列管式换热器设计步骤

合集下载

列管式换热器设计步骤

列管式换热器设计步骤

列管式换热器设计步骤1.确定换热要求:首先确定需要处理的流体类型、温度、流量和所需的换热效率。

这些参数将指导后续设计过程。

2.选择适当的管壳材料:根据流体的特性和工作温度范围,选择合适的材料来制造管壳,确保其耐腐蚀性和耐高温性。

3.确定热负荷和传热系数:计算需要传递的热负荷,并根据传热系数的公式计算出换热器所需的传热面积。

4.确定流体模式和换热方式:根据流体的性质和流量,确定流体在换热器中的流动模式(并行流、逆流或交叉流)。

此外,还需要确定热量传递的方式(对流、辐射或对流辐射耦合)。

5.确定管束布局:根据热负荷和流体流量,确定管束的布局和排列方式。

典型的布局包括单排管束、多排管束、螺旋管束等。

6.计算管壳侧传热系数:根据流体模式和管壳的几何形状,通过经验公式或计算方法计算出管壳侧的传热系数。

7.设计管束:根据换热器的尺寸和传热面积,设计合适的管束。

这涉及到确定管道的直径、长度和布局,以及管板的尺寸和孔眼的布置。

8.选择适当的传热介质:根据流体类型和工况要求,选择合适的传热介质,例如水、蒸汽、空气或其他流体。

根据传热介质的性质,确定其流速和温度范围。

9.设计支承和固定方式:确定适当的支承和固定方式,以确保换热器的稳定性和可靠性。

这包括支架的设计、支柱的安装和管束的固定方法。

10.进行热力学分析:通过进行热力学分析,确定换热过程中的压力损失和流体流速。

这将有助于确定流体的流动行为和整个热交换系统的性能。

11.进行结构强度分析:进行结构强度分析,确保换热器能够承受压力和温度的影响,并满足相关的安全标准和规范。

12.完善设计并制作图纸:根据上述步骤和计算结果,对列管式换热器的设计进行改进和完善,并制作相应的图纸和技术文件。

13.进行设备加工和制造:根据设计图纸,进行设备的加工和制造。

这包括制作管子、管板、支管、支撑件等组件,并对其进行加工和组装。

14.进行设备安装与调试:将制造好的换热器安装到系统中,并进行相关的调试和测试,以确保其正常运行。

列管式换热器的设计与计算

列管式换热器的设计与计算

列管式换热器的设计与计算设计步骤如下:第一步:确定换热器的需求首先需要明确换热器的设计参数,包括流体的性质、流量、进出口温度、压力等。

这些参数将在后续的计算中使用。

第二步:选择合适的换热器型号根据设计参数和换热需求,选择合适的列管式换热器型号。

常见的型号包括固定管板式、弹性管板式、钢套铜管式等。

第三步:计算表面积根据流体的热传导计算表面积。

换热器的表面积是根据热传导定律计算得到的,公式为:Q=U×A×ΔT,其中Q为换热量,U为传热系数,A为表面积,ΔT为温差。

根据这个公式,可以计算出所需的表面积。

第四步:确定管子数量和尺寸根据所需的表面积和型号,确定换热器中管子的数量和尺寸。

根据流体的流速和换热需求,计算出每根管子的长度和直径。

第五步:确定管板和管夹的尺寸根据管子的尺寸,确定管板和管夹的尺寸。

管板和管夹是固定管子的重要部分,负责把管子固定在换热器中,保证流体的正常流动。

第六步:确定换热器的材质和厚度根据流体的性质和工作条件,确定换热器的材质和厚度。

常见的材质有不锈钢、碳钢、铜等。

通过计算流体的温度、压力和腐蚀性等参数,选择合适的材质和厚度。

第七步:校核换热器的强度对换热器的强度进行校核。

根据国家相关标准和规范,对换热器的强度进行计算和验证,确保其能够承受工作条件下的压力和温度。

第八步:制定施工方案和图纸根据设计结果,制定换热器的施工方案和详细图纸。

包括换热器的总体布置,管子的连接方式,焊接和安装步骤等。

上述是列管式换热器的设计步骤,下面将介绍列管式换热器的计算方法。

首先,需要计算流体的传热系数。

传热系数的计算包括对流传热系数和管内传热系数两部分。

对于对流传热系数,可以使用已有的经验公式或经验图表进行估算。

对于管内传热系数,可以使用流体的性质和流速等参数进行计算。

其次,根据传热系数和管子的尺寸,计算管子的传热面积。

管子的传热面积可以根据管子的长度和直径进行计算。

然后,根据热传导定律,计算换热器的传热量。

化工原理课程设计 列管式换热器

化工原理课程设计 列管式换热器

化工原理课程设计列管式换热器设计要求:设计一个列管式换热器,实现两种不同温度的流体之间的热量传递。

设计要求如下:1. 列管式换热器采用直管式结构,热传导介质为水和油;2. 设计流量分别为水流量 Q1 = 500 L/h,油流量 Q2 = 300 L/h;3. 设计温度分别为水的进口温度 T1i = 80℃,油的进口温度T2i = 120℃;4. 确定水的出口温度 T1o 和油的出口温度 T2o;5. 选择合适的换热器材料,确保换热效果良好;6. 根据设计参数计算所需的换热面积 A 和换热效率η。

设计方案:1. 确定管径和管长:首先根据水和油的流量和温度差,计算所需的换热面积。

然后确定换热器的尺寸,其中包括管径和管长。

2. 选择换热器材料:根据换热介质的性质和工作条件,选择合适的换热器材料,例如不锈钢。

3. 计算出口温度:根据热平衡原理,计算水和油的出口温度。

假设换热器满足热平衡条件,即水的热量损失等于油的热量增加。

4. 计算换热面积:根据换热器的尺寸和热传导方程,计算所需的换热面积。

5. 计算换热效率:根据热平衡原理和换热器的热传导性能,计算换热效率。

实施步骤:1. 根据设计流量和温度差,计算所需的换热面积。

假设水和油的传热系数均为常数,可以使用换热传导方程进行计算。

2. 根据所需的换热面积和理论计算值,选择合适的换热器尺寸。

3. 根据所选换热器材料,计算换热器的尺寸和管径。

假设管壁温度近似等于流体温度。

4. 根据热平衡原理,计算出口温度。

假设热平衡条件满足,即水的热量损失等于油的热量增加。

5. 根据所选材料和尺寸,计算换热效率。

假设换热器的热传导系数为常数,使用换热效率计算公式进行计算。

总结:本课程设计主要针对列管式换热器的设计,通过选择合适的换热器材料和计算换热器的尺寸,实现了水和油之间的热量传递。

根据设计要求,通过计算出口温度和换热效率,验证了设计方案的合理性。

设计过程需要考虑多方面的因素,如流体性质、流量和温度差等。

列管式换热器设计

列管式换热器设计

列管式换热器设计列管式换热器是一种常见的换热设备,广泛应用于化工、石油、制药等行业中。

本文将从列管式换热器的设计原理、设计步骤和设计考虑因素三个方面进行详细介绍。

一、设计原理列管式换热器是通过管内的换热流体和管外的换热流体之间的换热传递来实现热量的传递。

它的基本原理是利用换热流体在管内和管外的对流,通过管壁的传导传热作用,使热量从高温流体传递给低温流体。

二、设计步骤1.确定换热器的使用条件:包括换热流体的性质、入口温度、出口温度等。

2.确定换热器的换热面积:根据换热流体的热负荷和传热系数来计算所需的换热面积。

3.选择管子的尺寸和材料:根据换热流体的性质和流量来选择合适的管子尺寸和材料。

4.确定管子的数量和布置方式:根据换热面积和换热流体的流量来确定管子的数量和布置方式,一般采用多行多列的方式。

5.设计管束的尺寸:根据换热面积和管子的数量来确定管束的尺寸,包括管束的直径、长度和布置方式等。

6.计算换热器的传热系数:根据换热面积、流体的性质和传热方式来计算换热器的传热系数。

7.计算换热器的压降:根据流体的流量、管束的阻力和流体的性质来计算换热器的压降。

8.进行换热器的热力学计算:包括换热器的热力学效率、有效传热面积和温差效益等。

三、设计考虑因素1.热负荷:根据换热流体的热负荷来确定换热器的换热面积和管子的数量。

2.材料选择:根据换热流体的性质和工艺要求来选择合适的材料,包括管子的材料和管壳的材料。

3.温度差:根据换热流体的温度差来确定管束的数量和换热器的传热系数。

4.流体压降:根据流体的流量和管束的阻力来计算换热器的压降,并确定合适的管束布置方式和管束的尺寸。

5.清洗和维护:考虑到换热器的清洗和维护,要选择易于清洗和维护的结构设计。

综上所述,列管式换热器的设计是一个复杂的工程,需要考虑多个因素。

设计者需要根据具体的使用条件和要求来确定换热器的换热面积、管子的尺寸和材料、管束的数量和布置方式等。

同时,还需要计算换热器的传热系数、压降和热力学参数等。

化工原理课程设计_列管式换热器

化工原理课程设计_列管式换热器

iii 列管式换热器的设计和选用的计算步骤总结
设有流量为mh的热流体,需从温度T1冷却至T2,可用的冷 却介质入口温度t1,出口温度选定为t2。由此已知条件可 算出换热器的热流量Q和逆流操作的平均推动力。根据传 热速率基本方程
Q KAtm
当Q和△tm已知时,要求取传热面积A必须知K,则是由传热面积A的大小 和换热器结构决定的。可见,在冷、热流体的流量及进、出口温度皆已 知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。
冷流体 水 水 水 水 水 气体 水 水 水沸腾 轻油沸腾 重油沸腾
传热系数 K/(W· m² · K-1)
850~1700 340~910 60~280 17~280 1420~4250 30~300 455~1140 60~170 2000~4250 455~1020 140~425
2、平均温度差
Ps ——壳程总阻力损失,
P0
——流过管束的阻力损失,
——流过折流板缺口的阻力损失, Fs-壳程阻力结垢校正系数,对液体可取Fs=1.15, 对气体或可凝蒸汽取Fs=1.0;
Ns-壳程数;
管束阻力损失 折流板缺口阻力损失
NB —— 折流板数目;
NTc——横过管束中心的管子数
对于三角形排列的管束,
③接管尺寸
换热器中流体进、出口的接管直径按下式计算
Vs--流体的体积流量,m3/s; u --接管中流体的流速,m/s。
流速u的经验值为: 对液体:u=1.5~2 m/s; 对蒸汽:u=20~50 m/s; 对气体:u=(15~20)p/ρ; 式中p为压强,单位为atm ; ρ为气体密度,单位为kg/m3
5、流体出口温度的确定
若换热器中冷、热流体的温度都由工艺条件所规定,则不存在 确定流体两端温度的问题。若其中一流体仅已知进口温度,则

列管式换热器设计步骤

列管式换热器设计步骤

(Φ219×6mm,长200mm)
2020/11/8
第32页
山东轻工业学院
3、冷凝水排出口
➢选用水煤气管 1 1 "

2

原 理
Φ42.25×3.25mm,长100mm



2020/11/8
第33页
山东轻工业学院
七、校核流体压力降
➢ 管程总压力降
ห้องสมุดไป่ตู้

➢ 壳程压力降
工 原
壳程是饱和水蒸汽冷凝,
理 教
d 4V
u

研 室
➢选用无缝热轧钢管(YB231-64) (Φ150×4.5mm,长200mm)
2020/11/8
第31页
2、水蒸汽进口管径
山东轻工业学院
➢ 蒸汽用量
GQ10.03 —富裕量3%
r
➢蒸汽体积流量 V=Gν
化 工
➢取蒸汽流速u’=20 m/s

理 教 研
D1
4V
u '
室 ➢选用无缝热轧钢管(YB231-64)
2020/11/8
第22页
山东轻工业学院
(1)管内对流传热系数α2
20.02d3R0.e8P0.r4 被加热
化 工 原 理
Re du

研 室
Pr CP
2020/11/8
第23页
山东轻工业学院
(2)管外对流传热系数α1
1 0.725
r2g3
2
0.25
n3d0 t


➢n为水平管束垂直列上的管数
第16页
山东轻工业学院
(4)管间距及排列方式

列管式换热器的设计

列管式换热器的设计

列管式换热器的设计列管式换热器的应用已有很悠久的历史。

现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中,列管式换热器仍处于主导地位。

同时板式换热器也已成为高效、紧凑的换热设备,大量地应用于工业中。

为此本章对这两类换热器的工艺设计进行介绍。

列管式换热器的设计资料较完善,已有系列化标准。

目前我国列管式换热器的设计、制造、检验、验收按“钢制管壳式(即列管式)换热器”(GB151)标准执行。

列管式换热器的设计和分析包括热力设计、流动设计、结构设计以及强度设计。

其中以热力设计最为重要。

不仅在设计一台新的换热器时需要进行热力设计,而且对于已生产出来的,甚至已投人使用的换热器在检验它是否满足使用要求对,均需进行这方面的工作。

热力设计指的是根据使用单位提出的基本要求,合理地选择运行参数,并根据传热学的知识进行传热计算。

流动设计主要是计算压降,其目的就是为换热器的辅助设备——例如泵的选择做准备。

当然,热力设计和流动设计两者是密切关联的,特别是进行热力计算时常需从流动设计中获取某些参数。

结构设计指的是根据传热面积的大小计算其主要零部件的尺寸,例如管子的直径、长度、根数、壳体的直径、折流板的长度和数目、隔板的数目及布置以及连接管的尺寸,等等。

在某些情况下还需对换热器的主要零部件——特别是受压部件做应力计算,并校核其强度。

对于在高温高压下工作的换热器,更不能忽视这方面的工作。

这是保证安全生产的前提。

在做强度计算时,应尽量采用国产的标准材料和部件,根据我国压力容器安全技术规定进行计算或校核(该部分内容属设备计算,此处从略)。

列管式换热器的工艺设计主要包括以下内容:①根据换热任务和有关要求确定设计方案;②初步确定换热器的结构和尺寸;③核算换热器的传热面积和流体阻力;④确定换热器的工艺结构。

1.1设计方案的确定1.1.1换热器类型的选择(1)固定管板式换热器这类换热器如图2-1(a)所示。

列管式换热器设计方案

列管式换热器设计方案

列管式换热器设计方案第一节推荐的设计程序一、工艺设计1、作出流程简图。

2、按生产任务计算换热器的换热量Q。

3、选定载热体,求出载热体的流量。

4、确定冷、热流体的流动途径。

5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。

6、初算平均传热温度差。

7、按经验或现场数据选取或估算K值,初算出所需传热面积。

8、根据初算的换热面积进行换热器的尺寸初步设计。

包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。

9、核算K。

10、校核平均温度差 m T。

11、校核传热量,要求有15-25%的裕度。

12、管程和壳程压力降的计算。

二、机械设计1、壳体直径的决定和壳体壁厚的计算。

2、换热器封头选择。

3、换热器法兰选择。

4、管板尺寸确定。

5、管子拉脱力计算。

6、折流板的选择与计算。

7、温差应力的计算。

8、接管、接管法兰选择及开孔补强等。

9、绘制主要零部件图。

三、编制计算结果汇总表四、绘制换热器装配图五、提出技术要求 六、编写设计说明书第二节 列管式换热器的工艺设计一、换热终温的确定换热终温对换热器的传热效率和传热强度有很大的影响。

在逆流换热时,当流体出口终温与热流体入口初温接近时,热利用率高,但传热强度最小,需要的传热面积最大。

为合理确定介质温度和换热终温,可参考以下数据:1、热端温差(大温差)不小于20℃。

2、冷端温差(小温差)不小于5℃。

3、在冷却器或冷凝器中,冷却剂的初温应高于被冷却流体的凝固点;对于含有不凝气体的冷凝,冷却剂的终温要求低于被冷凝气体的露点以下5℃。

二、平均温差的计算设计时初算平均温差∆t m,均将换热过程先看做逆流过程计算。

1、对于逆流或并流换热过程,其平均温差可按式(2-1)进行计算:2121ln t t t t t m ∆∆∆-∆=∆ (2—1) 式中,1t ∆、2t ∆分别为大端温差与小端温差。

当221t t ∆∆时,可用算术平均值()221t t t m ∆+∆=∆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


教 研 室
Qms1r
2020/11/24
第9页
2、平均温度差Δtm
山东轻工业学院
➢ 由于水蒸汽侧的温度不变,因此可以把
两流体的平均温度差看作是逆流来计算
(双管程)


原 理 教 研
tm
t1 ln
t2 t1

t2
2020/11/24
第10页
山东轻工业学院
3、选K值,估算传热面积A初
➢ 根据条件K值在580~1160 W/m2·℃ (K= 680W/m2·℃)
上海科
研 室
学技术出版社,编写组,1980年。
2020/11/24
第43页
山东轻工业学院
十、对一些问题的说明
列管式换热器是目前化工生产中应用最
广泛的一种换热器,它的结构简单、坚
固、容易制造、材料范围广泛,处理能

力可以很大,适应性强。但在传热效率、
工 原 理
设备紧凑性、单位传热面积的金属消耗 量等方面还稍次于其他板式换热器。此
化工原理课程设计
山东轻工业学院
列管式换热器设计
2020/11/24
第1页
设计题目
山东轻工业学院
拟用200Kpa的饱和水蒸气将常压下 20℃的苯加热到80℃,
①苯的质量流量为50t/h—单号
②苯的质量流量为40t/h-双号
试设计一列管式换热器。
已 知 仓 库 中 现 有 Φ25×2.5mm, 长 6m的碳钢钢管
第16页
山东轻工业学院
(4)管间距及排列方式
➢ 管间距t=(1.25~1.3)d0 ➢ 采用三角型排列
➢ 根据总管数n”确定层数a,
化 工 原
➢ 是否弓形排管,确定NT ➢ 最外层六角形对角线上管数
理 教
NTb=2a+1
研 室
➢ 采用胀管法排列
2020/11/24
第17页
山东轻工业学院
2、壳程设计数据
2.
t1 、t2 、tm 、ρ2 、CP2 、μ2 、

λ2
工 原
2.
水蒸汽的物性数据
理 教
3.
Ts 、ρ1 、γ1
研 4.

同温度下水的物性
5.
ρ 、μ 、λ
2020/11/24
第6页
山东轻工业学院
二、换热器的类型及流体走向
➢ 卧式固定管板式换热器
➢ 水蒸汽走壳程,苯走管程

➢ 不需要进行热补偿
2020/11/24
第41页
山东轻工业学院
8. 管程进出口接管直径:选用无缝热 轧钢管(YB231-64)Φ152×4.5mm 长200mm。
9. 支座的公称直径Dg600mm,每个支

座承受的载荷为36.8吨,材料采用
工 原 理
A3F碳素钢;采用鞍形安装。(尺寸 见讲义P117图4-28b,表4-28)
化 工

Re du



➢查图可知λ


(化工原理上册P43图1-28)
2020/11/24
第37页
山东轻工业学院
八、换热器尺寸及附属部件
1. 管间距: t=32.5mm
2. 壳体直径:Φ600×10mm,内径D=
580mm
化 工 原 理
3. 壳体材料:碳素钢A3F,钢板卷焊 4. 管子尺寸:Φ25×2.5mm,L=3.0m,
第45页

理管内污垢,法兰尺寸见讲义P111-

115图4-63及表4-27。
2020/11/24
第39页
山东轻工业学院
(5)管板与分程隔板的连接:采用单层隔板,隔 板材料与封头材料一致,厚度s=10mm。(见 讲义P77表4-19)
化 工 原 理 教 研 室
2020/11/24
隔板 S 管板
S+ 2
第40页
工 原
➢ 不需要加折流挡板




2020/11/24
第7页
山东轻工业学院
三、工艺计算
1、热负荷即传热速率Q

2、平均温度差Δtm
工 原 理
3、选K值,估算传热面积A初



2020/11/24
第8页
山东轻工业学院
1、热负荷即传热速率Q
QKAtm

工 原
Q m S 2 c P 2 t 2 t 1 m S 1 c P 1 T 1 T 2


2020/11/24
第25页
山东轻工业学院
(4)校核K值 以外表面计算:
化 工
K 1d 2d 12bdm 1 dRSd d1 211


教 研
➢计算K值与原设值K初比较

使相对误差<5%
2020/11/24
第26页
山东轻工业学院
2、校核壁温TW
Q 1A T T W
化 工 原 理
TW
T
Q
1A

工➢
原 理
A' Q K初tm
教 研
➢选用安全系数Φ=1.15~1.25
室 ➢A初=ΦA’
2020/11/24
第11页
山东轻工业学院
四、换热器尺寸的初步确定
➢ 确定管程结构尺寸

➢ 壳程设计数据
工 原
➢ 换热器长径比




2020/11/24
第12页
山东轻工业学院
1、确定管程结构尺寸
➢管子规格

➢实际提供面积 Ad0Ln


理 教
➢余度
AA' 20%

A

2020/11/24
第29页
山东轻工业学院
六、进出口管径
➢苯进口管、出口管
化 工
➢水蒸汽进口管径
原 理
➢冷凝水排出口



2020/11/24
第30页
山东轻工业学院
1、苯进口管、出口管
➢ 取进口流速u1=1m/s ➢ 进口直径
化 工 原 理
d 4V
u

研 室
➢选用无缝热轧钢管(YB231-64) (Φ150×4.5mm,长200mm)
2020/11/24
第31页
2、水蒸汽进口管径
山东轻工业学院
➢ 蒸汽用量
GQ10.03 —富裕量3%
r
➢蒸汽体积流量 V=Gν
化 工
➢取蒸汽流速u’=20 m/s

理 教 研
D1
4V
u '
室 ➢选用无缝热轧钢管(YB231-64)
(Φ219×6mm,长200mm)
2020/11/24
第32页
山东轻工业学院
3、冷凝水排出口
➢选用水煤气管 1 1 "

2

原 理
Φ42.25×3.25mm,长100mm



2020/11/24
第33页
山东轻工业学院
七、校核流体压力降
➢ 管程总压力降

➢ 壳程压力降
工 原
壳程是饱和水蒸汽冷凝,
2020/11/24
第22页
山东轻工业学院
(1)管内对流传热系数α2
20.02d3R0.e8P0.r4 被加热
化 工 原 理
Re du

研 室
Pr CP
2020/11/24
第23页
山东轻工业学院
(2)管外对流传热系数α1
1 0.725
r2g3
2
0.25
n3d0 t


➢n为水平管束垂直列上的管数
教 研
次设计所采用的固定管板式换热器是其

中最简单的一种。
2020/11/24
第44页
山东轻工业学院
由于水蒸汽的对流传热系数比苯侧
的对流传热系数大得多,根据壁温
总是趋近于对流传热系数较大的一
侧流体的温度实际情况,壁温与流
化 工
体温度相差无几,因此本次设计不
原 理
采用热补偿装置。



2020/11/24
2020/11/24
第35页
山东轻工学院
➢参数说明
d i —— 管内径;
l —— 管长

Ft
—— 管程结垢校正系数, 三角形为1.5,
工 原
正方形为1.4;
理 教
N s —— 壳程数,1;
研 室
N p —— 一壳程的管程数,2 。
2020/11/24
第36页
山东轻工业学院
λ 计算
➢取ε=0.2mm,ε/d=0.01
教 研
10. 整个换热器采用卧式安装,安装图

见图纸2-1。
2020/11/24
第42页
山东轻工业学院
九、参考资料
1. 《列管式换热器及其设计》(讲义)
山东轻工业学院,《化工原理教研
室》编,1987年。
化 工
2. 《化工原理》上册
化学工

业出版社,谭天恩主编,1990年。

教 3. 《基础化学工程》
第14页
山东轻工业学院
(2)初步设计总管数
n ' A初 圆整n”

dL


理 教
n” 根———三角形排列管数,
研 室
3a2+3a+1
相关文档
最新文档