拉伸法测弹性模量实验报告
拉伸法测钢丝的弹性模量实验报告

拉伸法测钢丝的弹性模量实验报告拉伸法测钢丝的弹性模量实验报告引言:弹性模量是描述材料抵抗变形能力的重要指标之一。
在工程中,了解材料的弹性模量对于设计和计算结构的稳定性和可靠性至关重要。
本实验旨在通过拉伸法测定钢丝的弹性模量,并探讨实验结果的可靠性和误差来源。
实验原理:拉伸法是一种常用的测定材料弹性模量的方法。
根据胡克定律,当材料受到拉伸力时,其应变与应力呈线性关系。
应变可以通过测量材料的长度变化来计算,而应力则可以通过施加的拉力除以截面积来计算。
根据胡克定律的线性关系,可以得到材料的弹性模量。
实验步骤:1. 准备工作:清洁实验台、准备所需的钢丝样品和测量工具。
2. 测量钢丝的直径:使用卡尺或显微镜测量钢丝的直径,并记录下来。
为了提高测量的准确性,可以多次测量并取平均值。
3. 量取钢丝的长度:使用卡尺或显微镜测量钢丝的初始长度,并记录下来。
4. 固定钢丝样品:将钢丝样品固定在拉伸装置上,并确保样品的两端平整且垂直于拉伸方向。
5. 施加拉力:通过拉伸装置施加逐渐增加的拉力,同时记录下拉力和相应的伸长量。
6. 计算应变和应力:根据实验数据计算钢丝的应变和应力,并绘制应力-应变曲线。
7. 计算弹性模量:根据应力-应变曲线的斜率计算钢丝的弹性模量。
实验结果:根据实验数据计算得到的钢丝的弹性模量为XXX。
通过绘制应力-应变曲线可以看出,在小应力范围内,钢丝的应变与应力呈线性关系,符合胡克定律。
然而,在较大应力范围内,应变开始出现非线性变化,这可能是由于材料的屈服点或断裂点的影响。
实验讨论:在实验过程中,可能存在一些误差来源。
首先,测量钢丝直径的准确性会影响到应力的计算。
如果直径测量不准确,将导致应力的计算结果有一定的偏差。
其次,钢丝的固定和拉力的施加也可能引入误差。
如果钢丝没有完全固定或拉力施加不均匀,将导致实验结果的不准确性。
此外,钢丝在拉伸过程中可能发生局部塑性变形,也会对实验结果产生影响。
为了提高实验结果的准确性,可以采取一些改进措施。
拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告一、实验目的1、掌握拉伸法测量金属丝弹性模量的基本原理和方法。
2、学会使用光杠杆法测量微小长度变化。
3、学会使用游标卡尺、螺旋测微器等测量工具,提高实验操作技能。
4、学习数据处理和误差分析的方法,培养科学严谨的实验态度。
二、实验原理弹性模量是描述材料抵抗弹性变形能力的物理量。
对于一根长度为$L$、横截面积为$S$ 的金属丝,在受到沿其长度方向的拉力$F$ 作用时,金属丝会伸长$\Delta L$。
根据胡克定律,在弹性限度内,应力与应变成正比,即$F/S = E \cdot \Delta L/L$,其中$E$ 为弹性模量。
将上式变形可得:$E = FL/(S\Delta L)$由于金属丝的横截面积$S =\pi d^2/4$(其中$d$ 为金属丝的直径),且伸长量$\Delta L$ 通常很小,难以直接测量。
本实验采用光杠杆法来测量微小伸长量$\Delta L$。
光杠杆原理:光杠杆是一个带有三个尖足的平面镜,前两尖足放在平台的固定槽内,后尖足置于圆柱体小砝码上。
当金属丝伸长时,光杠杆后尖足随之下降,从而带动平面镜转动一个微小角度$\theta$。
通过望远镜和标尺,可以测量出平面镜转动前后标尺的读数变化$\Delta n$。
根据几何关系,有:$\Delta L = b\Delta n/2D$ (其中$b$ 为光杠杆常数,即前两尖足到后尖足的垂直距离;$D$ 为望远镜到平面镜的距离)将其代入弹性模量的表达式,可得:$E = 8FLD/(\pi d^2b\Delta n)$三、实验仪器1、杨氏模量测定仪:包括立柱、底座、金属丝、砝码托盘等。
2、光杠杆及望远镜尺组:用于测量微小长度变化。
3、游标卡尺:测量金属丝的长度。
4、螺旋测微器:测量金属丝的直径。
5、砝码若干:提供拉力。
四、实验步骤1、调节仪器调节杨氏模量测定仪的底座水平,使立柱垂直于底座。
将光杠杆放置在平台上,使其前两尖足位于固定槽内,后尖足置于圆柱体小砝码上,并调整光杠杆平面镜与平台垂直。
用拉伸法测金属丝的弹性模量实验报告

用拉伸法测金属丝的弹性模量实验报告用拉伸法测金属丝的弹性模量实验报告引言:弹性模量是描述材料抵抗形变的能力的物理量,对于金属材料的研究和应用具有重要意义。
本实验旨在通过拉伸法测量金属丝的弹性模量,探究金属丝的力学性质。
实验目的:1. 了解弹性模量的概念和意义;2. 掌握拉伸法测量金属丝弹性模量的实验方法;3. 分析金属丝的力学性质。
实验仪器与材料:1. 弹簧秤:用于测量金属丝的受力;2. 金属丝:选用直径均匀的金属丝,如铜丝、铁丝等;3. 千分尺:用于测量金属丝的长度。
实验原理:拉伸法是一种常用的测量金属丝弹性模量的方法。
当金属丝受到外力拉伸时,会发生形变,即金属丝的长度会发生变化。
根据胡克定律,金属丝的形变与受力之间存在线性关系,即形变量与受力成正比。
通过测量金属丝的形变量和受力,可以计算出金属丝的弹性模量。
实验步骤:1. 准备金属丝和弹簧秤;2. 用千分尺测量金属丝的初始长度,并记录;3. 将金属丝固定在实验台上,并将弹簧秤挂在金属丝上;4. 逐渐增加弹簧秤的负荷,记录每个负荷下金属丝的形变量和弹簧秤的读数;5. 按照一定的负荷间隔重复步骤4,直至金属丝断裂。
实验数据处理:根据实验记录的金属丝形变量和弹簧秤读数,可以绘制出金属丝的受力-形变曲线。
根据胡克定律的线性关系,可以通过线性拟合得到金属丝的弹性模量。
实验结果:通过实验测量和数据处理,得到金属丝的弹性模量为XXX GPa。
根据实验结果,可以得出金属丝具有较高的强度和抗变形能力,适用于承受大荷载的工程应用。
实验讨论:1. 实验误差分析:在实验过程中,由于实验条件和操作技巧等因素的影响,可能会导致实验结果存在一定误差。
例如,金属丝的初始长度测量可能存在一定误差,弹簧秤读数的精度也会影响实验结果的准确性。
2. 实验改进方案:为了提高实验结果的准确性,可以采取以下改进措施:提高测量仪器的精度、增加数据采集的次数、进行多次重复实验并取平均值等。
3. 实验应用展望:金属丝的弹性模量是材料力学性质的重要指标,对于工程设计和材料选择具有重要意义。
拉伸法测弹性模量 实验报告

大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节实验名称 拉伸法测弹性模量教师评语实验目的与要求:1. 用拉伸法测定金属丝的弹性模量。
2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。
3. 学会处理实验数据的最小二乘法。
主要仪器设备:弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器实验原理和内容: 1. 弹性模量一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。
单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。
有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即ll∆=E S F 其中的比例系数ll SF E //∆=称为该材料的弹性模量。
性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。
实验中测定E , 只需测得F 、S 、l 和l ∆即可, 前三者可以用常用方法测得, 而l ∆的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。
2. 光杠杆原理光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。
当金属丝被拉长l ∆以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为01n n n -=∆。
Δn 与l ∆呈正比关系, 且根据小量忽略及图中的相似几何关系, 可以得到n Bbl ∆⋅=∆2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到nb D FlBE ∆=28π(式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。
拉伸法测弹性模量实验报告

2.1拉伸法测弹性模量一、实验目的:(1)学习用拉伸法测量弹性模量的方法(2)掌握螺旋测微计和读数显微镜的使用(3)练习用逐差法处理数据二、实验原理(1)弹性模量及其测量方法长度为L、截面积为S的均匀细金属丝,沿长度方向受外力F后伸长δL。
单位横截面积上的垂直作用力F/S称为正应力,金属丝的相对伸长δL/L称作线应变。
实验得出,在弹性形变范围内,正应力与线应变成正比,即胡克定律:F S =EδLL式中比例系数E=F/S δL/L称作材料的弹性模量,表征材料本身的性质。
弹性模量越大的材料,要使它发生一定的相对型变所需的单位横截面积上的作用力也越大。
E的单位是Pa。
本实验测量钢丝的弹性模量,设钢丝的直径为D,则弹性模量可进一步表示为:E=4FL πD2δL实验中的测量方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F,测出钢丝相应的伸长量δL,即可求出E。
钢丝长度L用钢尺测量,钢丝直径用螺旋测微计测量,力F由砝码的重力F=mg求出。
δL一般很小,约0.1mm量级,本实验用读数显微镜测量(也可用光杠杆等其它方法测量)。
通过多次测量并用逐差法处理数据达到减少随机误差的目的。
(2)逐差法处理数据本实验中测量10组数据,分成前后两组,对应项相减得到5个l i,l i=5δL,则:δL=15×5y i+5−y i5i=1这种方法称为逐差法。
其优点是充分利用了所测数据,可以减少测量的随机误差,也可以减少测量仪器带来的误差。
三、实验仪器支架:用以悬挂被测钢丝;读数显微镜:用以较准确的测量微小位移。
由物镜和测微目镜构成。
测微目镜鼓轮上有100分格,鼓轮转动一圈,叉丝移动1mm。
故分度值为0.01mm;底座:用以调节钢丝铅直;钢尺、螺旋测微计:测量钢丝的长度和直径。
四、实验步骤(1)调整钢丝竖直:钢丝下夹具上应先挂砝码钩,用以拉直钢丝。
调节底座螺钉使夹具不与周围支架碰蹭。
(2)调节读数显微镜:粗调显微镜高度,使之与钢丝下夹具的标记线同高,再细调读数显微镜。
用拉伸法测量金属丝的杨氏弹性模量实验报告

用拉伸法测量金属丝的杨氏弹性模量实验报告拉伸法测量金属丝的杨氏弹性模量实验报告
实验原理:
拉伸实验是指将弹性样品整体承受一直拉力F,而其同时受轴向拉力T的拉伸实验,
通过测量拉伸实验的样品的拉伸变形量,推知其伸长量与轴向荷载(T)之比,这一比值
就是杨氏弹性模量。
实验仪器和装置:
本实验使用的仪器和装置是:电子称、压迫力传感器、拉伸脉冲式扭矩传感器、电动
改变中心距、实验平台以及拉伸测量系统。
实验环境:
实验环境稳定,温度、湿度均在20℃时,室温保持在25℃以下,湿度保持在50%以下;光照明亮,可使测量精度更高。
实验方法:
1.选取合格的金属丝样品,将金属丝在两个支点上受上力,其中间部分悬空放置,应
用拉伸传感器,将力传感器的正负极接线联接到拉伸测量系统,以便测量拉伸时的变形量;
2.调节力传感器的拉伸力,测量金属丝在拉伸情况时的杨氏弹性模量;
3.如果所测量金属丝中受力跨度较短,可以适当增加测量力的大小,控制其变形量,
以测得最终结果;
4.在做精度处理时,应按试验标准及要求的容差,采取逐渐迭代的原则做精确的测量,充分检验该样品的杨氏弹性模量;
5.最后,将实验最终结果和测得的参数对比,进行分析,得出金属丝的杨氏弹性模量
大小,从而完成此次实验。
实验结论:
本次实验以拉伸法测量金属丝的杨氏弹性模量,由于采用了拉伸测量仪器和设备,对
金属丝进行严格控制,从而极大提高测量精度,最终杨氏弹性模量结果达到设计要求。
拉伸法测_实验报告

一、实验目的1. 掌握拉伸法测定材料弹性模量的原理和方法。
2. 了解实验过程中误差的来源及处理方法。
3. 培养学生严谨的科学态度和实验操作技能。
二、实验原理弹性模量(E)是衡量材料弹性变形能力的重要物理量。
根据胡克定律,在弹性范围内,应力(σ)与应变(ε)成正比,即σ = Eε。
其中,E为材料的弹性模量,σ为应力,ε为应变。
本实验采用拉伸法测定材料的弹性模量。
实验中,通过测量材料在拉伸过程中受到的拉力(F)和对应的伸长量(ΔL),以及材料的初始长度(L0)和截面积(S0),根据公式 E = (FΔL) / (S0ΔL0) 计算出材料的弹性模量。
三、实验仪器与材料1. 实验仪器:- 拉伸试验机:用于施加拉力,测量材料的伸长量。
- 螺旋测微计:用于测量材料的截面积。
- 米尺:用于测量材料的初始长度。
- 光杠杆:用于放大测量微小伸长量。
- 标尺:用于读取光杠杆放大后的伸长量。
2. 实验材料:- 标准金属丝:用于测定弹性模量。
四、实验步骤1. 将金属丝固定在拉伸试验机的夹具上,确保金属丝与拉伸方向一致。
2. 使用螺旋测微计测量金属丝的初始截面积(S0)。
3. 使用米尺测量金属丝的初始长度(L0)。
4. 将金属丝的一端固定在光杠杆的支架上,另一端固定在标尺上。
5. 调整光杠杆,使光杠杆与标尺垂直。
6. 在金属丝的另一端施加拉力,逐渐增加拉力,同时观察光杠杆的偏转角度。
7. 当光杠杆偏转角度达到一定值时,停止增加拉力,保持拉力不变。
8. 记录光杠杆偏转角度和对应的伸长量。
9. 重复上述步骤,至少进行三次实验,以减小误差。
10. 根据实验数据,计算金属丝的弹性模量。
五、实验数据与处理1. 记录实验数据,包括金属丝的初始截面积(S0)、初始长度(L0)、拉力(F)、伸长量(ΔL)和光杠杆偏转角度。
2. 根据公式 E = (FΔL) / (S0ΔL0) 计算出金属丝的弹性模量。
3. 分析实验数据,判断实验结果的可靠性。
杨氏弹性模量的测定实验报告

杨氏弹性模量的测定实验报告一、实验目的1、学习用拉伸法测定金属丝的杨氏弹性模量。
2、掌握用光杠杆法测量微小长度变化的原理和方法。
3、学会使用望远镜、标尺、螺旋测微器等测量长度的仪器。
4、学会用逐差法处理实验数据。
二、实验原理1、杨氏弹性模量杨氏弹性模量是描述固体材料抵抗形变能力的物理量。
设金属丝的原长为$L$,横截面积为$S$,在外力$F$ 的作用下伸长量为$\Delta L$,根据胡克定律,在弹性限度内,应力($F/S$)与应变($\Delta L/L$)成正比,其比例系数即为杨氏弹性模量$E$,数学表达式为:$E =\frac{F \cdot L}{S \cdot \Delta L}$2、光杠杆原理光杠杆装置由一个平面镜及固定在其一端的三足支架组成,三足尖构成等腰三角形。
当金属丝伸长时,光杠杆的后足随之下降,平面镜绕前足转动一个微小角度$\theta$,从而使反射光线偏转一个较大的角度$2\theta$。
通过望远镜和标尺可以测量出标尺像的位移$n$,设光杠杆前后足间距为$b$,镜面到标尺的距离为$D$,则有:$\Delta L =\frac{n \cdot b}{2D}$将上式代入杨氏弹性模量的表达式,可得:$E =\frac{8FLD}{S\pi d^2 n b}$其中,$d$ 为金属丝的直径。
三、实验仪器杨氏模量测定仪、光杠杆、望远镜及标尺、螺旋测微器、游标卡尺、砝码、米尺等。
四、实验步骤1、调节仪器(1)调节杨氏模量测定仪底座的水平调节螺丝,使立柱铅直。
(2)将光杠杆放在平台上,使平面镜与平台垂直,三足尖位于同一水平面,且三足尖与平台的接触点构成等边三角形。
(3)调节望远镜,使其与光杠杆平面镜等高,且望远镜光轴与平面镜中心等高。
然后通过望远镜目镜看清十字叉丝,再将望远镜对准平面镜,调节目镜和物镜,直至能在望远镜中看到清晰的标尺像。
(4)调节标尺的位置,使其零刻度线与望远镜中十字叉丝的横线重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连理工大学
大 学 物 理 实 验 报 告
院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 5 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节
实验名称 拉伸法测弹性模量
教师评语
实验目的与要求:
1. 用拉伸法测定金属丝的弹性模量。
2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。
3. 学会处理实验数据的最小二乘法。
主要仪器设备:
弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器
实验原理和内容: 1. 弹性模量
一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。
单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。
有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即
l
l
∆=E S F 其中的比例系数
l
l S
F E //∆=
称为该材料的弹性模量。
性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。
实验中测定E , 只需测得F 、S 、l 和l ∆即可, 前三者可以用常用方法测得, 而l ∆的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。
2. 光杠杆原理
光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。
当金属丝被拉长l ∆以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为01n n n -=∆。
Δn 与l ∆呈正比关系, 且根据小量忽略及图中的相似几何关系, 可以得到
n B
b
l ∆⋅=
∆2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到
n
b D FlB
E ∆=
2
8π (式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。
)
根据上式转换, 当金属丝受力F i 时, 对应标尺读数为n i , 则有
28n F bE D lB
n i i +⋅=
π
可见F 和n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量E 。
. 用望远镜和标尺测量间距B :
已知量: 分划板视距丝间距p , 望远镜焦距f 、转轴常数δ
用望远镜的一对视距丝读出标尺上的两个读数N1、N2, 读数差为ΔN 。
在几何关系上忽略数量级差别大的量后, 可以得到
N p f x ∆=
, 又在仪器关系上, 有x=2B , 则N p f B ∆⋅=21 , (100=p
f
)。
由上可以得到平面镜到标尺的距离B 。
步骤与操作方法:
1.组装、调整实验仪器
调整平面镜的安放位置和俯仰角度以确保其能够正常工作。
调整望远镜的未知,使其光轴与平面镜的中心法线同高且使望远镜上方的照门、准星及平面镜位于同一直线上。
调节标尺,使其处于竖直位置。
通过望远镜的照门和准星直接观察平面镜,其中是否课件标尺的像来确定望远镜与平面镜的准直关系,以保证实验能够顺利进行。
调节望远镜,使其能够看清十字叉丝和平面镜中所反射的标尺的像,同时注意消除视差。
2.测量
打开弹性模量拉伸仪,在金属丝上加载拉力(通过显示屏读数)
当拉力达到10.00kg时,记下望远镜中标尺的刻度值n1,然后以每次1.00kg增加拉力并记录数据,直到25.00kg止。
用钢尺单次测量钢丝上下夹头之间的距离得到钢丝长度l。
用卡尺测量或者直接获得光杠杆常数b。
用望远镜的测距丝和标尺值,结合公式计算出尺镜距离B。
用螺旋测微器在不同位置测量钢丝直径8次(注意螺旋测微器的零点修正)
数据记录与处理:
以下是实验中测得的原始数据:
1.钢丝的长度 L=401.2 mm
2.钢丝的直径
(其中螺旋测微器的零点漂移值Δ=-0.01mm 已包含)
3.由望远镜测得的差丝读数 N1=4
4.8mm N2=63.8mm
4.光杠杆常数(实验室给出)b=(±)mm
5.钢丝加载拉力及对应的标尺刻度
未加载拉力时,标尺读数为 n0=53.4mm
结果与分析:
钢丝长度测量值的不确定度为 Δi=0.5mm, 钢丝长度为 l=±0.5mm
平均值= mm
D i -D avg= (ΔD i )^2=
Sum=
n=8 v=7
Sd _avg= 平均值的实验标准差 t = Ua=*Sd mm Ub= mm U D= 修约后的U D = mm
D 的最终值
D= ± mm
尺镜距离B
N1= mm N2=
mm N Δ=N2-N1=
mm Δi=
mm ΔN 的最终值= ±
mm
N p
f
B ∆=21=
mm
B 的最终值 B=± mm 光杠杆常数b= ± mm
将加载拉力数据和相应的标尺读数转化为 F 以N 为单位, n i 以m 为单位, 得到如下
对上表数据进行 处理, 使用MLS
X avg = Y avg =
n 1 2 3 4 5 6 7 8 X i -X avg Δx i ^2 Δx i *y i
n 9 10 11 12 13 14 15 16 X i -X avg Δx i ^2 Δx i *y i
SUM((x i -x avg )*y i )= SUM((x i -x avg )^2)=
B= *10-5
A=
由以上数据可得: 0534.010*25665.95
+=-i i F n , 即k=*10-5
F 与ni 的关系图及其二乘法线性回归如下图所示:
结合以上有关数据, 可以得到
下面计算E 的相关不确定度: 相关量的值及其不确定度如下:
又已知
2222)()2()()(b
U
D U B U L U
E U b D B L E +++= 代入相关已知数据, 可以得到U E =, 修约后为U E =3*109
得到E 的最终结果为 E= ±*1011
Pa
讨论、建议与质疑:
1.光杠杆的测量原理为以下两个性质的组合:绝对光路可逆原理,几何上的相似三角形性质。
它
利用光传播的直线性、可逆性,使人眼通过望远镜观测到的标尺读数(长度)与钢丝的型变量,在几何上通过相似三角形的关系联系起来,另外通过平面镜的反射性质,又再次将型变量在之前的基础上放大至两倍,综上起到放大微小变化量的结果。
放大倍数与光杠杆常数b,尺镜距离B有关(可以认为与这两者比例B/b成正比关系)。
当系统给定的光杠杆常数b固定时,在可读数的范围内增加尺镜距离B,可以增大放大倍率从而提高尺镜法测量微小变化量的灵敏度。
2.在实验中测量一个物理量,需要综合考虑测量的方便程度和该物理量所需的精密程度。
在平衡
这两者的基础上选择合适的实验仪器,因此在实验中,不同的物理量是用不同的测量仪器来测量的。
实验中测量误差最大的值为钢丝的长度,因为钢尺量程不够,是用两把钢尺重叠的方法测量,在读数时会造成钢尺位移;另外该物理量仅测量一次,都会造成产生较大的误差。
改进建议是是用较大量程的钢尺进行测量。
3.本实验的操作过程并不复杂,但是将微观尺度的化学键作用同宏观的金属丝形变联系起来,体
现了物理学上用宏观体现微观性质的一种思想;另外实验中所是用的光杠杆尺镜测量法也提供了一种微小变量的较精确测量方法,值得学习和借鉴。
实验中的感受是,事先预习实验内容,操作时细心、稳当,都是保证实验快速成功的条件。
4.对本实验的改进是,在加载力控制盒上加自动卸载的装置,比如在内部注射器的活塞杆上套
弹簧,当弹簧限位被解除时,便可以自动将拉力卸载(类似于千斤顶的卸载开关),这样能够方便地将拉力卸载到较小的符合值,而不用手动拉活塞杆。