ANSYS— 弹性平面问题、振动模态分析
ANSYS模态分析教程及实例讲解

ANSYS模态分析教程及实例讲解ANSYS是一款常用的有限元分析软件,可以用于执行结构分析、热分析、流体分析等多种工程分析。
模态分析是其中的一项重要功能,用于计算和分析结构的固有振动特性,包括固有频率、振型和振动模态,可以帮助工程师了解和优化结构的动态响应。
以下是一份ANSYS模态分析教程及实例讲解,包含了基本步骤和常用命令,帮助读者快速上手模态分析。
1.创建模型:首先需要创建模型,在ANSYS界面中构建出待分析的结构模型,包括几何形状、材料属性和边界条件等。
可以使用ANSYS的建模工具,也可以导入外部CAD模型。
2.网格划分:在模型创建完毕后,需要进行网格划分,将结构划分为小的单元,使用ANSYS的网格划分功能生成有限元网格。
网格划分的细腻程度会影响分析结果的准确性和计算时间,需要根据分析需要进行合理选择。
3.设置材料属性:在模型和网格创建完毕后,需要设置材料属性,包括弹性模量、密度和材料类型等。
可以通过ANSYS的材料库选择已有的材料属性,也可以自定义材料属性。
4.定义边界条件:在模型、网格和材料属性设置完毕后,需要定义结构的边界条件,包括约束和加载条件。
约束条件是指结构受限的自由度,例如固定支撑或限制位移;加载条件是指施加到结构上的载荷,例如重力或外部力。
5.运行模态分析:完成前面几个步骤后,就可以执行模态分析了。
在ANSYS中,可以使用MODAL命令来进行模态分析。
MODAL命令需要指定求解器和控制选项,例如求解的模态数量、频率范围和收敛准则等。
6.分析结果:模态分析完成后,ANSYS会输出结构的振动特性,包括固有频率、振型和振动模态。
可以使用POST命令查看和分析分析结果,例如绘制振动模态或振动模态的频率响应。
下面是一个实际的案例,将使用ANSYS执行模态分析并分析分析结果。
案例:矩形板的模态分析1.创建模型:在ANSYS界面中创建一个矩形板结构模型,包括矩形板的几何形状和材料属性等。
ANSYS模态分析

ANSYS模态分析ANSYS模态分析是一种用于计算和研究结构的振动和模态的仿真方法。
它可以帮助工程师和设计师了解结构在自由振动模态下的响应,从而优化设计和改进结构的性能。
本文将对ANSYS模态分析的原理和应用进行详细介绍。
ANSYS模态分析基于动力学理论和有限元分析。
在模态分析中,结构被建模为一个连续的弹性体,通过求解结构的固有频率和模态形状来研究其振动行为。
固有频率是结构在没有外力作用下自由振动的频率,而模态形状则是结构在每个固有频率下的振动形态。
模态分析可以帮助工程师了解结构在特定频率下的振动行为。
通过分析结构的固有频率,可以评估结构的动态稳定性。
如果结构的固有频率与外部激励频率非常接近,可能会导致共振现象,从而对结构造成破坏。
此外,模态分析还可以帮助识别结构的振动模态,并评估可能的振动问题和改进设计。
1.准备工作:首先,需要创建结构的几何模型,并进行必要的网格划分。
在几何模型上设置适当的约束条件和边界条件。
选择合适的材料属性和材料模型。
然后设置分析类型为模态分析。
2.计算固有频率:在模态分析中,需要计算结构的固有频率。
通过求解结构的特征值问题,可以得到结构的固有频率和模态形状。
通常使用特征值求解器来求解特征值问题。
3.分析结果:一旦得到结构的固有频率和模态形状,可以进行进一步的分析和评估。
在ANSYS中,可以通过模态形状的可视化来观察结构的振动模态。
此外,还可以对模态形状进行分析,如计算应力、变形和应变等。
ANSYS模态分析在许多领域都有广泛的应用。
在航空航天工程中,模态分析可以用于评估飞机结构的稳定性和航空器的振动特性。
在汽车工程中,可以使用模态分析来优化车身结构和减少共振噪音。
在建筑工程中,可以使用模态分析来评估楼房结构的稳定性和地震响应。
总之,ANSYS模态分析是一种重要的结构动力学仿真方法,可以帮助工程师和设计师了解结构的振动特性和改善设计。
通过模态分析,可以预测共振问题、优化结构设计、提高结构的稳定性和性能。
ANSYS-模态分析 介绍

模态分析总论
• 运动学基本方程: }+ [C]{u }+ [K ]{u} = {F(t )} [M ]{ u • 假定自由振动并忽略阻尼:
}+ [K ]{u} = {0} [M ]{ u
2
Training Manual
DYNAMICS 11.0
• 假定谐波形式响应 (u = U sin( ωt ) )
其它分析选项
• 集中质量矩阵:
– –
Training Manual
DYNAMICS 11.0
主要用于细长梁或薄壳,或者波传播问题; 对 PowerDynamics 法,自动选择集中质量矩阵。 用于计算具有预应力结构的模态(以后讨论)。 阻尼仅在选用阻尼模态提取法时使用; 可以使用阻尼比α阻尼和β阻尼; 对BEAM4 和 PIPE16 单元,允许使用陀螺阻尼。
Training Manual
第二章 模态分析
模态分析总论
Training Manual
DYNAMICS 11.0
• 模态分析用来确定结构的振动特性的一种技术:
– 固有频率 – 振型 – 模态参与因子(结构振型在给定方向的参与程度)
• 是其他动力学分析的起点和基础.
模态分析总论
• 模态分析工程应用
DYNAMICS 11.0
子空间法
Training Manual
DYNAMICS 11.0
• 子空间法 :比较适合于提取类似中型到大型 模型的较少的振型 (<40)
– 需要相对较少的内存; – 实体单元和壳单元应当具有较好的单元形状,要对 任何关于单元形状的警告信息予以注意; – 在具有刚体振型时可能会出现收敛问题; – 建议在具有约束方程时不要用此方法。
ANSYS平面问题实际例题分析讲解-PPT

理论值 ANSYS 比值 值
PLANE 中部最大 42(4节 应力 点)
固定端最 大应力
57、 56、 457MPa 24MPa
51、 49、 073MPa 3MPa
0、979 0、965
PLANE 中部最大 82(8节 应力 点)
固定端最 大应力
57、
57、
1、004
457MPa 666MPa
51、 51、 1、000 073MPa 083MPa
Preprocessor > Solution >Analysis Type > New Analysis,
ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load Step window) →OK
上机报告要求白底; 要求作业名为自己得名字; 要求图清晰,排版清楚。
1、定义作业名
ANSYS Utility Menu: File →Change Title
2、如何查有限元模型得单元数与节点数
ANSYS Utility Menu: Utility Menu →List →Picked Entities+
input NDIV:6 →Apply →拾取短边得两条线→OK → input NDIV:1 →OK
3、划分网格 6)划分网格
Mesh Tool →Mesh : select Areas→ Shape:Quad→Free → Mesh → Pick All
→Close( the Mesh Tool window)
3、划分网格 1)定义单元类型
3、划分网格 2)定义实常数(厚度)
ANSYS— 弹性平面问题、振动模态分析

ANSYS ——有限元分析弹性平面问题、振动模态分析1、弹性平面问题1、1.题目一:(见图一所示)图1已知条件:1.5a m =,0.4c m =,0.5d m =,6/q kN m =,5F kN =;1、1.1解题的总体思路由于单元体是一个300×140的,为了方便计算,采用直接建模法,先创建一个30×14的单元体结构,在挖去15×4的单元,建立如下模型(见图二所示)图2并且对模型进行加载和约束,左边为固定端约束,右下角为端约束。
荷载分别为均布荷载和一个集中力荷载。
1、1.2运行结果此节只显示运行的结果和简单的解释,详细的命令见1、1.3节命令流中各个命令的注解。
1、各个节点的位移和扭矩主要列举了具有代表意义的节点,由于节点有15×31个,所以只列出约束处的节点的位移和扭矩。
只列出了31节点的位移,其他约束处的位移都为0 结果显示出:Ux=0.017236mm Uy=0mm2、受力后与受力前变形图(放大)【见图3所示】图33、X方向的变形图【见图4所示】图44、Y方向的变形图【见图5所示】图55、内力图【见图6所示】图6结论:节点31处是最容易收到破坏的,因此再设计时应注意此处的设计。
1、1.3命令流/PREP7N,1,0,0!确定第一个节点N,31,300,0!确定第31个节点FILL,1,31!在1到31节点中插入节点NGEN,15,31,1,31,1,0,10!复制上述节点15行,每行间距为10ET,1,PLANE42!常量的设置MP,EX,1,200E9MP,NUXY,1,0.3E,1,2,33,32 !创建第一个单元EGEN,30,1,1 !复制1到31个单元的建立EGEN,14,31,1,30 !所有的单元创建EDELE,151,165 !下面都是挖去中间的面EDELE,181,195EDELE,211,225EDELE,241,255NDELE,187,201NDELE,218,232NDELE,249,263FINISH!退出预处理/SOLU !求解ANTYPE,STATICOUTPR,BASIC,ALLD,1,ALL,0 !右端面的约束D,32,ALL,0D,63,ALL,0D,94,ALL,0D,125,ALL,0D,156,ALL,0D,280,ALL,0D,311,ALL,0D,342,ALL,0D,373,ALL,0D,404,ALL,0D,435,ALL,0D,31,UY,0 !右下角的节点31约束SFE,406,3,PRES,,6000,6000!均布荷载的加载SFE,407,3,PRES,,6000,6000SFE,408,3,PRES,,6000,6000SFE,409,3,PRES,,6000,6000SFE,410,3,PRES,,6000,6000SFE,411,3,PRES,,6000,6000SFE,412,3,PRES,,6000,6000SFE,413,3,PRES,,6000,6000SFE,414,3,PRES,,6000,6000SFE,415,3,PRES,,6000,6000SFE,416,3,PRES,,6000,6000SFE,417,3,PRES,,6000,6000SFE,418,3,PRES,,6000,6000SFE,419,3,PRES,,6000,6000SFE,420,3,PRES,,6000,6000F,248,FX,5000!集中力的加载SOLVE !求解FINISH/POST1 !进入后处理PRDISP !得出各个节点的位移PLDISP,1!受理前后的变形图的比较PLNSOL,U,X !x方向的变形图PLNSOL,U,Y !Y方向的变形图PLESOL,S,EQV!内力图FINISH注:黑体字为注解。
ANSYS模态分析教程及实例讲解解析

ANSYS模态分析教程及实例讲解解析ANSYS是一个广泛应用于工程领域的有限元分析软件,可以用于各种结构的模态分析,包括机械结构、建筑结构、航空航天结构等。
模态分析是通过计算结构的固有频率和振动模态,用于评估结构的动力特性和振动响应。
以下是一个ANSYS模态分析的教程及实例讲解解析。
一、教程:ANSYS模态分析步骤步骤1:建立模型首先,需要使用设计软件绘制或导入一个几何模型。
然后,在ANSYS中选择适当的单元类型和材料属性,并创建适当的网格。
确保模型的几何形状和尺寸准确无误。
步骤2:约束条件在进行模态分析之前,需要定义适当的约束条件。
这些条件包括固定支持的边界条件、约束点的约束类型、约束方向等。
约束条件的选择应该与实际情况相符。
步骤3:施加载荷根据实际情况,在模型上施加适当的载荷。
这些载荷可以是静态载荷、动态载荷或谐振载荷,具体取决于所要分析的问题。
步骤4:设置分析类型在ANSYS中,可以选择多种不同的分析类型,包括静态分析、模态分析、动态响应分析等。
在进行模态分析时,需要选择模态分析类型,并设置相应的参数。
步骤5:运行分析设置好分析类型和参数后,可以运行分析。
ANSYS将计算结构的固有频率和振动模态。
运行时间取决于模型的大小和复杂性。
步骤6:结果分析完成分析后,可以查看和分析计算结果。
ANSYS将生成包括固有频率、振动模态形态、振动模态形状等在内的结果信息。
可以使用不同的后处理技术,如模态形态分析、频谱分析等,对结果进行更详细的分析。
二、实例讲解:ANSYS模态分析以下是一个机械结构的ANSYS模态分析的实例讲解:实例:机械结构的模态分析1.建立模型:使用设计软件绘制机械结构模型,并导入ANSYS。
2.约束条件:根据实际情况,将结构的一些部分设置为固定支持的边界条件。
3.施加载荷:根据实际应用,施加恰当的静态载荷。
4.设置分析类型:在ANSYS中选择模态分析类型,并设置相应的参数,如求解方法、迭代次数等。
ANSYS入门——模态分析步骤与实例详解

ANSYS入门——模态分析步骤与实例详解模态分析是ANSYS中的一项重要功能,它用于分析结构的模态特性,如固有频率、模态形态、振型等。
下面将详细介绍ANSYS中模态分析的步骤与实例。
1.准备工作:在进行模态分析前,首先需要完成模型的几何建模、模型的网格划分、边界条件的设定和材料属性的定义等准备工作。
2.设置分析类型:在ANSYS中,可以使用分析类型工具条或命令行指令设置分析类型。
对于模态分析,可以选择"Modal"。
选中“Modal”选项后,会弹出新窗口,用于设置分析的参数。
可以设置计算的模态数目、输出结果的范围、频率的单位等。
3.定义约束条件:在模态分析中,需要定义结构的约束条件,以模拟实际情况。
常见的约束条件有固定支撑、自由边界、对称几何等。
可以使用ANSYS中的约束条件工具条或命令行指令进行定义。
4.定义激励条件:在模态分析中,可以定义激励条件,以模拟结构在特定频率下的振动情况。
常见的激励条件有振动源、压力载荷、重力载荷等。
可以使用ANSYS中的激励条件工具条或命令行指令进行定义。
5.执行分析:完成上述设置后,点击分析工具条中的“运行”按钮,开始执行模态分析。
ANSYS会根据所设定的参数进行计算,并输出相应的结果。
6.结果展示与分析:模态分析完成后,可以查看分析结果并进行进一步的分析。
ANSYS会输出各模态下的固有频率、模态振型、模态质量、模态参与度等信息。
接下来,我们以一个简单的悬臂梁的模态分析为例进行详解。
1.准备工作:在ANSYS中绘制悬臂梁的几何模型,并进行网格划分。
设定材料属性、加载条件和边界条件。
2.设置分析类型:在ANSYS主界面上选择“Workbench”,然后点击“Ana lysis Systems”工具条中的“Modal”选项。
3.定义约束条件:设置悬臂端点的约束条件为固定支撑。
可以使用ANSYS中的“Fixed Support”工具进行设置。
4.定义激励条件:在此示例中,我们只进行自由振动分析,不设置激励条件。
ANSYS模态分析教程及实例讲解

结构动态特性的改善方法
增加结构阻尼
通过增加结构阻尼,可以有效地吸收和消耗振动能量,减小结构 的振动幅值和响应时间。
优化结构布局
通过合理地布置结构的质量、刚度和阻尼分布,可以改善结构的动 态特性,提高结构的稳定性和安全性。
加强关键部位
对于关键部位,应加强其刚度和稳定性,以减小其对整体结构的振 动影响。
ansys模态分析教程及实例讲解
目 录
• 引言 • ANSYS模态分析基础 • ANSYS模态分析实例 • 模态分析结果解读 • 模态分析的优化设计 • 总结与展望
01 引言
ห้องสมุดไป่ตู้
目的和背景
01
了解模态分析在工程领域的应用 价值,如预测结构的振动特性、 优化设计等。
02
掌握ANSYS软件进行模态分析的 基本原理和方法。
挑战
未来模态分析面临的挑战主要包括处理大规模复杂结构 、模拟真实环境下的动力学行为以及提高分析的实时性 。随着结构尺寸和复杂性的增加,如何高效地处理大规 模有限元模型和计算海量数据成为亟待解决的问题。同 时,为了更准确地模拟实际工况下的结构动力学行为, 需要发展更加逼真的边界条件和载荷条件设置方法。此 外,提高模态分析的实时性对于一些实时监测和反馈控 制的应用场景也具有重要的意义。
模态分析基于振动理论,将复杂结构系统分解为若干个独立的模态,每个模态具有 特定的固有频率和振型。
模态分析可以帮助工程师了解结构的动态行为,预测结构的振动响应,优化结构设 计。
模态分析的步骤
建立模型
施加约束
求解
结果分析
根据实际结构建立有限 元模型,包括几何形状、 材料属性、连接方式等。
根据实际工况,对模型 施加约束条件,如固定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS ——有限元分析弹性平面问题、振动模态分析1、弹性平面问题1、1.题目一:(见图一所示)图1已知条件:1.5a m =,0.4c m =,0.5d m =,6/q kN m =,5F kN =;1、1.1解题的总体思路由于单元体是一个300×140的,为了方便计算,采用直接建模法,先创建一个30×14的单元体结构,在挖去15×4的单元,建立如下模型(见图二所示)图2并且对模型进行加载和约束,左边为固定端约束,右下角为端约束。
荷载分别为均布荷载和一个集中力荷载。
1、1.2运行结果此节只显示运行的结果和简单的解释,详细的命令见1、1.3节命令流中各个命令的注解。
1、各个节点的位移和扭矩主要列举了具有代表意义的节点,由于节点有15×31个,所以只列出约束处的节点的位移和扭矩。
只列出了31节点的位移,其他约束处的位移都为0 结果显示出:Ux=0.017236mm Uy=0mm2、受力后与受力前变形图(放大)【见图3所示】图33、X方向的变形图【见图4所示】图44、Y方向的变形图【见图5所示】图55、内力图【见图6所示】图6结论:节点31处是最容易收到破坏的,因此再设计时应注意此处的设计。
1、1.3命令流/PREP7N,1,0,0!确定第一个节点N,31,300,0!确定第31个节点FILL,1,31!在1到31节点中插入节点NGEN,15,31,1,31,1,0,10!复制上述节点15行,每行间距为10ET,1,PLANE42!常量的设置MP,EX,1,200E9MP,NUXY,1,0.3E,1,2,33,32 !创建第一个单元EGEN,30,1,1 !复制1到31个单元的建立EGEN,14,31,1,30 !所有的单元创建EDELE,151,165 !下面都是挖去中间的面EDELE,181,195EDELE,211,225EDELE,241,255NDELE,187,201NDELE,218,232NDELE,249,263FINISH!退出预处理/SOLU !求解ANTYPE,STATICOUTPR,BASIC,ALLD,1,ALL,0 !右端面的约束D,32,ALL,0D,63,ALL,0D,94,ALL,0D,125,ALL,0D,156,ALL,0D,280,ALL,0D,311,ALL,0D,342,ALL,0D,373,ALL,0D,404,ALL,0D,435,ALL,0D,31,UY,0 !右下角的节点31约束SFE,406,3,PRES,,6000,6000!均布荷载的加载SFE,407,3,PRES,,6000,6000SFE,408,3,PRES,,6000,6000SFE,409,3,PRES,,6000,6000SFE,410,3,PRES,,6000,6000SFE,411,3,PRES,,6000,6000SFE,412,3,PRES,,6000,6000SFE,413,3,PRES,,6000,6000SFE,414,3,PRES,,6000,6000SFE,415,3,PRES,,6000,6000SFE,416,3,PRES,,6000,6000SFE,417,3,PRES,,6000,6000SFE,418,3,PRES,,6000,6000SFE,419,3,PRES,,6000,6000SFE,420,3,PRES,,6000,6000F,248,FX,5000!集中力的加载SOLVE !求解FINISH/POST1 !进入后处理PRDISP !得出各个节点的位移PLDISP,1!受理前后的变形图的比较PLNSOL,U,X !x方向的变形图PLNSOL,U,Y !Y方向的变形图PLESOL,S,EQV!内力图FINISH注:黑体字为注解。
就是每一行的意思1、2.题目二图7已知条件:c md mF kN=。
=,7=,0.50.8=,0.4a m=,0.4b m1、2.1解题的总体思路图形的建模与上面的模型类似,思路也相同,只是荷载不同,还有就是要挖去两块而已。
其采用的都是直接建模。
【模型如图8所示】图8并且对模型进行加载和约束,左边为固定端约束。
荷载为两个集中力荷载。
1、1.2运行结果此节只显示运行的结果和简单的解释,详细的命令见1、1.3节命令流中各个命令的注解。
1、受力后与受力前变形图(放大)【见图9所示】图9 2、X方向的变形图【见图10所示】图10 3、Y方向的变形图【见图11所示】图11 4、内力图【见图12所示】图12结论:最容易受到破坏的是左端面和右上角。
所以在设计时应注意这两处的设计,防止被破坏。
1、2.3命令流UNITS,SI/PREP7N,1,0,0 !确定第一个节点N,29,2800,0 !确定第29个节点FILL,1,29NGEN,15,29,1,29,1,0,100ET,1,PLANE42MP,EX,1,200E9MP,NUXY,1,0.3E,1,2,31,30EGEN,28,1,1EGEN,14,29,1,28EDELE,145,152EDELE,173,180EDELE,201,208EDELE,229,236EDELE,157,164EDELE,185,192EDELE,213,220EDELE,241,248NDELE,180,186NDELE,209,215NDELE,238,244NDELE,192,198NDELE,221,227NDELE,250,256FINISH/SOLUANTYPE,STATICOUTPR,BASIC,ALLD,1,ALL,0D,30,ALL,0D,59,ALL,0D,88,ALL,0D,117,ALL,0D,146,ALL,0D,175,ALL,0D,204,ALL,0D,233,ALL,0D,262,ALL,0D,291,ALL,0D,320,ALL,0D,349,ALL,0D,378,ALL,0D,407,ALL,0F,174,FX,7000F,435,FX,7000SOLVE/POST1PRDISPPLDISP,1PLNSOL,U,XPLNSOL,U,YPLESOL,S,EQVFINISH注:命令流的意思和1、1.3中的命令流的意思一样,只是在节点和挖去的部分中的一小区别而已,在这里不做解释,可以参照1、1.3中注解理解建模的过程和求解过程。
2、振动模态分析2、1.题目三【见图13】图13已知条件:梁属性:2742,0.003,0.05, 6.2510L m A m h m I m -====⨯总长度 材料属性:3207,0.33,7800/E GPa kg m νρ=== 质量块:15M kg =,在梁中心位置。
2、1.1解题的总体思路这是一个振动模态分析。
首先建立一个简支梁模型,并加荷载【模型如图14所示】图14其中约束条件:左边为固定端约束,右边为端约束。
2、1.1运行结果此节只显示运行的结果和简单的解释,详细的命令见2、2.3节命令流中各个命令的注解。
1、该模型的固有频率。
【具体见表格1所示】图15 3、二阶的模态振型。
【见图16所示】图16 4、三阶的模态振型。
【见图17所示】图174、三阶的模态振型。
【见图18所示】图18 其中*表示质量的集中点1、2.3命令流/UNITS,SI/PREP7!进入前处理ET,1,BEAM3!定义单元类型ET,2,MASS21,,,4R,1,0.003,6.25E-7,0.05!常量横截面积的输入R,2,5!质量和杆长的输入MP,EX,1,207E9!弹性模量MP,NUXY,1,0.33!泊松比MP,DENS,1,7800!密度N,1,0,0!关键点,节点1N,21,2,0!关键点,节点21FILL,1,21!在1——21中插入节点TYPE,1MAT,1REAL,1E,1,2!连接节点1、2EGEN,20,1,1,1,1!所有的节点连接起来TYPE,2REAL,2E,11!质量集中点/SOLUANTYPE,MODALMODOPT,REDUCMXPAND,5D,1,ALL,0!约束节点1,固定端约束D,21,UY,0!约束节点1,端约束M,2,UY,21,1SOLVE!求解FINISH!退出/POST1SET,LIST!列出前五阶固有频率SET,1,1!一阶的模态振型PLDISPSET,1,2!二阶的模态振型PLDISPSET,1,3!三阶的模态振型PLDISPSET,1,4!四阶的模态振型PLDISPFINISH注:黑体字为注解。
就是每一行的意思10。