2021年中考数学热点专题复习:例析线段和差倍分问题的求解策略
证题技巧之三——证明线段或角的和差倍分(推荐文档)

证题技巧之三一一证明线段或角的和差倍分一、证明线段或角的倍分1、方法:①长(或大)折半 ②短(或小)加倍2、判断:两种方法有时对同一个题都能使用,但存在易繁的问题,因此,究竟是折半还是加倍要以有利于利用已知条件为准。
3、添线:①为折半或加倍而添;②为折半或加倍后创造条件或利于利用已知条件而添。
4、传递:在加倍或折半后,还不易或不能证明结论,则要找与被证二量有等量关系的量来传递,或者添加这个量来传递。
此时,添 线从两方面考虑:①造等量②为证等量与被证二量相等而添。
参考例4、例5、例6。
例1 AD 是^ ABC 的中线,ABEF 和ACGH 是分别以AB 和AC 为边向形外作的正方形。
求证:FH=2AD/ BAC+ / ACN=180证明:延长AD 至N 使AD=DN则ABNC 是平行四边形CN=AB=FA AC=AH又/ FAH+ / BAC=180 •••△ FAHY NCA ••• FH=AN例 2、△ ABC 中,/ B=2 / C ,AD 是高,M 是BC 边上的中点。
$•••1求证:DM=2 AB/ 2=Z B •••/ 2=2Z 1•••/ 1 = / DNM 又 AN=DN=ND • DM=2 A B1贝J BFAC••• BF=AE•••△ AEC 心 BFD •DF 二CE 二 CD=2CE作业:1、在△ABC 中,D 为BC 的中点,E 为AD 的中点,BE 的延长 1线交AC 于F ,求证:AF=2 FC2、AB 和AC 分别切© O 于B 和C, BD 是直径。
求证/ BAC 二Z CBD3、圆内接△ ABC 的AB=AC ,过C 作切线交AB 的延长线于D , DE 垂直于AC 的延长线于E 。
求证:BD=2CE例4从平行四边形的钝角顶点 A 向BC 边作垂线,垂足为E ,证明:取AB 的中点N ,连接MN 、DN贝J MN // AC / 1 = / C••• DM=DN例 3 △ ABC 中,AB=AC , E 是AB 的中点,D 在AB 的延长线上,且 DB=AC 。
线段的和差倍分问题的证明

ABE DC线段的和差倍分问题的证明证明线段的倍分问题: 一、运用定理法即直接或间接运用某些涉及线段和差倍分关系的定理或推论进行证明。
此类定理和推论有:三角形中位线定理;梯形中位线定理;直角三角形30°的锐角所对的直角边等于斜边的一半;直角三角形斜边上的中线等于斜边的一半。
例1 如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 中点. 求证:DM =21AB 二、比例线段法即找出与所证明有关的比例式,通过对比例式进行变形或重新组合,从而得出线段之间的和差倍分关系。
例2 如图,在△ABC 中,BD 是∠B 的平分线,△ABD 的外接园交BC 于E ,若AB =21AC , 求证:CE =2AD 。
对应练习1、已知:如图所示,点D 、E 分别是等边ABC ∆的边AC 、BC 上的点,AD=CE ,BD 、AE 交于点P ,AE BQ ⊥于Q .求证:PB PQ 21=.2、如图所示,在ABC ∆中,AB=AC ,︒=∠90BAC ,BE 平分ABC ∠,交AC 于D ,BE CE ⊥于E 点,求证:BD CE 21=. Q A DP C B E AEADF3、已知:如图所示,锐角ABC ∆中,C B ∠=∠2,BE 是角平分线,BE AD ⊥,垂足是D .求证:AC=2BD .4、如图,在ABC ∆中,延长BC 到D ,使CD=2BC ,E 在AC 上,且AE=2EC ,D 的延长线交AB 于F ,求证:EF DE 27=二、割补法证明线段的和差问题:这是证明线段的和差倍分问题的一种重要方法。
即通过“分割”或“添补”的形式,在相关线段或其延长线上构造一线段,使之能够表示几条线段的和差倍分关系,从而将多线段问题转化为两线段问题。
在证明线段的和差倍分关系时,往往通过添辅助线,构造出能表示线段的和差倍分关系的线段,促使问题的转化。
但在添加辅助线之前一定要结合题意和图形深入分析,想一想,图形中是否已经存在能表示有关线段和差倍分关系的线段,否则乱添加辅助线只能把图形复杂化,使思路步人歧途。
线段与角的和差倍分计算

线段与角的和差倍分计算
在几何学中,我们经常遇到线段与角之间的和、差和倍分计算问题。
这些计算方法是为了帮助我们更好地理解图形的性质和关系。
本文将详细
介绍线段与角之间的和、差和倍分计算方法。
一、线段的和、差计算
1.线段的和计算:给定线段AB和线段BC,我们需要计算出两个线段
的和,即线段AB+BC。
计算方法是将线段AB和BC的长度相加,即AB+BC。
2.线段的差计算:给定线段AB和线段BC,我们需要计算出两个线段
的差,即线段AB-BC。
计算方法是将线段AB的长度减去线段BC的长度,
即AB-BC。
二、角的和、差计算
1.角的和计算:给定角α和角β,我们需要计算出两个角的和,即
角α+角β。
计算方法是将两个角的度数相加,即α+β。
2.角的差计算:给定角α和角β,我们需要计算出两个角的差,即
角α-角β。
计算方法是将角α的度数减去角β的度数,即α-β。
三、线段与角的倍分计算
1.线段的倍分计算:给定线段AB,我们需要计算出线段AB的一半或
一四分之一的长度。
计算方法是将线段AB的长度除以2或4,即AB/2或AB/4
2.角的倍分计算:给定角α,我们需要计算出角α的一半或一四分
之一的度数。
计算方法是将角α的度数除以2或4,即α/2或α/4
以上是线段与角的和、差和倍分计算的基本方法。
在实际应用中,我们还可以利用一些几何定理和性质来简化计算,例如角的补角、互补角和对应角等关系。
巧用线段图,解决“和倍”问题,让“和倍”问题不再难解——和倍问题解答技巧

巧用线段图,解决“和倍”问题,让“和倍”问题不再难解—
—和倍问题解答技巧
和倍问题是已知两个数的和与这两个数的倍数关系来求这两个数是多少。
它与差倍问题一样由于思维方法不符合孩子的思维特点去,使问题变得比较困难,如果结合线段图来理解。
就会变简单易想了。
例题:学校将360本书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两个年级各分得多少本?
例题:小宁有圆珠笔芯30枝,小青有圆珠笔芯15枝,问小青把多少枝给小宁后,小宁的圆珠笔芯是小青的8倍?
从例题分析可以看出,和倍问题只要找准和与其对应的倍数,就可以求1倍数,解决这类使学生感觉困难的题目了。
那么如果三个量之间存在着倍数关系呢?根据题意画图试试
试一试:已知鸡、鸭、鹅共1210只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各多少只?。
线段和、差、倍、分的几种证明方式

线段和、差、倍、分的几种证明方式谢群峰【期刊名称】《数学学习》【年(卷),期】2003(000)006【摘要】线段的和、差、倍、分在几何证明中比较灵活 ,在解决问题中常用到的方法有 :截长法、补短法、加倍法、折半法等等 .1 .所谓截长法是指在较长的线段上截取一段等于其它两条线段中的一段 ,然后再证明截后所余线段等于两线段中的另一段 .所谓补短法即延长两线段中较短的一条 ,使其等于较短线段中的另一条 ,然后证明延长后所得的线段等于较长的线段 .以上两种方法常常用来解决两条线段的和、差等于另一条线段的问题 .例 1 如图 ,已知△ABC中,∠A =2∠B ,CD平分∠ACB .求证 :BC =AC +AD .证明 :(截长法 )在CB上截取CE =CA .∵CD平分∠ACB ,∴∠ACD =∠DCE .又∵CD =CD ,∴△ACD≌△ECD .∴∠A =∠CED ,AD=DE .∵∠A =2∠B ,∴∠CED =2∠B .∵∠CED =∠ 1 +∠B ,∴∠ 1 =∠B .∵EB =ED=AD .∴CE +BE =CA +AD .即BC =AC +AD .如用“补短法”如何证 ?大家试一试 !例 2 △ABC中,∠A =90°,AB =AC ,∠C的平分线交AB于D ,求证 :BC =AC+AD .分析 :...【总页数】3页(P)【作者】谢群峰【作者单位】海南省那大二中【正文语种】中文【中图分类】G63【相关文献】1.线段和差倍分的证法 [J], 支其韶2.平面几何中线段“和差倍分”问题的证明 [J], 倪建荣;3.线段和差倍分的证法 [J], 支其韶;4.关于线段和、差、倍、分关系的证明 [J], 冼词学5.线段和差倍分的证法 [J], 支其韶;因版权原因,仅展示原文概要,查看原文内容请购买。
探究线段的和、差、倍、分是平面几何中常见的问题,“截

探究线段的和、差、倍、分是平面几何中常见的问题,“截长补短法”是解决这一类问题的常用方法,“截长”就是将题中的某条线段截成题中的几条线段之和;“补短”就是将题中某条线段延长(补上某线段),然后,证明它与题中某条线段相等。
例1.如图Rt△ABC中,∠A=90°,AB=AC,∠ABC的平分线交AC于D.求证:AD+AB=BC.分析:要证明AD+AB=BC.根据BD是∠ABC的平分线,可借助角平分线的性质,在BC 上构造一条线段等于AB,另一条线段等于AD即可。
为此,可作DE⊥BC.证法1:DE⊥BC,垂足于E.∵DB是∠ABC的平分线,DA⊥AB,∴DA=DE,AB=EB,又∵AB=AC,∴∠C=45°,∴ED=CE,∴BC=BE+CE=AB+AD.补短法也可以证明。
证法2:如图2,延长BA到F,使AF=AD,连结DF.∵DA⊥AB,∴∠FAC=90°,∵AF=AD,∴∠F=45°,同理∠C=45°,∴∠F=∠C,∵∠FBD=∠CBD,BD=BD,∴△FBD≌△CBD,∴FB=BC,∵FB=BA+FA=BA+AD,∴AD+AB=BC评注:证明一条线段等于两条线段之和,一般有截长法或补短法两种变式1:△ABC中,∠A=108°,AB=AC,∠ABC的平分线交AC于D.求证:BC=AB+CD变式2: △ABC中,∠A=100°,AB=AC,∠ABC的平分线交AC于D.求证:BC=BD+AD(同学们仿照例题,中、课后思考完成)“一题多解”有利于锻炼学生思维的灵活性,活跃思路,让学生能根据题目给出的已知条件,并结合自身情况,灵活地选择解题切入点.“一题多解”有利于培养学生的创新思维,使学生不满足仅仅得出一道习题的答案,而去追求更独特、更快捷的解题方法。
“一题多解”有利于学生积累解题经验,丰富解题方法,学会如何综合运用已有的知识不断提高解题能力。
线段和差倍分问题

线段和差倍分问题
思路点拨
两点入手分析:1看已知易得出哪些线段的长;2把所求的线段由图写成其它线段的和倍差分的形式记算。
一.经典题型
1.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB 上一个动点,当PC+PD的和最小时,求pb的长度。
2如图,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF直线上的一点,则求PA+PB的最小值。
3如下左图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.
(将军饮马问题)
二.实战演练
1.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则求BM+MN的最小值。
2.已知A(-2,3),B(3,1),P点在x轴上,若PA+PB长度最小,则求最小值。
二.拓展思维
1在一条直线m上,求一点P,使PA-PB的差最大;
(1)1)点A、B在直线m同侧:
(2)点A、B在直线m异侧:。
_线段及角的和差倍分计算

_线段及角的和差倍分计算线段及角的和、差、倍分计算时,根据不同的题目要求,可以运用基本的数学运算进行计算。
以下是线段及角的和差倍分计算的详细说明。
一、线段的和差倍分计算:1.线段的和计算:线段的和是指将两个线段进行相加得到结果。
当计算线段的和时,需要保持两条线段的方向和位置不变。
例如,设线段AB的长度为a,线段BC的长度为b,则线段AB和线段BC的和为线段AC,即a+b=AC。
2.线段的差计算:线段的差是指将两个线段进行相减得到结果。
当计算线段的差时,需要保持两条线段的方向和位置不变。
例如,设线段AB的长度为a,线段BC的长度为b,则线段AB和线段BC的差为线段AC,即a-b=AC。
3.线段的倍分计算:线段的倍分计算是指将一条线段等分为若干段。
当计算线段的倍分时,需要确定等分的份数,然后计算每一段的长度。
例如,将线段AB等分为n段,每一段的长度为x,则线段AB的长度a可以表示为:a = nx。
二、角的和差倍分计算:1.角的和计算:角的和是指将两个角度进行相加得到结果。
当计算角的和时,需要保持两个角的位置和旋转方向不变。
例如,设角度A的度数为a°,角度B的度数为b°,则角度A和角度B的和为角度C,即a°+b°=C°。
2.角的差计算:角的差是指将两个角度进行相减得到结果。
当计算角的差时,需要保持两个角的位置和旋转方向不变。
例如,设角度A的度数为a°,角度B的度数为b°,则角度A和角度B的差为角度C,即a°-b°=C°。
3.角的倍分计算:角的倍分计算是指将一个角度等分为若干份。
当计算角的倍分时,需要确定等分的份数,然后计算每一份的度数。
例如,将角度A等分为n份,每一份的度数为x°,则角度A的度数a可以表示为:a = nx°。
以上是线段及角的和差倍分计算的基本步骤和原理。
在实际应用中,可以根据具体的题目要求,灵活运用这些计算方法进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年中考数学热点专题复习:例析线段和差倍分问题的求解策略在几何问题中,要证明一条线段是另外几条线段的和差,或是另一线段的几倍或几分之几,我们统称为线段的和差倍分问题,处理这类问题的指导思想是化归为线段的相等问题.
一、利用全等形或相似形
对于线段的倍分问题,通常可利用图形中特殊的分点为解题的突破口,找出图形中较短线段的倍分线段,再用全等三角形证明它与较长线段相等,或围绕特殊分点对应线段所在三角形寻找相似三角形,利用相似形对应线段的比例关系达到求证的目的.例1如图1,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD =45°,AD与BE交于点F,连CF.
(1)求证:BF=2AE;
(2)若CD=2,求AD的长.
分析由图形的对称性,不难发现点E为AC的中点,即AC=2AE,故问题(1)只要证明BF=AC.
(2)略.
例2如图2,点A、B、C、D在⊙O上,AC⊥BD于点E,过点O作OF⊥BC于点F.
(1)求证:△AEB∽△OFC;
(2)AD=2OF.
二、取长补短法
对于线段的和差问题,通常采用延长较短线段或截取较长线段的方式,化归为线段的相等问题(俗称取长补短法).
例3 如图3,已知点A、B、C、D顺次在⊙O上,且AB=BD,BM⊥AC于点M,求证:AM=CD+CM.
证明(延长法)
延长DC至点N,使CN=C M,下面只要证明AM=DN即可.连BN,则由AB=BD,得
∠ACB=∠ADB=∠BAD=∠BCN,
又CN=CM,BC为公共边,
例4 如图4,在菱形ABCD中,F为BC边的中点,DF与对角线AC交于点M,过点M作ME⊥CD于点E,∠1=∠2.
(1)若CE=1,求BC的长;
(2)求证:AM=DF+ME.
解 (1)略;(2)证法1(截取法)
如图4,连BD 交AC 于点O ,分别证明AO =DF ,OM =ME 即可.
证法2(延长法)
如图5,延长DF 至点N ,使FN =ME ,只要证AM =DN 即可.
连CN 、MB .同证法1可得△BCD 为正三角形,M 是正△BCD 的中心.
三、几何变换法
用几何变换法证明线段的和差倍分问题,实质上是利用几何变换将线段移动,使较短线段在适当的位置进行“集中”,使隐含的数量关系明显化,从而达到证明的目的. 例5 如图6,⊙O 外接于正方形ABCD ,P 为劣弧AD 上任意一点,求证:PA PC PB
+恒为定值,并求出此定值.
证明 当P 与A 重合时,易知 2PA PC AC PB AB
+==;
一般情况下,可将△ABP绕点B顺时针旋转90°,得△CBQ,则
综上,无论P为劣弧AD上哪一点,PA PC
PB
恒为定值2,得证.
例6 如图7,在四边形ABCD中,AB∥CD,E为BC边的中点,F在DC边的延长线上,且∠BAE=∠EAF,求证:AB=AF+CF.
解将△ABE绕点E顺时针旋转180°,得到△GCE,则由AB∥CD、E为BC边的中点知点G在DC的延长线上.。