2020年全国初中数学竞赛历年竞赛试题以及参考答案:二

合集下载

2020年初一数学竞赛初赛试卷及答案解析

2020年初一数学竞赛初赛试卷及答案解析

2020年初一数学竞赛初赛试卷一、填空题(共11小题)1.(8分)求9+49+299+8999+99999=.2.(8分)计算:(−2007)5×(−3.25)5×(−23)5×(−1446)5×(−413)5=.3.(8分)一个自然数写成五进制为(xyz)5,写成六进制为(zyx)6,这个自然数为.4.(8分)500千克黄瓜,原来水占99%.过一周,水占98%.这时黄瓜重千克.5.(10分)在边长为2cm的等边三角形内部取一些点.如果要保证所取的点中一定存在两点距离小于1cm,那么至少应取个点.6.(10分)方程x2+y2+z2=2007(填A或B).(A)有整数解(B)没有整数解.7.(10分)一张正方形纸片内部有2007个点,再加上四个顶点共2011个点,任意三点不共线.用剪刀可以剪出个以这些点为顶点的三角形.8.(10分)在图中每个小方格内填入一个数,使每一行、每一列都有1、2、3、4、5.那么,右下角的小方格(用粗线围出的方格)内填入的数应是.9.(12分)数列2,2,4,4,4,4,6,6,6,6,6,6,…的第2007项为.10.(12分)[10301010+7]的个位数为.其中[x]表示x的整数部分.11.(12分)若m、n为正整数,则|23m﹣540n|的最小值为.二、解答题(共3小题,满分42分)12.(12分)有四个村庄(点)A、B、C、D,要建一所学校P,使P A+PB+PC+PD最小.画图说明P在哪里.13.(15分)画出12个点,使得每个点至少与其它11个点中的3个点的距离为1.14.(15分)如下表,在7×7的正方形表格中有9个数和4个字母,其中J、Q、K都表示10,A既可以表示1也可以表示11.将数或字母在原来的列中移动,设法使数与字母的总数多于1的每行、每列、每条斜线上的数与字母的和等于21.将你的结果填在右图中.。

2020年全国初中数学竞赛试题汇编及参考答案-《数学周报》杯二

2020年全国初中数学竞赛试题汇编及参考答案-《数学周报》杯二

2020年全国初中数学竞赛试题汇编及参考答案《数学周报》杯二一、选择题(共5小题,每小题6分,满分30分.每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)(1)已知实数x y ,满足 42424233y y x x ,,则444y x 的值为( A).(A )7 (B )1132 (C )7132 (D )5解:因为20x ,2y ≥0,由已知条件得212444311384x 2114311322y ,所以444y x 22233y x 2226y x 7.(2)把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为n m ,,则二次函数2y x mx n 的图象与x 轴有两个不同交点的概率是( C ).(A )512 (B )49 (C )1736 (D )12解:基本事件总数有6×6=36,即可以得到36个二次函数.由题意知 =24m n >0,即2m >4n .通过枚举知,满足条件的m n ,有17对. 故1736P .(3)有两个同心圆,大圆周上有4个不同的点,小圆周上有2个不同的点,则这6个点可以确定的不同直线最少有( B ).(A )6条 (B ) 8条 (C )10条 (D )12条解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线可以确定6条不同的直线;小圆周上的两个点E ,F 中,至少有一个不是四边形ABCD 的对角线AC 与BD的交点,则它与A ,B ,C ,D 的连线中,至少有两条不同于A ,B ,C ,D 的两两连线.从而这6个点可以确定的直线不少于8条.当这6个点如图所示放置时,恰好可以确定8条直线.所以,满足条件的6个点可以确定的直线最少有8条.(4)已知AB 是半径为1的圆O 的一条弦,且1AB a .以AB 为一边在圆O 内作正△ABC ,点D为圆O 上不同于点A 的一点,且DB AB a ,DC 的延长线交圆O 于点E ,则AE 的长为( B ).(A 52 (B )1(C 32(D )a解:如图,连接OE ,OA ,OB . 设D ,则120ECA EAC .又因为1160180222ABO ABD 120 ,所以ACE △≌ABO △,于是1AE OA .(5)将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有( D ).(A )2种 (B )3种 (C )4种 (D )5种解:设12345a a a a a ,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a 是奇数,则2i a 是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件:2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3;4,3,1,2,5; 4,5,3,2,1.二、填空题(共5小题,每小题6分,满分30分)(6)对于实数u ,v ,定义一种运算“*”为:u v uv v .若关于x 的方程1()4x a x有两个不同的实数根,则满足条件的实数a 的取值范围是.【答】0a ,或1a .解:由1()4x a x ,得21(1)(1)04a x a x ,依题意有 210(1)(1)0a a a ,,解得,0a ,或1a .(7)小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是 分钟.【答】4.解:设18路公交车的速度是x 米/分,小王行走的速度是y 米/分,同向行驶的相邻两车的间距为s 米.每隔6分钟从背后开过一辆18路公交车,则s y x 66. ① 每隔3分钟从迎面驶来一辆18路公交车,则s y x 33. ②由①,②可得 x s 4 ,所以 4 x s .即18路公交车总站发车间隔的时间是4分钟.。

2020-2021学年全国初中数学竞赛试题(多份)及答案

2020-2021学年全国初中数学竞赛试题(多份)及答案

保证原创精品 已受版权保护2020年全国初中数学竞赛试题(多份)及答案一、选择题1.设a <b <0,a 2+b 2=4ab ,则b a ba 的值为【 】A 、3B 、6C 、2D 、32.已知a =2020x +2020,b =2020x +2020,c =2020x +2020,则多项式a 2+b 2+c 2-ab -bc -ca 的值为【 】A 、0B 、1C 、2D 、33.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCDS S 矩形四边形等于【 】A 、65B 、54C 、43D 、32ABC DEF G保证原创精品 已受版权保护4.设a 、b 、c 为实数,x =a 2-2b +3,y =b 2-2c +3,z =c 2-2a +3,则x 、y 、z 中至少有一个值【 】A 、大于0B 、等于0C 、不大于0D 、小于05.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】A 、72<a <52 B 、a >52 C 、a <72 D 、112<a <06.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】A 、22b a B 、22b ab a C 、b a 21D 、a +b二、填空题7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。

8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则bc c a 的值为 。

9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。

全国初中数学竞赛试题及答案(完整资料).doc

全国初中数学竞赛试题及答案(完整资料).doc

【最新整理,下载后即可编辑】中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1 (甲).如果实数纠b, C在数轴上的位置如图所示,那么代数式>∕7-∖a + b I +√(c-6∕p + ∖b + c∖可以化简为( ).h a QC(A) 2c-a(B) 2a-2b(C) -" (D) n1(乙).如果t∕=-2 + √2 ,那么1 + —的值为( )•2+——3+ “(A) -√2(B) √2(C) 2 (D) 2√2 2(甲).如果正比例函数V- axα ≠ 0)与反比例函数y-~ (b ≠())X 的图象有两个交点,其中一个交点的坐标为(一3, -2),那么另一个交点的坐标为( )•(A) (2, 3) (B) (3, -2) (C) (-2, 3) (D) (3,2)2(乙).在平面直角坐标系XOy中,满足不等式Λ-+y≤2x+27的整数点坐标(%y)的个数为( ).(A) 1() (B) 9 (C) 7 (D) 5 3(甲).如果α, b为给定的实数,且l<a<b ,那么1, 4 + 1, 2a+b t a+b+ ∖这四个数据的平均数与中位数之差的绝对值是( )•(A ) 1 (D );43 (乙).如图,四边形ABCD 中,AC 9角线,二 5,则仞的长为().4 (甲).小倩和小玲每人都有若干面值为整数元的人民币. 玲说:“你若给我2元,我的钱数将是你的“倍”;小玲对小倩说: “你若给我G 元,我的钱数将是你的2倍”,其中“为正整数,则 G 的可能值的个数是().4(乙).如果关于X 的方程χh∣ = Xp, q 是正整数)的正根小于3,那么这样的方程的个数是().5 (甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1, 2, 3,4, 5, 6.掷两次骰子,设其朝上的面上的两个数宇之和除以4的 余数分别是0,1, 2, 3的概率为Po, Pi ,P v P 3,则Po' Pl ,P V P3中最 大的是().'AEC 是等边三角形.ZADC = 30。

2020年七年级数学竞赛初赛试卷及答案解析

2020年七年级数学竞赛初赛试卷及答案解析

第 1 页 共 8 页2020年七年级数学竞赛初赛试卷一.填空题(共11小题)1.我们知道:1+2+3=3×(3+1)2=6,1+2+3+4=4×(4+1)2=10,那么1+2+3+…+100= . 2.计算:(−2007)5×(−3.25)5×(−23)5×(−1446)5×(−413)5= .3.设四位数abcd 满足a 3+b 3+c 3+d 3+1=10c +d ,则这样的四位数的个数为 .4.一商店在某一时间以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,若卖出这两件衣服商店共亏损8元,则a 的值为 .5.现有145颗棒棒糖,分给若干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有 个.6.已知关于x 的方程(a ﹣1)x 2+2x ﹣a ﹣1=0的根都是一整数,那么符合条件的整数a 有个.7.如图,在一个4×4的方格棋盘的A 格里放一枚棋子,如果规定棋子每步只能向上、下或左、右走一格,那么这枚棋子走28步后 到达B 处.(填“一定能”或“一定不能”或“可能”)8.观察下列各等式:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3…根据上述等式反映出的规律直接写出第四个等式为 ;猜想第n 个等式(用含n 的代数式表示)为 .9.观察下列一组数,按规律在横线上填写适当的数,−12,36,−512,720,……,第7个数是 .10.满足25{x }+[x ]=25的所有实数x 的和是 (其中[x ]表示不大于x 的最大整数,{x }=x ﹣[x ]表示x 的小数部分).11.两个多位正整数,若它们各数位上的数字之和相等,则称这两个多位数互为调和数”例如:49与76,因为4+9=7+6=13,所以49与76互为“调和数”;又如:225与18,因。

2020年全国初中数学联赛决赛试题(江西卷)详细解题答案

2020年全国初中数学联赛决赛试题(江西卷)详细解题答案

2020年全国初中数学联赛决赛试题(江西卷)详细解题答案〔2008年4月19日 上午9:00—11:30〕-、选择题〔每题7分,共42分〕1 、解:由1114123+=,而1111,236++=故删去11810与后,可使剩下的数之和为1.应选C212+=====12.应选A . 3、解:555=5×545=5×18125,因125被8除余l ,因此18125被8除余l ,故知555被8除余5,而在125、375、625、875四数中,只有125被8除余5,应选A4 、解:由〔1〕、〔3〕得2x y x =-,63x z x =-,故x ≠0,代人〔2〕解得2710x =,因此277y =, z =-54.检验知此组解满足原方程组.因此10X +7y +Z =0.应选D5、解:图中只有边长为1或2的两种菱形,每个菱形恰有一条与其边长相等的对角线,原正三角形内部每条长为1的线段,恰是一个边长为1的菱形的对角线;这种线段有18条,对应着18个边长为1的菱形;原正三角形的每条中位线恰是一个边长为2的菱形的对角线,三条中位线对应着3个边长为2的菱形;共得21个菱形. 选C6、解:设28abcd =3()xy ,那么据末位数字特点得y =2,进而确定xy :因360=216000, 370=343000,因此60<xy <70,故只有,xy =62,而262=238328,那么ab =38,cd =32,ab +cd =70. 应选D二.填空题〔每题7分,共28分〕7、解:据条件式9........1xy +=()令z ,那么〔1〕式化为:z xy ++9,即有9-z =xy81-18z +2z =2222(1)(4)2x y x y xy ++++……(2),又由2z =2(=2222(4)(1)2x y y x xy++++代入〔2〕得,81-18z=4,因此7718z =. 8、解:l +2+…+61=1891,2018—1891=117,由于形如ab 的页码被当成ba 后,加得的和数将相差9a b -,因为,a b 只能在1,2,…,9中取值,a b -≤8,得9a b -≤72,由于117=72+45=63+54,设弄错的两位数是ab 和cd ,假设9a b -=72,9c d -=45,只有ab =19,而cd 能够取l6,27,38,49;这时ab +cd 的最大值是68;假设9a b -=63,9c d -=54,那么ab 能够取18,29,而cd 能够取17,28,39,ab +cd 的最大值也是68.9、解:如右图,连OA ,OB ,OC ,线段 OA 将阴影的上方部分剖分成两个弓形,将这两个弓形分不按顺时针及反时针绕点O 旋转0120后,阴影部分便合并成△OBC ,它的面积等于△A BC 310、解:653)=3(8215)+,令 815+a ,815-b ,得 a +b =16,ab=4,a,b 是方程21640x x -+=的两个根,故得2a =16a -4,2b =16b -4;3a =162a -4a ,32164b b b =-;因此3a +3b =16〔2a +2b 〕-4〔a+b 〕=16〔16〔a+b 〕一8〕-4〔a+b 〕=252〔a+b 〕-128=3904.∵0<b <1,∴0<3b <1,∴3a 的最大整数值不超过3903.三.解答题〔共70分〕11、解:当a =0时,方程的有理根为75x =; ……5分 以下考虑a ≠0的情形,现在原方程为一元二次方程,由判不式2(5)4(7)0,a a a +-+≥即32a +18a -25≤091569156a ---+≤≤整数 a 只能在其中的非零整数1,-1,-2,-3,-4,-5,-6,-7中取值,…… 10 分 由方程得25523(3)a a x +±-+=……〔1〕 当a =1,由〔1〕得x =2和4;当a=-1时,方程无有理根;当a =-2,由〔1〕得x =1和-52;当a=-3时,方程无有理根; ……15分 当a =-4,由〔1〕得x =-1和34;当a=-5时,方程无有理根; 当a =-6,由〔1〕得x =12和-13;当a =-7时,由〔1〕得x =37和17-;…… 20分A P 12、证明:EF 截△PMN ,那么.. 1..........(1)NK MF PE KM FP EN=……5分 BC 截 △PAE ,那么.. 1...........(2)EB AC PN BA CP NE =,即有2,PN CP NE AC = 因此2..............(3)PE CP AC EN AC+=, ……10分AD 截△PCF ,那么..1,FD CA PM DC AP MF=即22,............(4)PM AP PF AP AC MF AC MF AC-=∴=……15分 因AP =AC +CP ,得2CP + AC =2AP -AC ,由(3),(4)得,,........20PE FP EN MF=分 — 即.1,MF PE FP EN =因此由(1)得 NK =KM ,即K 是线段 AM 的中点 ……25分 13、解:将这120人分不编号为12120,,....,P P P ,并视为数轴上的120个点,用k A 表示这120人之中未答对第k 题的人所成的组,k A 为该组人数, k=l ,2,3,4,5,那么1A =24,234537,46,54,85,A A A A ==== ……5分将以上五个组分不给予五种颜色,假如某人未做对第k 题,那么将表示该人点染第k 色,k=l ,2,3,4,5,咨询题转化为,求出至少染有三色的点最多有几个?由于1A +2345A A A A +++=246,故至少染有三色的点不多于2463=82个,……10分 右上图是满足条件的一个最正确染法,即点1285,,....,P P P 这85 个点染第五色;点1237,,....,P P P 这37个点染第二色;点383983,,....,P P P 这46个点染第四色;点1224,,....,P P P 这24 个点染第一色;点252678,,....,P P P 这54个点染第三色;因此染有三色的点最多有78个. …20分因此染色数不多于两种的点至少有42个,即获奖人数至少有42个人〔他们每人至多答错两题,而至少答对三题,例如7980120,,...,P P P 这 42 个人) …… 25分陈永华录入 cryzcyh@ 85 46 5437 24。

2020-2021学年全国初中数学竞赛试题(含答案)

2020-2021学年全国初中数学竞赛试题(含答案)

2020年全国初中数学竞赛试题(含答案)考试时间 2020年4月2日上午 9∶30-11∶30 满分120分一、选择题(共5小题,每小题6分,满分30分。

以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里。

不填、多填或错填均得0分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )(A )36 (B )37 (C )55 (D )902.已知21 m ,21 n ,且)763)(147(22 n n a m m =8,则a 的值等于( )(A )-5 (B )5 (C )-9 (D )93.Rt △ABC 的三个顶点A ,B ,C 均在抛物线2x y 上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则( )(A )h <1 (B )h =1 (C )1<h <2(D )h >24.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )(A )2020 (B )2020 (C )2020 (D )20205.如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q .若QP=QO ,则QA QC的值为( )(A )132 (B )32(C )23 (D )23 二、填空题 (共5小题,每小题6分,满分30分)6.已知a ,b ,c 为整数,且a +b=2020,c -a =2020.若a <b ,则a +b +c 的最大值为 .7.如图,面积为c b a 的正方形DEFG 内接于面积为1的正三角形ABC ,其中a ,b ,c 为整数,且b 不能被任何质数的平方整除,则b ca 的值等于 .8.正五边形广场ABCDE 的周长为2020米.甲、乙两人分别从A 、C 两点同时出发,沿A !’B !’C !’D !’E !’A !’…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上.9.已知0<a <1,且满足183029302301 a a a ,则 a 10的值等于 .( x 表示不超过x 的最大整数)10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 .三、解答题(共4题,每小题15分,满分60分)11.已知a bx,a ,b 为互质的正整数(即a ,b 是正整数,且它们的最大公约数为1),且a ≤8,1312 x .试写出一个满足条件的x ;(1)(第7题图)ABCDGFE求所有满足条件的x .(2)12.设a ,b ,c 为互不相等的实数,且满足关系式14162222 a a c b ①542 a a bc ②求a 的取值范围.13.如图,点P 为⊙O 外一点,过点P 作⊙O 的两条切线,切点分别为A ,B .过点A 作PB 的平行线,交⊙O 于点C .连结PC ,交⊙O 于点E ;连结AE ,并延长AE 交PB 于点K .求证:PE·AC=CE·KB .A14.10个学生参加n个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n的最小值.2020年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案全国初中数学竞赛试题及答案一、选择题1、在一张纸上,我们画了一个圆和一条直径,直径与圆相交于A、B 两点。

如果我们在这张纸上连续地画了8个点,使得这些点都在圆上,那么这8个点的最密集分布是()。

A. 像一个“十”字形,两边各4个点 B. 像一个“十”字形,两边各3个点 C. 像一个“米”字形,上面各4个点 D. 像一个“米”字形,上面各3个点答案:C 解析:根据圆的对称性,我们可以得知,直径两侧的点到圆心的距离相等,因此在一个“十”字形中,中间的交点是最密集的。

而在“米”字形中,上面的4个点距离交点的距离相等且最短,因此是最密集的。

2、在一个等边三角形ABC中,D、E、F分别是AB、BC、CA的中点。

现在以D为圆心,DE为半径画圆弧,交AB于G。

则△DFE的面积是阴影部分面积的()。

A. 2倍 B. 3倍 C. 4倍 D. 6倍答案:C 解析:由题意可知,DE是△ABC的中位线,因此DE=1/2AB。

而△DFE是直角三角形,斜边DE是直径,因此∠DFE=90°。

所以,△DFE的高是DE的一半,即1/4AB。

因此,△DFE的面积是1/2×1/2AB×1/4AB=1/8AB²。

而阴影部分的面积是△ABC面积的一半,即1/2×1/2AB×√3/2AB=√3/4AB²。

所以,△DFE的面积是阴影部分面积的4倍。

3、在一个等腰直角三角形ABC中,∠C=90°,AC=BC=1。

现在以这个三角形的顶点为圆心,1为半径画圆弧,则这三个圆弧的长度之和为()。

A. 3π/2 B. π C. 2π D. 5π/2 答案:C 解析:根据题意,我们可以得到三个圆弧的半径都是1。

其中第一个圆弧的长度为1/4×2π×1=π/2,第二个圆弧的长度也为π/2,第三个圆弧的长度为1/4×2π×√2=π√2/2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2020年全国初中数学竞赛试题

一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了英文代号的四个结论,其中有且只有一个结论是正确的. 请将正确结论的代号填入题后的括号里. 不填、多填或错填,得零分)
1.若4x -3y -6z =0,x +2y -7z =0(xyz ≠0),则2
222
22103225z y x z y x ---+的值等于 ( ).
(A) 21-
(B) 2
19
- (C) 15- (D) 13- 2.在本埠投寄平信,每封信质量不超过20g 时付邮费0.80元,超过20g 而不超过40g 时付邮费1.60元,依次类推,每增加20g 需增加邮费0.80元(信的质量在100g 以内)。

如果所寄一封信的质量为72.5g ,那么应付邮费 ( ).
(A) 2.4元 (B) 2.8元 (C) 3元 (D) 3.2元 3.如下图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G =( ).
(A)360° (B) 450° (C) 540° (D) 720°
4.四条线段的长分别为9,5,x ,1(其中x 为正实数),用它们拼成两个直角三角形,且AB 与CD 是其中的两条线段(如上图),则x 可取值的个数为( ).
(A)2个 (B)3个 (C)4个 (D) 6个
5.某校初三两个毕业班的学生和教师共100人一起在台阶上拍毕业照留念,摄影师要将其排列成前多后少的梯形队阵(排数≥3),且要求各行的人数必须是连续的自然数,这样才能使后一排的人均站在前一排两人间的空挡处,那么,满足上述要求的排法的方案有( ).
(A)1种 (B)2种 (C)4种 (D) 0种
二、填空题(共5小题,每小题6分,满分30分)
O
C
D
A
B
A
B
C
D
E
F
G
(第3题图)
(第4题图)
2
6.已知31+=x ,那么=---++2
1
41212x x x .
7.若实数x ,y ,z 满足41=+y x ,11=+z y ,3
71=+x z ,则xyz 的值为 .
8.观察下列图形:
① ② ③ ④
根据图①、②、③的规律,图④中三角形的个数为 .
9.如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上,如果CD 与地面成45º,∠A =60º CD =4m ,BC =()
2264-m ,则电线杆AB 的长为_______m.
10.已知二次函数c bx ax y ++=2(其中a 是正整数)的图象经 过点A (-1,4)与点B (2,1),并且与x 轴有两个不同的交点,则b +c 的最大值为 . 三、解答题(共4题,每小题15分,满分60分)
11.如图所示,已知AB 是⊙O 的直径,BC 是⊙O 的切线,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P . 问EP 与PD 是否相等?证明你的结论.
解:
(第9题图)
12.某人租用一辆汽车由A城前往B 城,沿途可能经过的城市以及通过两城市之间所需的时间(单位:小时)如图所示. 若汽车行驶的平均速度为80千米/小时,而汽车每行驶1千米需要的平均费用为1.2元. 试指出此人从A 城出发到B城的最短路线(要有推理过程),并求出所需费用最少为多少元?
解:
(第11题图)
(第12题图)
3。

相关文档
最新文档