹣x的符号,然后再将原式进行化简.解:∵x<2,∴x﹣2<0,3﹣x>0;∴+|3﹣x|=﹣(x﹣2)+(3﹣x)=﹣x+2+3﹣x=5﹣2x.15.分析:先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案.解答:解:根据题意得:1200×=240(人),答:估计每周课外阅读时间在1~2(不含1)小时的学生有240人;故答案为:240.16. 分析:根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.解:∵点B的坐标为(﹣2,﹣4),以原点为位似中心将△ABC缩小,位似比为1:2,∴点B的对应点的坐标为(1,2)或(﹣1,﹣2),故答案为:(1,2)或(﹣1,﹣2).17. 分析:过点F作FE⊥AD于点E,则AE=AD=AF,故∠AFE=∠BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADF﹣S△ADF可得出其面积,再根据S阴影=2(S扇形BAF﹣S弓形AF)即可得出结论.解:如图所示,过点F作FE⊥AD于点E,∵正方形ABCD的边长为1,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF﹣S△ADF=﹣×1×=﹣,∴S阴影=2(S扇形BAF﹣S弓形AF)=2(﹣+)=2(﹣+)=﹣.故答案为:﹣.18. 分析:根据翻折变换的性质、平行四边形的性质证明AB +BC =11,此为解题的关键性结论;运用△FCB 的周长为17,求出FC 的长,即可解决问题. 解:如图,∵四边形ABCD 为平行四边形, ∴AD =BC ,AB =DC ; 由题意得:AE =FE ,AB =BF ;∵△FDE 的周长为5,△FCB 的周长为17, ∴DE +DF +EF =5,CF +BC +BF =17, ∴(DE +EA )+(DF +CF )+BC +AB =22, 即2(AB +BC )=22,∴AB +BC =11,即BF +BC =11; ∴FC =17﹣11=6, 故答案为6.三 、解答题19. 分析:根据0指数幂、二次根式的化简、特殊角的三角函数值、负指数幂的定义解答 解:原式=3+1﹣8+2×=﹣1. 20.解:原式2522[]2(3)(2)x x x x x x ++=+⨯+++225222(3)(3)(2)x x x x x x x x x +++=⨯+⨯++++2(2)5(3)(2)(3)(2)x x x x x x x x ++=+++++ 3(3)(3)(2)x x x x +=++3(2)x x =+ 当1x =时,原式311(12)==⨯+(x 不能取0,,21.解:某人从钱包内随机取出2张纸币,可能出现的结果有3种,即(10,20)、(10、50)、(20,50),并且它们出现的可能性相等。

浙江省杭州市萧山区2017年高考模拟命题比赛数学试卷24含答案

浙江省杭州市萧山区2017年高考模拟命题比赛数学试卷24含答案

2017年高考模拟考数学试题注意:本卷共22题,满分150分,考试时间120分钟.参考公式:球的表面积公式: 24R S π=,其中R 表示球的半径;球的体积公式:,343R Vπ=其中R 表示球的半径; 柱体的体积公式:Sh V =,其中S 表示柱体的底面积,h 表示柱体的高;锥体的积公式:Sh V31=,其中S 表示椎体的底面积,h 表示椎体的高; 台体的体积公式:)(312211S S S S h V ++=,其中1S 、2S 分别表示台体的上、下底面积,h 表示台体的高如果事件A 、B 互斥,那么)()()(B P A P B A P +=+第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合{|2}M x x =<,集合{|01}N x x =<<,则下列关系中正确的是 ( ) (A )M N R =U (B ){}01M N x x =<<I (C )N M ∈ (D )M N φ=I 2、已知复数122,3z i z i =+=-,其中i 是虚数单位,则复数12z z 的实部与虚部之和为( ) (A )0 (B )12(C )1 (D )2 3、设p :1-<x ,q ⌝:022>--x x ,则下列命题为真的是( ) (A )若q 则p ⌝(B )若q ⌝则p(C )若p 则q (D )若p ⌝则q4、若k∈R,,则“k>4”是“方程14422=+--k y k x 表示双曲线”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件5、数列{}n a 满足122,1,a a ==并且1111(2)n n n n n n n n a a a a n a a a a -+-+--=≥⋅⋅,则数列{}n a 的第100项为( ) (A )10012 (B )5012 (C )1100 (D )1506、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体 的体积是 ( )(A )383cm (B )343cm(C )323cm (D )313cm7、已知双曲线)0,0(12222>>=-b a by a x 6( )(A )2y x =± (B )x y 2±= (C )x y 22±= (D )12y x =± 8、定义式子运算为12142334a a a a a a a a =-,将函数sin 3()cos 1xf x x =的图像向左平移(0)n n >个单位,所得图像对应的函数为偶函数,则n 的最小值为 ( )(A )6π (B )3π(C ) 56π (D )23π9、已知点P 为ABC ∆所在平面上的一点,且13AP AB t AC =+u u u r u u u r u u u r,其中t 为实数,若点P 落在ABC∆的内部,则t 的取值范围是 ( )(A )104t <<(B )103t <<(C )102t <<(D )203t << 10、已知()f x 是偶函数,且()f x 在[)+∞,0上是增函数,如果(1)(2)f ax f x +≤-在1[,1]2x ∈上恒成立,则实数a的取值范围是( )(A )[2,1]- (B )[5,0]- (C )[5,1]- (D )[2,0]-第二卷(非选择题 共100分)二、填空题:本大题共7小题,每小题4分,共28分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E
Q ·2 0 1 7 年高考及自主招生 高三奥数班 模拟检测(浙江)
姓名: 学号: (2017年5月)
{本卷满分:180 分(含附加题30分) 考试时间:150 分钟}
一、填空题(共14小题,每题8分,计112分).
1. 已知 ,是非零不共线的向量,设r r r 1
11+++=
,定义点集⎫⎪⎩⎪⎨⎧==M ,当M K K
∈21
,时,若对于2≥∀r ,不等式
≤恒成立,则实数c 的最小值为 .
2. 若函数()R ∈-+-+=b a x a x b x b x a x f ,cos sin 1cos sin 的最大值为11,则22b a +的值为 .
3. 已知R ∈α,且{}
{}1c os sin 1c os sin 44=+∈=+x x x x x x α
α
,则α的取值范围
是 .
4. 已知正整数数列{}n a 满足*∈∀N n ,n n n a a a +=++12,且2017=k a ,则k 的最
大值是 . 5. 设点()i i i y x P ,在直线i l :i i i c y b x a =+上,
若()21,==+i ic b a i i i ,且2
2
21≥P P 恒成立,则
22
11c a a c +的值是 . 6. 如图,ABC ∆和ADE ∆均为等腰直角三角
形,︒=∠=∠90AED BAC ,连接BD 、CE ,取CE 的中点F ,连接DF 、BF ,若
BDF S ∆=()ACE ADE ABC nS S S ∆∆∆++2
1
()R ∈n 恒成立,则n 的值是 . 7. 已知函数()22,
03,0
x x f x x a a x ⎧->⎪=⎨-++<⎪⎩的图象上恰有三对点关于原点成中心对
称,则a 的取值范围是 .
8. 已知棱长为1的正四面体ABC P -,PC 的中点为D ,动点E 在线段AD 上,
则直线BE 与平面ABC 所成的角的取值范围是 .
9. 若n
I ⎪⎭⎫ ⎝
⎛+=i 32121
()
*∈N n 为纯虚数,则n 取最小值时,I 的值是 .
10. 设曲线L 的方程为()()
022224224=-+++x x y x y ,则下列说法正确的
是 .(填序号)
① L 是轴对称图形; ② L 是中心对称图形;
③ (){}
1 , 22≤+⊂y x y x L ; ④ ()⎭
⎬⎫

⎨⎧≤
≤-⊂2121
, y y x L . 第6题
( 985 高 校 难 度 )
11. 阶梯教室安装的连体课桌一行坐6个人,考生只能从课桌两头走出考场,考
生交卷时间先后不一,如果坐在里面的考生先要交卷就需要打扰别人.把一行考生中打扰别人交卷的人数设为随机变量X ,则X 的数学期望为 . 12. 若A 、B 是抛物线x y 42=上的不同两点,弦AB (不平行于y 轴)的垂直平
分线与x 轴相交于点P ,则称弦AB 是点P 的一条“相关弦”.则点()04 ,P 的所有“相关弦”的弦长的最大值是 .
13. 已知A ,B ,C 是球O 的球面上的三点,︒=∠=∠45AOC AOB ,若三棱锥
ABC O -体积的最大值为3
2
,则球O 的表面积为 .
14. 设k ,m ,n 都是整数,过圆()2
2213+=+k y x 外一点()
n n m m P --33,向该
圆引两条切线,切点分别为A ,B ,则直线AB 上满足横坐标与纵坐标均为整数的点的个数为 .
二、解答题(共2小题,15题18分,16题20分,计38分).
15. 数列{}n a 满足:∏∑===n
i i
n
i i a a 111
1.
⑴ 求n a 和1+n a 的关系;
⑵ 若101<<a ,证明:10<<n a ;
⑶ 若[]101,
∉a ,证明:1+<n n a a ()2≥n .
16. 设{}b a ,,{}d c ,分别为两个矩形的长和宽,且b d c a <<<,cd ab <.
证明:可将第一个矩形放入第二个矩形内部的充要条件是
()()()2
2
2
2
2
ad bc ac bd a b
-+-≤-.
三、附加题(共1小题,计30分).
求方程组⎪⎩

⎨⎧=++=++=++yz z y x xz z y x xy
z y x 333333222的实数解()z y x ,,的个数,其中z y x ,,互不相等.
Q ·2 0 1 7 年高考及自主招生高三奥数班模拟(参考答案)
[ MATHEMATICS Examination paper reference answer ]
{ 本卷满分: 180 分(含附加题 30 分) }
一、填空题(共14小题,每题8分,计112分).
1 考点:向量,几何(角平分线定理) {难度:★★☆☆☆}
答案:3
4
2 考点:绝对值,A-G 不等式 {难度:★☆☆☆☆}
答案:50
3 考点:集合,指数函数,三角函数,分类讨论思想 {难度:★★★☆☆}
答案:()()∞+∞-,,22
4 考点:数列,数论 {难度:★★★☆☆}
答案:11
5 考点:直线关系,恒成立问题 {难度:★★☆☆☆}
答案:3
6 考点:平面几何,面积,线段比 {难度:★★★★☆}
答案:3
分析可得n = 3,由题意即证明:BDF S ∆=()ACE ADE ABC S S S ∆∆∆++32
1
7 考点:函数的应用,导数 {难度:★★★☆☆}
答案:171,
16⎛⎫
⎪⎝⎭
8 考点:立体几何(角),解不等式,单调性,反三角 {难度:★★★☆☆}
答案:⎥⎦

⎢⎣⎡714arctan 0,
[ 来源:2017年全国高中数学联赛预赛 浙江
]
9 考点:虚数,二项式 {难度:★★☆☆☆}
答案:
i 9
3 10 考点:曲线图像(数形结合),轨迹 {难度:★★★☆☆}
答案:①②④
[ 来源:2015年清华大学自主招生暨领军计划 ]
提示:曲线图像如下
11考点:数学期望,应用,排列{难度:★★★★☆}
21
答案:
10
分析与解如下:
12考点:最值,抛物线{难度:★★★☆☆}
答案:6
13考点:立体几何(球,体积,表面积),A-G不等式,三角,运动中的不变量分析{难度:★★★★☆}
答案:16 π
14考点:直线与圆,切线{难度:★★★☆☆}
答案:0
二、解答题(共2小题,15题18分,16题20分,计38分).15考点:数列,数学归纳法{难度:★★★☆☆}
[ 来源:2008年中科大自主招生] (18分) [可能有多种解法
.......,酌情给分
.....]
15、
16考点:充分必要(逻辑),解析几何(线性规划,直线与圆){难度:★★★★☆} (20分) [可能有多种解法
.....]
.......,酌情给分
三、附加题(共1小题,计30分).
17考点:导数(极限),代换,解元{难度:★★★★★}
[可能有多种解法
.....]
.......,酌情给分
严.禁.盗.版.。

相关文档
最新文档