高三数学(文科)高频错题卷及答案
高三数学高频考点试卷答案

一、选择题(每题5分,共50分)1. 下列各式中,能表示函数y=3x-2的定义域的是()A. x∈RB. x≠0C. x>0D. x<0答案:A解析:函数y=3x-2是一个一次函数,其定义域为全体实数R。
2. 函数f(x)=ax^2+bx+c(a≠0)的图像是()A. 两条直线B. 一个抛物线C. 一条直线D. 一个圆答案:B解析:函数f(x)=ax^2+bx+c是一个二次函数,其图像是一个抛物线。
3. 已知函数f(x)=x^3-3x+1,求f'(x)的值。
答案:f'(x)=3x^2-3解析:对函数f(x)=x^3-3x+1求导得到f'(x)=3x^2-3。
4. 已知数列{an}的通项公式为an=2n-1,求该数列的前n项和S_n。
答案:S_n=n^2解析:数列{an}的前n项和S_n可以通过求和公式得到,即S_n=1+3+5+...+(2n-1)=n^2。
5. 已知向量a=(1,2),向量b=(2,-1),求向量a与向量b的点积。
答案:a·b=12+2(-1)=0解析:向量a与向量b的点积等于它们对应分量的乘积之和,即a·b=12+2(-1)=0。
6. 已知函数f(x)=ln(x+1),求f'(x)的值。
答案:f'(x)=1/(x+1)解析:对函数f(x)=ln(x+1)求导得到f'(x)=1/(x+1)。
7. 已知等差数列{an}的第一项a_1=3,公差d=2,求第10项a_10的值。
答案:a_10=3+92=21解析:等差数列的第n项可以通过公式a_n=a_1+(n-1)d求得,所以a_10=3+92=21。
8. 已知复数z=3+4i,求z的模|z|。
答案:|z|=5解析:复数z的模等于它的实部和虚部的平方和的平方根,即|z|=√(3^2+4^2)=5。
9. 已知直线l的方程为2x-3y+1=0,求直线l与y轴的交点坐标。
(2024年高考真题)2024年普通高等学校招生全国统一考试数学(文) 试卷 全国甲卷(含部分解析)

2024年普通高等学校招生全国统一考试 全国甲卷数学(文) 试卷养成良好的答题习惯,是决定成败的决定性因素之一。
做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。
1.集合{1,2,3,4,5,9}A =,{1}B x x A =+∈∣,则A B =( ) A.{1,2,3,4}B.{1,2,3,4}C.{1,2,3,4}D.{1,2,3,4}2.设z =,则z z ⋅=( ) A.2B.2C.2D.23.若实数x ,y 满足约束条件(略),则5z x y =-的最小值为( ) A.5B.12C.2-D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A.2-B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14 B.13 C.12D.236.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12(0,4)(0,4)F F -、,且经过点(6,4)P -,则双曲线C 的离心率是( )A.135B.137C.2D.37.曲线6()3f x x x =+在 (0,1)-处的切线与坐标轴围成的面积为( )A.16B.2 C.12D.28.函数()2()e e sin x x f x x x -=-+-的大致图像为( ) 9.已知cos cos sin ααα=-an 4πt α⎛⎫+= ⎪⎝⎭( )A.3B.1-C.3-D.1310.直线过圆心,直径11.已知m n 、是两条不同的直线,αβ、是两个不同的平面:①若m α⊥,n α⊥,则//m n ;②若m αβ=,//m n ,则//n β;③若//m α,//n α,m 与n 可能异面,也可能相交,也可能平行;④若m αβ=,n 与α和β所成的角相等,则m n ⊥,以上命题是真命题的是( )A.①③B.②③C.①②③D.①③④12.在ABC △中,内角A ,B ,C 所对边分别为a ,b ,c ,若π3B =,294b ac =,则sin sin A C +=( )A.13B.13C.2D.1313.略14.函数()sin f x x x =,在[0,π]上的最大值是_______. 15.已知1a >,8115log log 42a a -=-,则a =_______. 16.曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,则a 的取值范围为_______.17.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式; (2)求数列{} n S 的通项公式. 18.题干略.19.如图,己知//AB CD ,//CD EF ,2AB DE EF CF ====,4CD =,10AD BC ==,23AE =,M 为CD 的中点.(1)证明://EM 平面BCF ; (2)求点M 到AD E 的距离. 20.已知函数()(1)ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,1()e x f x -<恒成立.21.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点3(1,)2M 在椭圆C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)(4,0)P ,过P 的直线与椭圆C 交于A ,B 两点,N 为FP 的中点,直线NB 与MF 交于Q ,证明:AQ y ⊥轴.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)直线x ty t a =⎧⎨=+⎩(t 为参数)与曲线C 交于A 、B 两点,若||2AB =,求a 的值.23.[选修4-5:不等式选讲] 实数a ,b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试 全国甲卷数学(文)答案1.答案:A解析:因为{}1,2,3,4,5,9A =,{1}{0,1,2,3,4,8}B x x A =+∈=∣,所以{1,2,}3,4A B =,故选A. 2.答案:D解析:因为z =,所以2z z ⋅=,故选D. 3.答案:D解析:将约束条件两两联立可得3个交点:(0,1)-、3,12⎛⎫ ⎪⎝⎭和1 3,2⎛⎫⎪⎝⎭,经检验都符合约束条件.代入目标函数可得:min 72z =-,故选D.4.答案:D解析:令0d =,则9371291,,99n n S a a a a ===+=,故选D.5.答案:B解析:甲、乙、丙、丁四人排成一列共有24种可能.丙不在排头,且甲或乙在排尾的共有8种可能,81243P ==,故选B. 6.答案:C解析:12212F F ce a PF PF ===-,故选C.7. 答案:A解析:因为563y x '=+,所以3k =,31y x =-,1111236S =⨯⨯=,故选A.8.答案:B解析:选B.9. 答案:B解析:因为cos cos sin ααα=-tan 1α=,tan 1tan 141tan πααα+⎛⎫+== ⎪-⎝⎭,故选B.10.答案:直径解析:直线过圆心,直径. 11. 答案:A解析:选A. 12.答案:C 解析:因为π3B =,294b ac =,所以241sin sin sin 93A C B ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,sin sin 2A C +=,故选C.13. 答案:略解析: 14.答案:2解析:π()sin 2sin 23f x x x x ⎛⎫==-≤ ⎪⎝⎭,当且仅当5π6x =时取等号.15. 答案:64解析:因为28211315log log log 4log 22a a a a -=-=-,所以()()22log 1log 60a a +-=,而1a >,故2log 6a =,64a =.16. 答案:(2,1)-解析:令323(1)x x x a -=--+,则323(1)a x x x =-+-,设32()3(1)x x x x ϕ=-+-,()(35)(1)x x x ϕ+'=-,()x ϕ在(1,)+∞上递增,在(0,1)上递减.因为曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,(0)1ϕ=,(1)2ϕ=-,所以a 的取值范围为(2,1)-. 17.答案:见解析解析:(1)因为1233n n S a +=-,所以12233n n S a ++=-,两式相减可得:121233n n n a a a +++=-,即:2135n n a a ++=,所以等比数列{}n a 的公比53q =,又因为12123353S a a =-=-,所以11a =,153n n a -⎛⎫= ⎪⎝⎭.(2)因为1233n n S a +=-,所以()133511223nn n S a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.18.答案:见解析解析:(1)22150(70242630) 6.635965450100χ⨯-⨯=<⨯⨯⨯,没有99%的把握;(2)p p >+. 19.答案:见解析解析:(1)由题意://EF CM ,EF CM =,而CF 平面ADO ,EM 平面ADO ,所以//EM 平面BCF ;(2)取DM 的中点O ,连结OA ,OE ,则OA DM ⊥,OE DM ⊥,3OA =,OE =而AE =,故OA OE ⊥,AOE S =△因为2DE =,AD =AD DE ⊥,AOE S △DM 设点M 到平面ADE 的距离为h ,所以1133M ADE ADE AOE V S h S DM -=⋅=⋅△△,h ==,故点M到ADE 的距离为5. 20.答案:见解析解析:(1)()(1)ln 1f x a x x =--+,1()ax f x x-=,0x >. 若0a ≤,()0f x <,()f x 的减区间为(0,)+∞,无增区间; 若0a >时,当10x a <<时,()0f x '<,当1x >时,()0f x '>,所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)因为2a ≤,所以当1x >时,111e ()e (1)ln 1e 2ln 1x x x f x a x x x x ----=--+-≥-++.令1()e 2ln 1x g x x x -=-++,则11()e 2x g x x -'=-+.令()()h x g x '=.则121()e x h x x-'=-在(1,)+∞上递增,()(1)0h x h ''>=,所以()()h x g x '=在(1,)+∞上递增,()(1)0g x g ''>=,故()g x 在(1,)+∞上递增,()(1)0g x g >=,即:当1x >时,1()e x f x -<恒成立.21.答案:见解析解析:(1)设椭圆C 的左焦点为1F ,则12F F =,3||2MF =.因为MF x ⊥轴,所以152MF =,12||4a MF MF =+=,解得:24a =,2213b a =-=,故椭圆C 的方程为:22143x y +=; (2)解法1:设()11,A x y ,()22,B x y ,AP PB λ=,则12124101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,即212144x x y y λλλ=+-⎧⎨=-⎩.又由()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩可得:1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-,结合上式可得:25230x λλ-+=.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则222122335252Q y y y y y x x λλλλ===-=--,故AQ y ⊥轴.解法2:设()11,A x y ,()22,B x y ,则121244y y x x =--,即:()1221214x y x y y y -=-,所以()()()2222222211*********21213444433y x y x y x y x y x y x y y y ⎛⎫-+=-=+-+ ⎪⎝⎭()()()()212121122144y y y y y y x y x y =-+=-+,即:122121x y x y y y +=+,2112253x y y y =-.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则21212112335252Q y y y y y x y y x ===--,故AQ y ⊥轴.22.答案:(1)221y x =+ (2)34解析:(1)因为cos 1ρρθ=+,所以22(cos 1)ρρθ=+,故C 的直角坐标方程为:222(1)x y x +=+,即221y x =+;(2)将x ty t a =⎧⎨=+⎩代入221y x =+可得:222(1)10t a t a +-+-=,12||2AB t =-==,解得:34a =. 23.答案:见解析解析:(1)因为3a b +≥,所以22222()a b a b a b +≥+>+. (3)222222222222()a b b a a b b a a b a b -+-≥-+-=+-+=22222()()()()(1)6a b a b a b a b a b a b +-+≥+-+=++-≥.高考质量提升是一项系统工程,涉及到多个方面、各个维度,关键是要抓住重点、以点带面、全面突破,收到事半功倍的效果。
高三数学试卷全错题及答案

一、选择题1. 下列各式中,正确的是()A. 2√3 > 3√2B. 2^3 = 3^2C. (√2)^2 = 2D. 2^2 < 3^2答案:C解析:选项A,两边平方得12 < 18,正确;选项B,2^3 = 8,3^2 = 9,错误;选项C,(√2)^2 = 2,正确;选项D,2^2 = 4,3^2 = 9,错误。
故选C。
2. 已知函数f(x) = x^2 - 2x + 1,则f(2)的值为()A. 1B. 2C. 3D. 4答案:A解析:将x = 2代入函数f(x) = x^2 - 2x + 1,得f(2) = 2^2 - 2×2 + 1 = 1。
故选A。
3. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 60°B. 75°C. 90°D. 120°答案:B180° - ∠A - ∠B = 180° - 60° - 45° = 75°。
故选B。
4. 下列各式中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 - 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 1/6答案:C解析:选项A,1/2 + 1/3 = 3/6 + 2/6 = 5/6,正确;选项B,1/2 - 1/3 = 3/6 - 2/6 = 1/6,正确;选项C,1/2 × 1/3 = 1/6,正确;选项D,1/2 ÷ 1/3 =1/2 × 3/1 = 3/2,错误。
故选C。
5. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第10项a10的值为()A. 21B. 23C. 25D. 27答案:B解析:等差数列的通项公式为an = a1 + (n - 1)d。
全国Ⅰ卷 2020届高三文数名校高频错题卷(三)参考答案

全国Ⅰ卷·2020届高三文数名校高频错题卷(三)参考答案1.【答案】D【解答】解:,,,.故选D.2.【答案】D【解答】解:数列满足,,可得,,,,数列的周期为3,.故选D.3.【答案】A【解答】解:, ,故选:A.4.【答案】C【解答】解:由等差数列的前n项和的性质可得:,,也成等差数列,,,解得,故选C.5.【答案】D【解答】解:,当时,,不关于直线对称,选项A 错误;当时,,关于直线5=12x π对称,不关于点对称,选项B 错误;得周期,选项C 错误;当时,,在在上是增函数,选项D 正确.故选D . 6.【答案】B【解析】令,其中, 则,故,各项均为正数的等比数列,,,故.故选:B .7.【答案】B 【解析】()y f x =在定义域R 内单调递增, (),()f a ka f b kb ∴==,即2,2a be a ka e b kb +=+=,即,a b 是方程2x e x kx +=的两个不同根,∴2xe k x =+,设2(1)()2,()x x e e x g x g x x x '-=+=, ∴01x <<时,()0g x '<;1x >时,()0g x '>, ∴1x =是()g x 的极小值点,()g x ∴的极小值为:(1)2g e =+,又x 趋向0时,()g x 趋向+∞;x 趋向+∞时,()g x 趋向+∞,2k e ∴>+时,y k =和()y g x =的图象有两个交点,方程2xe k x=+有两个解,∴实数k 的取值范围是()2,e ++∞.故选:B . 8.【答案】C 9.【答案】D【解答】解:直线1:10l x my +-=过定点(1,0)A , 直线2:230l mx y m --+=即(2)3m x y -=-, 可得过定点(2,3)B ,()22132AB =+=由于1(1)0m m ⨯+⨯-=,得1l 与2l 始终垂直,又P 是两条直线的交点, PA PB ∴⊥,222||||||4PA PB AB ∴+==.由222a b ab +≥,可得2222()()a b a b +≥+, 那么2222(||||)(||||)PA PB PA PB +≥+, 即有||||2422PA PB +≤⨯=,当且仅当||||2PA PB ==时,上式取得等号, PAB ∴∆周长的最大值为222+.故选:D . 10.【答案】A 【解析】解:把三棱锥P-ABC 放在正方体中,如图所示,因为点P 到平面ABC 的距离为1,所以正方体棱长为1,三棱锥P-ABC 的外接球即此正方体的外接球,所以三棱锥P-ABC 的外接球的半径为13=2R AP =,所以三棱锥P-ABC 的外接球的表面积为243S R ππ==。
全国Ⅰ卷 2020届高三文数名校高频错题卷(八)参考答案

(2)设点 A 到面 CDE 的距离为 h
由题意可知 AE 2 DE 2
2
,
DEA
3 4
S ADE
12 2
2 2sin 3 2 4
VCADE
1 3
S
ADE
AC
4 3
BC AB2 AC2 2 2 由(1)知 BD 面 ABC BD BC
当
x (0,1] ,则不等式 ax3
x2
3x
2
0
a
x2
3x x3
2
令t
1 x
[1, )
,则
a
x2
3x x3
2
a
2t 3
3t2
t
令 h(t) 2t3 3t2 t,t [1, )
h (t) 6t2 6t 1 11 0
2
2
62
因为其图象相邻两条对称轴之间的距离为 ,所以T ,即 2 ,所以 1 .
2
2
所以 f (x) sin(2x ) 1 . 62
答案第 5 页,总 9 页
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
令 2x k (k Z ) ,即 x 1 k (k Z ) 时, f (x) 1
有兴趣
男
45
女
30
合计
75
没有兴趣 10 15 25
合计 55 45 100
由列联表中的数据可得
因为
,
所以有 90%的把握认为“对冰球是否有兴趣与性别有关”. (2)记 5 人中对冰球有兴趣的 3 人为 A、B、C,对冰球没有兴趣的 2 人为 m、n, 则从这 5 人中随机抽取 3 人,所有可能的情况为:(A, m, n),(B, m, n),(C, m, n),(A, B, m),(A, B, n),(B, C, m),(B, C ,n),(A, C, m),(A, C, n),(A,B,C),共 10 种情 况,其中 3 人都对冰球有兴趣的情况有(A,B,C),共 1 种,2 人对冰球有兴趣的情况有(A, B, m),(A, B, n),(B, C, m),(B, C ,n),(A, C, m),(A, C, n),共 6 种, 所以至少 2 人对冰球有兴趣的情况有 7 种,
全国Ⅰ卷 2020届高三文数名校高频错题卷(一)参考答案

全国Ⅰ卷 2020届高三文数名校高频错题卷(一)参考答案1.【答案】A4a +b )4a +b=30,可解a=5,b=10.2.【答案】C 【解析】由题意知所以2223cos 24a b C C ab +-==,所以,3.【答案】A【解析】试题分析:由等比数列的性质知,a 1a 2a 3,a 4a 5a 6,a 7a 8a 9成等比数列,所以a 4a 5a 6=,故答案为4.【答案】C【解析】胡夫金字塔原高为h ,, 则胡夫金字塔现高大约为136.4米.故选C .5.【答案】D 【解析】因为== -=2-1=2×()2-1=-,故选D6.【答案】C【解析】因为当x<0时,f(x)<-f(x),即()()20f x xf x '+>,令g (x )=x ²f (x ),则g (x )定义域为R ,是奇函数,当x <0时,()()()()()()2220g x xf x x f x x f x xf x '''=+=+<.所以g (x )在R 上是减函数,易知当x <0时,g (x )>0,f (x )>0,当x >0时,g (x )<0,f (x )<0,所以当x <0时,(x 2-1)f (x )<0等价于x ²-1<0,解得-1<x <0;当x >0时,(x 2-1)f (x )<0等价于x 2-1>0,解得x >1. 综上,x 的取值范围是(1,0)(1,)-⋃+∞.答案:C 7.【答案】D 【详解】根据函数()()sin f x A x ωϕ=+(可得2A =,,∴2ω=.再根据五点法作图可得数.把()f x 的图象向右平移个单位长度得到函数D .8.【答案】A 【解析】+()=+=+()=(6,8),=+=+()=+=+()=(3,4),所以=2故选A 9.【答案】C 【解析】试题分析:由程序框图知:第一次运行;第二次运行;第三次运行;第四次运行;第五次运行;第六次运行;……………;直到时,程序运行终止,∵函数是以为周期的周期函数,,又,∴若程序运行次时,输出,∴程序运行次时,输出.故选C .10.【答案】B【解析】本题考查导数与函数零点问题,考查推理论证能力与运算求解能力.由题意可知m>0.函数f (x )的零点个数即2,x y me y x ==的图象的交点个数.结合2,x y me y x ==的图象(图略)可知在()0-∞,上有且只有一个交点,则2,x y me y x==图象在(0,)+∞上有两个交点.又2x me x =(x>0)等价于x +ln m =2ln x ,即ln m =2ln x -x .记g (x )=2ln x -x ,则()'21g x x=-,令g'(x )>0,解得0<x<2,令g'(x )<0,解得x>2,从而max g(x)=g (2)=2ln2-2,故ln m <max g(x)=g (2)=2ln2-2,即0<m <24e.11.B【解析】2222112ii i i i -=--=-+Q ,因此,该复数的虚部为2,故选:B.12.【答案】D【解析】本题考查异面直线所成的角,考查空间想象能力与运算求解能力. 如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则EF//CH ,EF=CH ,从而四边形EFHC 是平行四边形,则EC//FH ,且EC=FH.因为F 是PA 的中点,G 是AB 的中点,所以FG 为△ABP 的中位线,所以FG ∥PB ,则∠GFH 是异面直线PB 与CE 所成的角.由题意可得FG=3,HG=AC=.在△PCD 中.由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯则,即CE=.在,由余弦定理可得222317cos 2172317FG FH GH CFH FG FH +-∠===⋅⨯⨯.13.【答案】c<a<b【解析】因为函数f (x )=log 2|x+m|+1为偶函数,且由|x+m|>0,得xm ,故函数f (x )=log 2|x+m|+1的定义域是(-∞,-m )U (-m ,+∞).而偶函数的定义域需关于坐标原点对称,所以-m=0,解得m=0.即f (x )=,所以a =f(()-2016)===2017,b=f()==2018, c=f (m+1)=f (1)=log 2|1|+1=0+1=1.所以c<a <b. 14. 【答案】【解析】图像关于对称.15. 【答案】【解析】本题考查等差数列,考查运算求解能力.因为n n3n+5=n+7S T 所以可设S n =kn (3n+5),T n =kn (n+7),则a 5==32k ,b 7==20k ,故= 16.【答案】750x y --=【解析】解:因为()3ln 2f x x x x =+,所以()'2ln 16f x x x =++,则()'21ln11617f =++⨯=,即曲线()y f x =在点()1,2处的切线方程是27(1)y x -=-,即750x y --=,故答案为750x y --=. 17.【答案】(1)证明:因为点E 为AD 的中点,AD=2BC ,所以AE=BC , 因为AD ∥BC ,所以AE//BC ,所以四边形ABCE 是平行四边形因为AB=BC ,所以平行四边形ABCE 是菱形,所以ACBE 因为平面BEFG ⊥平面ABCD ,且平面BEFG 平面ABCD=BE ,所以AC ⊥平面BEFG ,因为AC ⊆平面ACF ,所以平面ACF ⊥平面BEFG(2)解:记AC ,BE 的交点为O ,连接OF. 由(1)可知AC 平面BEFG ,则AC ⊥OF因为底面ABCD 是等腰梯形,AD ∥BC ,AD=2AB=2BC=4, 所以四边形ABCE 是菱形,且∠BAD=60°,则AE=CE=2,OA=OC=,从而△AEC 的面积S 1= 因为平面BEFG ⊥平面ABCD ,且四边形BEFG 为正方形,所以EF ⊥AE ,EF ⊥CE ,所以AF=CF==2,则OF==设点D 到平面ACF 的距离为h. 因为V D-ACF =V F-ACD ,所以×AC·OF·h=×2S 1·EF ,即=,解得h=故点D 到平面ACF 的距离为18.【答案】解:(1)设等比数列{a n }的公比为q.由等比数列的性质得a 4a 5=a 2a 7=128,又a 2=2,所以a 7=64. 所以公比q===2所以数列{a n }的通项公式为a n =a 2q n-2=2×2n-2=2n-1(n N*)设等差数列{b n +a n }的公差为d.由题意得,公差d=(b 2+a 2)-(b 1+a 1)=(2+×2)-(1+×1)= 所以等差数列{b n +a n }的通项公式为b n +a n =(b 1+a 1)+(n-1)d=+(n-1)·=n 所以数列{b n }的通项公式12313132222222n n n n b n a n n n --=-=-⋅=-. (2)设数列{b n }的前n 项和为T n . 由(1)知,b n =n-2n-2(n=1,2,…)记数列{n }的前n 项和为A ,数列{2n-2}的前n 项和为B ,则 A==34n(n+1),B==2n-1-12所以数列{b n }的前n 项和为T n =A-B=34n (n+1)-2n-1+12=34n 2+34n-2n-1+1219.【答案】解析:(1)因为f(x)=(3m2-2m)是幂函数,所以3m2一2m=1,解得m=1或1 m=3-,当m=1时,f(x)=,在(0,+)单调递增,满足题意;当m=-13时,()56f x x-=在(0,+)上单调递减,不符合条件,故f(x)=.(2)当x=[1,9]时,A=[1,3],B=[t-4,t+45],因为命题p是命题q的充分不必要条件,所以A B,所以,且不同时取等,解得一42≤t≤5,所以,实数t的取值范围是[-42,5]20.【答案】解:(1)f'(x)=3x2+2a x-b,由题意,得则解得经检验,此时f(x)=x3-2x2-4x+1满足在x=-和x=2处取得极值,符合题意.(2)由(1)得f(x)=x3-2x2-4x+1,则f'(x)=3x2-4x-4.令f(x)>0,解得x<-或x>2;令f'(x)<0,解得-<x<2,所以f(x)的单调增区间为(-∞,-),(2,+∞);单调减区间为(-,2).所以f(x)极大值=f()=, f(x)极小值=f(2)=-7.而f(4)=17>f(x)极大值,所以数形结合易知f(x)≤17的解集是(-∞,4].21.【答案】解:(1)在△ABD中,因为cos∠ADB=,且∠ADB(0,),所以sin∠ADB= .又∠CAD=∠ADB-,所以sin ∠CAD=sin (∠ADB-) = cos -cos ∠ADB sin==在△ADC 中,由正弦定理得sin ACADC ∠==,即==解得AC=8,CD= (2)因为=48 所以8·CB·=48,解得CB=6.所以BD=CB-CD=5.在△ABC 中,AB===2在△ABD 中,cos ∠BAD===22.【答案】解:(1)由题意可设椭圆的半焦距为c , 由题意可得解得.故椭圆C 的方程为22182x y += (2)(i )当直线l 的斜率存在时,设直线l 的方程为y=k (x 一2),A (x 1,y 1),B (.x 2,y 2),P (x 0,2),则1012k PA y x x -=-,k PB =,k PQ =. 联立整理得(4k 2+1)x 2-16k 2x+16k 2-8=0,2212122216168,4141k k x x x x k k -+==++()()()()1212010201020012122012012222222k k 44222PA PBy y k kx k kx x x x x x x x x k x kx k x x kx x x x x x x x --+-+-+=+=+----+-++++=-++ 整理得()()()200022200016244442428x k x k x x x k x -+-+=--+-因为k PQ =所以=,整理得(x 0-4)(x 0-2)k+2(4-x 0)=0,即(x 0-4)[(x 0-2)k-2]=0,解得x 0=4, (ii )当直线l 的斜率不存在时,经检验P (4,2)也满足条件. 故存在点P (4,2),使得k PA +k PB =2k PQ.。
(完整版)高中数学易错题(含答案)
高中数学易错题一.选择题(共6小题)1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.52.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为()A.缺条件,不能求出B.C.D.3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是()A.3<d<4 B.C.D.4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A.B.C.D.5.(2009•闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是()A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=06.(2011•江西模拟)下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A.①②④B.②④C.②③D.③④二.填空题(共10小题)7.Rt△ABC中,AB为斜边,•=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是_________.8.(2011•武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=_________.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是_________.10.已知在△ABC中,,M为BC边的中点,则|AM|的取值范围是_________.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为_________.12.三角形ABC中,若2,且b=2,一个内角为300,则△ABC的面积为_________.13.△ABC中,AB=AC,,则cosA的值是_________.14.(2010•湖南模拟)已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,则x、y、z 所满足的关系式为_________.15.(2013•东莞二模)如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为_________.16.三角形ABC中,三个内角B,A,C成等差数列,∠B=30°,三角形面积为,则b=_________.三.解答题(共12小题)17.在△ABC中,AC=b,BC=a,a<b,D是△ABC内一点,且AD=a,∠ADB+∠C=π,问∠C为何值时,四边形ABCD的面积最大,并求出最大值.18.(2010•福建模拟)在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.19.已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2﹣(b﹣c)2和sinB+sinC=(a,b,c为角A,B,C所对的边)(1)求sinA;(2)求△ABC面积的最大值.20.(2010•东城区模拟)在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2﹣a2=bc.(1)求角A的大小;(2)若sin2B+sin2C=2sin2A,且a=1,求△ABC的面积.21.小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?22.(2008•徐汇区二模)在△ABC中,已知.(1)求AB;(2)求△ABC的面积.23.在△ABC中,已知.(1)求出角C和A;(2)求△ABC的面积S;(3)将以上结果填入下表.C A S情况①情况②24.(2007•上海)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB 的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC 不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.25.(2010•郑州二模)在△ABC中,a、b、c分别是角A、B、C的对边,=(2b﹣c,cosC),=(a,cosA),且∥.(Ⅰ)求角A的大小;(Ⅱ)求2cos2B+sin(A﹣2B)的最小值.26.在△ABC中,A、B、C是三角形的内角,a、b、c是三内角对应的三边,已知,.(1)求∠A;(2)求△ABC的面积S.27.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)若a+c=4,求△ABC面积S的最大值.28.已知△ABC的外接圆半径,a、b、C分别为∠A、∠B、∠C的对边,向量,,且.(1)求∠C的大小;(2)求△ABC面积的最大值.高中数学易错题参考答案与试题解析一.选择题(共6小题)1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.5考点:三角形中的几何计算.专题:计算题.分析:设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,进而求得x和y的关系式,进而表示出xy的表达式,利用二次函数的性质求得xy的最大值.解答:解:如图,设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,即=4,所以4x=12﹣3y,y=,求xy最大,也就是那个矩形面积最大.xy=x•=﹣•(x2﹣3x),∴当x=时,xy有最大值3故选B.点评:本题主要考查了三角函数的几何计算.解题的关键是通过题意建立数学模型,利用二次函数的性质求得问题的答案.2.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为()A.缺条件,不能求出B.C.D.考点:三角形中的几何计算.专题:计算题.分析:直接利用正弦定理,两角差的正弦函数,即可求出三角形的外接圆的直径即可.解答:解:由正弦定理可知:====.故选D.点评:本题是基础题,考查三角形的外接圆的直径的求法,正弦定理与两角差的正弦函数的应用,考查计算能力.3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是()A.3<d<4 B.C.D.考点:三角形中的几何计算.专题:数形结合;转化思想.分析:画出图形,利用点到直线的距离之间的转化,三角形两边之和大于第三边,求出最小值与最大值.解答:解:由题意△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,在图(1)中,d=CE+PE+PF>CD==,在图(2)中,d=CE+EP+FP<CE+EG<AC=4;∴d的取值范围是;故选D.点评:本题是中档题,考查不等式的应用,转化思想,数形结合,逻辑推理能力,注意,P为△ABC内任一点,不包含边界.4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A.B.C.D.考点:三角形中的几何计算.专题:计算题.分析:由题意可知双曲线的焦点坐标就是A,B,利用正弦定理以及双曲线的定义化简即可得到答案.解答:解:由题意可知双曲线的焦点坐标就是A,B,由双曲线的定义可知BC﹣AB=2a=10,c=6,===;故选D.点评:本题是基础题,考查双曲线的定义,正弦定理的应用,考查计算能力,常考题型.5.(2009•闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是()A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=0考点:三角形中的几何计算.专题:计算题.分析:通过向量求出直线的斜率,利用点斜式方程求出最新的方程即可.解答:解:过点A(1,﹣2),且与向量平行的直线的斜率为﹣,所以所求直线的方程为:y+2=﹣(x﹣1),即:3x+4y+5=0.故选C.点评:本题是基础题,考查直线方程的求法,注意直线的方向向量与直线的斜率的关系,考查计算能力.6.(2011•江西模拟)下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A.①②④B.②④C.②③D.③④考点:三角形中的几何计算;恒过定点的直线.专题:应用题.分析:①由于基本不等式等号成立的条件不具备,故的最小值大于2,故①不正确.②设过定点P(2,3)的直线的方程,求出它与两坐标轴的交点,根据条件可得4k2+14k+9=0,或4k2﹣38k+9=0.而这两个方程的判别式都大于0,故每个方程都有两个解,故满足条件的直线有四条.③将函数y=cos2x的图象向右平移个单位,可以得到函数y﹣sin(2x﹣)的图象,故③不正确.④若△ABC中,∠A=60°,a=4,则此三角形周长可以为12,此时,三角形是等边三角形.解答:解:①∵≥2=2,(当且仅当x=0时,等号成立),故当x>0时,的最小值大于2,故①不正确.②设过定点P(2,3)的直线的方程为y﹣3=k(x﹣2),它与两坐标轴的交点分别为(2﹣,0),(0,3﹣2k),根据直线与两坐标轴围成的面积为13=,化简可得4k2+14k+9=0,或4k2﹣38k+9=0.而这两个方程的判别式都大于0,故每个方程都有两个解,故满足条件的直线有四条,故②正确.③将函数y=cos2x的图象向右平移个单位,可以得到函数y=cos2(x﹣)=sin[﹣(2x﹣)]=sin()=﹣sin(2x﹣)的图象,故③不正确.④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12,此时,三角形是等边三角形,故④正确.故选B.点评:本题基本不等式取等号的条件,过定点的直线,三角函数的图象变换,诱导公式的应用,检验基本不等式等号成立的条件,是解题的易错点.二.填空题(共10小题)7.Rt△ABC中,AB为斜边,•=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是[,4].考点:向量在几何中的应用;三角形中的几何计算.专题:综合题.分析:设三边分别为a,b,c,利用正弦定理和余弦定理结合向量条件利用三角形面积公式即可求出三边长.欲求x+y+z的取值范围,利用坐标法,将三角形ABC放置在直角坐标系中,通过点到直线的距离将求x+y+z的范围转化为,然后结合线性规划的思想方法求出范围即可.解答:解:△ABC为Rt△ABC,且∠C=90°,设三角形三内角A、B、C对应的三边分别为a,b,c,∵(1)÷(2),得,令a=4k,b=3k(k>0)则∴三边长分别为3,4,5.以C为坐标原点,射线CA为x轴正半轴建立直角坐标系,则A、B坐标为(3,0),(0,4),直线AB方程为4x+3y﹣12=0.设P点坐标为(m,n),则由P到三边AB、BC、AB的距离为x,y,z.可知,且,故,令d=m+2n,由线性规划知识可知,如图:当直线分别经过点A、O时,x+y+z取得最大、最小值.故0≤d≤8,故x+y+z的取值范围是.故答案为:[].点评:本题主要考查了解三角形中正弦定理、余弦定理、平面向量数量积的运算、简单线性规划思想方法的应用,综合性强,难度大,易出错.8.(2011•武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=4.考点:二倍角的余弦;三角形中的几何计算.专题:计算题.分析:首先根据三角形的面积公式求出b的值,然后将所给的式子写成+=3进而得到acosC+ccosA+a+c=6,再根据在三角形中acosC+ccosA=b=2,即可求出答案.解答:解:∵S=absinC=asinC∴b=2∴acos2+ccos2=3∴+=3即a(cosC+1)+c(cosA+1)=6∴acosC+ccosA+a+c=6∵acosC+ccosA=b=2∴2+a+c=6∴a+c=4故答案为:4.点评:本题考查了二倍角的余弦以及三角形中的几何运算,解题的关键是巧妙的将所给的式子写成+=3的形式,属于中档题.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是.考点:三角形中的几何计算.专题:计算题.分析:先根据求得sin(A+B)的值,进而求得sinC的值,根据同角三角函数的基本关系求得cosC,根据韦达定理求得a+b和ab的值,进而求得a2+b2,最后利用余弦定理求得c的值.解答:解:∵,∴sin(A+B)=∴sinC=sin(π﹣A﹣B)=sin(A+B)=∴cosC==∵a,b是方程的两根∴a+b=2,ab=2,∴a2+b2=(a+b)2﹣2ab=8∴c===故答案为:点评:本题主要考查了三角形中的几何计算,余弦定理的应用,韦达定理的应用.考查了考生综合运用基础知识的能力.10.已知在△ABC中,,M为BC边的中点,则|AM|的取值范围是.考点:三角形中的几何计算;正弦定理.专题:计算题;解三角形.分析:构造以BC为正三角形的外接圆,如图满足,即可观察推出|AM|的取值范围.解答:解:构造以BC为正三角形的外接圆,如图,显然满足题意,由图可知红A处,|AM|值最大为,A与B(C)接近时|AM|最小,所以|AM|∈.故答案为:.点评:本题考查三角形中的几何计算,构造法的应用,也可以利用A的轨迹方程,两点减距离公式求解.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.考点:棱柱的结构特征;三角形中的几何计算.专题:计算题.分析:由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.解答:解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.点评:本小题主要考查棱柱的结构特征、三角形中的几何计算等基础知识,考查空间想象力.属于基础题.12.三角形ABC中,若2,且b=2,一个内角为300,则△ABC的面积为1或.考点:三角形中的几何计算.专题:计算题.分析:先利用2,转化得到2acosB=c;再借助于余弦定理得a=b=2;再分∠A=30°以及∠C=30°两种情况分别求出对应的面积.解答:解:因为2,转化为边长和角所以有2acosB=c可得:cosB==⇒a2=b2⇒a=b=2.当∠A=30°=∠B时,∠C=120°,此时S△ABC=×2×2×sinC=;当∠C=30°时,∠A=∠B=75°,此时S△ABC=×2×2×sinC=1.故答案为:或1.点评:本题主要考查余弦定理的应用以及三角形中的几何计算.解决本题的关键在于利用2,转化得到2acosB=c;再借助于余弦定理得a=b=2.13.△ABC中,AB=AC,,则cosA的值是.考点:三角形中的几何计算.专题:计算题.分析:根据AB=AC可推断出B=C,进而利用三角形内角和可知cosA=cos(π﹣2B)利用诱导公式和二倍角公式化简整理,把cosB的值代入即可.解答:解:∵AB=AC,∴B=C∴cosA=cos(π﹣2B)=cos2B=2cos2B﹣1=﹣1=﹣故答案为:﹣点评:本题主要考查了三角形中的几何计算,二倍角公式的应用.考查了学生综合运用三角函数基础知识的能力.14.(2010•湖南模拟)已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,则x、y、z 所满足的关系式为x+y+z=3.考点:三角形中的几何计算.专题:计算题.分析:设等边三角形的边长为a,高为h将P与三角形的各顶点连接,进而分别表示出三角形三部分的面积,相加应等于总的面积建立等式求得x+y+z的值.解答:解:设等边三角形的边长为a,高为h将P与三角形的各顶点连接根据面积那么:ax+ay+az=ah所以x+y+z=h因为等边三角形的边长为2,所以高为h=3所以x.y.z所满足的关系是为:x+y+z=3故答案为:3点评:本题主要考查了三角形中的几何计算.考查了学生综合分析问题的能力和转化和化归的思想.15.(2013•东莞二模)如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为.考点:三角形中的几何计算.专题:计算题.分析:根据已知可得△AOC是等边三角形,从而得到OA=AC=2,则可以利用勾股定理求得AD的长.解答:解:(2)∵OA=OC,∠AOC=60°,∴△AOC是等边三角形,∴OA=AC=2,∵∠OAD=90°,∠D=30°,∴AD=•AO=.故答案为:.点评:本题考查和圆有关的比例线段,考查同弧所对的圆周角等于弦切角,本题在数据运算中主要应用含有30°角的直角三角形的性质,本题是一个基础题.16.三角形ABC中,三个内角B,A,C成等差数列,∠B=30°,三角形面积为,则b=.考点:三角形中的几何计算.专题:计算题.分析:先利用三个内角成等差数列求得A,根据,∠B=30°求得C,然后利用tan30°=表示出a,代入三角形面积公式求得b.解答:解:三角形ABC中,三个内角A,B,C成等差数列A+B+C=3A=180°∴∠A=60°∵∠A=30°,∴C=90S=ab=∵tan30°=∴a=∴b=故答案为:点评:本题主要考查了三角形的几何计算.考查了学生基础知识综合运用的能力.三.解答题(共12小题)17.在△ABC中,AC=b,BC=a,a<b,D是△ABC内一点,且AD=a,∠ADB+∠C=π,问∠C为何值时,四边形ABCD的面积最大,并求出最大值.考点:三角形中的几何计算.专题:计算题.分析:设出BD,利用余弦定理分别在△ABC,△ABD中表示出AB,进而建立等式求得b﹣x=2acosC代入四边形ABCD的面积表达式中,利用正弦函数的性质求得问题的答案.解答:解:设BD=x,则由余弦定理可知b2+a2﹣2abcosC=AB2=a2+x2+2axcosC∴b﹣x=2acosC.∵S=(absinC)﹣(axsinC)=a(b﹣x)sinC=a2•sin2C,∴当C=时,S有最大值.点评:本题主要考查了三角形的几何计算.注意灵活利用正弦定理和余弦定理以及其变形公式.18.(2010•福建模拟)在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.考点:三角形中的几何计算;二倍角的正弦.专题:计算题.分析:(1)利用同角三角函数关系及三角形内角的范围可求;(2)利用正弦定理可知b=2a,再利用余弦定理,从而求出a、b的值,进而可求面积.解答:解:(1)由题意,,∴(2)由sinB=2sinA可知b=2a,又22=a2+b2﹣2abcosC,∴a=1,b=2,∴点评:此题考查学生灵活运用三角形的面积公式,灵活运用正弦、余弦定理求值,是一道基础题题.19.已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2﹣(b﹣c)2和sinB+sinC=(a,b,c为角A,B,C所对的边)(1)求sinA;(2)求△ABC面积的最大值.考点:三角形中的几何计算;正弦定理的应用;余弦定理的应用.专题:计算题;综合题.分析:(1)由三角形的面积公式,结合余弦定理求出的值,进而有sinA=.(2)利用,结合正弦定理,求出b+c的值,利用三角形的面积公式和基本不等式求出面积的最大值.解答:解:(1)得进而有(2)∵,∴即所以故当b=c=8时,S最大=.点评:本题是中档题,考查三角函数的化简,正弦定理、余弦定理的应用,三角形的面积公式以及基本不等式的应用,考查计算能力,逻辑推理能力.20.(2010•东城区模拟)在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2﹣a2=bc.(1)求角A的大小;(2)若sin2B+sin2C=2sin2A,且a=1,求△ABC的面积.考点:三角形中的几何计算;正弦定理.专题:计算题.分析:(1)利用余弦定理和题设等式求得cosA的值,进而求得A.(2)利用正弦定理把题设中的正弦转化成边的关系,进而求得bc的值,最后利用三角形面积公式求得答案.解答:解:(1)因为b2+c2﹣a2=2bccosA=bc所以所以(2)因为sin2B+sin2C=2sin2A所以b2+c2=2a2=2因为b2+c2﹣a2=bc所以bc=1所以=点评:本题主要考查了正弦定理和余弦定理的应用.注意挖掘题设中关于边,角问题的联系.21.小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?考点:三角形中的几何计算.专题:综合题.分析:(1)由题意画出简图,设CN=x,则QD=5﹣x,路灯高BD为h,利用三角形相似建立方程解德;(2)由题意当小迪移到BD所在线上(设为DH),连接AH交地面于E,则DE长即为所求的影长,利用三角形相似建立方程求解即可.解答:解:如图所示,设A、B为两路灯,小迪从MN移到PQ,并设C、D分别为A、B灯的底部.由题中已知得MN=PQ=1.6m,NQ=5m,CD=10m(1)设CN=x,则QD=5﹣x,路灯高BD为h∵△CMN∽△CBD,即⇒又△PQD∽△ACD即⇒由①②式得x=2.5m,h=6.4m,即路灯高为6.4m.(2)当小迪移到BD所在线上(设为DH),连接AH交地面于E.则DE长即为所求的影长.∵△DEH∽△CEA⇒⇒解得DE=m,即他在A路灯下的身影长为m.点评:此题考查了学生理解题意的能力,还考查了利用三角形相似及方程思想求解变量及学生的计算能力.22.(2008•徐汇区二模)在△ABC中,已知.(1)求AB;(2)求△ABC的面积.考点:三角形中的几何计算.专题:计算题.分析:(1)求AB长,关键是求sinB,sinC,利用已知条件可求;(2)根据三角形的面积公式,故关键是求sinA的值,利用sinA=sin(B+C)=sinBcosC+cosBsinC可求解答:解:(1)设AB、BC、CA的长分别为c、a、b,,∴,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)因为.∴sinA=sin(B+C)=sinBcosC+cosBsinC=﹣﹣﹣﹣﹣﹣﹣(12分)故所求面积﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题的考点是三角形的几何计算,主要考查正弦定理得应用,考查三角形的面积公式,关键是正确记忆公式,合理化简.23.在△ABC中,已知.(1)求出角C和A;(2)求△ABC的面积S;(3)将以上结果填入下表.C A S情况①情况②考点:三角形中的几何计算.专题:计算题;分类讨论.分析:(1)先根据正弦定理以及大角对大边求出角C,再根据三角形内角和为180°即可求出角A.(2)分情况分别代入三角形的面积计算公式即可得到答案;(3)直接根据前两问的结论填写即可.解答:解:(1)∵,…(2分)∵c>b,C>B,∴C=60°,此时A=90°,或者C=120°,此时A=30°…(2分)(2)∵S=bcsinA∴A=90°,S=bcsinA=;A=30°,S=bcsinA=.…(2分)(3)点评:本题主要考查三角形中的几何计算.解决本题的关键在于根据正弦定理以及大角对大边求出角C.24.(2007•上海)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB 的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC 不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.考点:三角形中的几何计算;解三角形.专题:计算题;数形结合.分析:(1)由正弦定理知===2R,根据题目中所给的条件,不难得出弦AB的长;(2)若∠C是钝角,故其余弦值小于0,由余弦定理得到a2+b2<c2<(2R)2,即可证得结果;(3)根据图形进行分类讨论判断三角形的形状与两边a,b的关系,以及与直径的大小的比较,分成三类讨论即可.解答:解:(1)在△ABC中,BC=2,∠ABC=45°===2R⇒b=2sinA=∵A为锐角∴A=30°,B=45°∴C=75°∴AB=2Rsin75°=4sin75°=;(2)∠C为钝角,∴cosC<0,且cosC≠1cosC=<0∴a2+b2<c2<(2R)2即a2+b2<4R2(8分)(3)a>2R或a=b=2R时,△ABC不存在当时,A=90,△ABC存在且只有一个∴c=当时,∠A=∠B且都是锐角sinA=sinB=时,△ABC存在且只有一个∴c=2RsinC=2Rsin2AC=当时,∠B总是锐角,∠A可以是钝角,可是锐角∴△ABC存在两个∠A<90°时,c=∠A>90°时,c=点评:本题考查三角形中的几何计算,综合考查了三角形形状的判断,解三角形,三角形的外接圆等知识,综合性很强,尤其是第三问需要根据a,b两边以及直径的大小比较确定三角形的形状.再在这种情况下求第三边的表达式,本解法主观性较强.难度较大.25.(2010•郑州二模)在△ABC中,a、b、c分别是角A、B、C的对边,=(2b﹣c,cosC),=(a,cosA),且∥.(Ⅰ)求角A的大小;(Ⅱ)求2cos2B+sin(A﹣2B)的最小值.考点:三角形中的几何计算.专题:计算题.分析:(Ⅰ)根据∥和两向量的坐标可求得,利用正弦定理把边转化成角的正弦,然后利用两角和公式化简整理求得cosA的值,进而求得A(Ⅱ)把A的值代入,利用两角和公式整理后,利用正弦函数的性质求得2cos2B+sin(A﹣2B)的最小值.解答:解:(Ⅰ)由得.由正弦定理得,.∴.∵A,B∈(0,π),∴sinB≠0,,∴.(Ⅱ)解:∵∴2cos2B+sin(A﹣2B)==,.2cos2B+sin(A﹣2B)的最小值为点评:本题主要考查了三角形中的几何计算,正弦定理的应用和两角和公式的化简求值.注意综合运用三角函数的基础公式,灵活解决三角形的计算问题.26.在△ABC中,A、B、C是三角形的内角,a、b、c是三内角对应的三边,已知,.(1)求∠A;(2)求△ABC的面积S.考点:正弦定理的应用;三角形中的几何计算.专题:计算题.分析:(1)由已知结合正弦与余弦定理=化简可求b,由余弦定理可得,cosA=代入可求cosA,及A(2)代入三角形的面积公式可求解答:解:(1)∵∵∴=化简可得,b2﹣2b﹣8=0∴b=4由余弦定理可得,cosA==∴;(2)==点评:本题主要考查了解三角形的基本工具:正弦定理与余弦定理的应用,解题的关键是具备综合应用知识解决问题的能力27.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)若a+c=4,求△ABC面积S的最大值.考点:三角函数中的恒等变换应用;三角形中的几何计算.专题:计算题.分析:(Ⅰ)利用正弦定理化简(2a+c)cosB+bcosC=0,得到三角形的角的关系,通过两角和与三角形的内角和,求出B的值;(Ⅱ)通过S=,利用B=以及a+c=4,推出△ABC面积S的表达式,通过平方法结合a的范围求出面积的最大值.解答:解(Ⅰ)由正弦定理得(2sinA+sinC)cosB+sinBcosC=0,即2sinAcosB+sinCcosB+cosCsinB=0得2sinACcosB+sin(C+B)=0,因为A+B+C=π,所以sin(B+C)=sinA,得2sinAcosB+sinA=0,因为sinA≠0,所以cosB=﹣,又B为三角形的内角,所以B=.(Ⅱ)因为S=,由B=及a+c=4得S===,又0<a<4,所以当a=2时,S取最大值…(3分)点评:本题是中档题,考查三角形面积的最值,三角形的边角关系,三角函数的公式的灵活应用,考查计算能力.28.已知△ABC的外接圆半径,a、b、C分别为∠A、∠B、∠C的对边,向量,,且.(1)求∠C的大小;(2)求△ABC面积的最大值.考点:三角函数的恒等变换及化简求值;三角形中的几何计算.专题:综合题.分析:(1)由,推出,利用坐标表示化简表达式,结合余弦定理求角C;(2)利用(1)中c2=a2+b2﹣ab,应用正弦定理和基本不等式,求三角形ABC的面积S的最大值.解答:解答:解:(1)∵∴且,由正弦定理得:化简得:c2=a2+b2﹣ab由余弦定理:c2=a2+b2﹣2abcosC∴,∵0<C<π,∴(2)∵a2+b2﹣ab=c2=(2RsinC)2=6,∴6=a2+b2﹣ab≥2ab﹣ab=ab(当且仅当a=b时取“=”),所以,.点评:本题考查数量积判断两个平面向量的垂直关系,正弦定理,余弦定理的应用,考查学生分析问题解决问题的能力,是中档题.。
高三数学错题整理与解析
高三数学错题整理与解析在高三数学学习过程中,学生经常会遇到各种错题。
对于这些错题,我们需要进行仔细的整理与解析,以提高学生的数学水平。
本文将对高三数学错题进行整理分类,并给出详细的解答和解析。
一、代数与函数1. 题目:已知函数$f(x) = \frac{1}{x}$,求函数$f(f(x))$的表达式。
解析:将$f(x) = \frac{1}{x}$代入$f(f(x))$中,得到$f(f(x)) =\frac{1}{f(x)} = \frac{1}{\frac{1}{x}} = x$。
2. 题目:已知二次函数$f(x) = ax^2 + bx + c$的图像关于$x$轴对称,且顶点在直线$y = 2x + 1$上。
求$a$、$b$、$c$的值。
解析:由于图像关于$x$轴对称,所以顶点的纵坐标为0。
将顶点的横坐标代入直线方程$y = 2x + 1$中,得到$0 = 2x_0 + 1$,解得$x_0 = -\frac{1}{2}$。
将$x_0 = -\frac{1}{2}$代入二次函数$f(x)$中的横坐标,得到$a\left(-\frac{1}{2}\right)^2 + b\left(-\frac{1}{2}\right) + c = 0$。
根据顶点坐标的性质,我们知道顶点的横坐标为$-\frac{b}{2a}$,因此$-\frac{b}{2a} = -\frac{1}{2}$,解得$b = a$。
将$b = a$代入上述方程,得到$a\left(-\frac{1}{2}\right)^2 + a\left(-\frac{1}{2}\right) + c = 0$,整理得$c = \frac{1}{4}$。
综上所述,$a = b$,$c = \frac{1}{4}$。
二、几何与三角学1. 题目:已知$\triangle ABC$中,$AB = 7$,$AC = 9$,$BC = 5$,$D$为边$BC$上一点,且$\angle BAD = \angle CAD$。
高考数学(文科)试题及答案
高考数学(文)试题及答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =Z ,集合M ={-1,0,1},N ={0,1,3},则(∁U M )∩N =(A ){-1} (B ){3} (C ){0,1} (D ){-1,3} 2.下列命题中的假命题是(A )∀x >0且x ≠1,都有x +1x>2(B )∀a ∈R ,直线ax +y -a =0恒过定点(1,0)(C )∃m ∈R ,使f (x )=(m -1)x m 2-4m +3是幂函数 (D )∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数3.在等差数列{a n }中,已知公差d =2,且a 1,a 3,a 4成等比数列,则a 2=(A )-4 (B )-6 (C )-8 (D )-104.函数y =12-x+lg x 的定义域是(A )(0,2] (B )(0,2) (C )(1,2) (D )[1,2)5.已知函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3,x >1。
则函数y =f (x )-log 2x 的零点的个数是(A )4 (B )3 (C )2 (D )16.一个几何体的三视图如图所示,则这个几何体的体积等于(A )4 (B )6 (C )8 (D )127.已知函数f (x )=A sin(2x +φ)的部分图象如图所示,则f (0)=(A )-12(B )-1 (C )-32(D )- 38.设O 为△ABC 所在平面内一点.若实数x 、y 、z 满足x →OA +y →OB +z →OC =0(x 2+y 2+z 2≠0),则“xyz =0”是“点O 在△ABC 的边所在直线上”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 9.已知直线l :Ax +By +C =0(A ,B 不全为0),两点P 1(x 1,y 1),P 2(x 2,y 2),若(Ax 1+By 1+C )( Ax 2+By 2+C )>0,且|Ax 1+By 1+C |<|Ax 2+By 2+C |,则直线l (A )与直线P 1P 2不相交 (B )与线段P 2P 1的延长线相交 (C )与线段P 1P 2的延长线相交 (D )与线段P 1P 2相交10.已知圆M :x 2+y 2-8x -6y =0,过圆M 内定点P (1,2)作两条相互垂直的弦AC 和BD ,则四边形ABCD 面积的最大值为(A )2015 (B )16 6 (C )515 (D )40 1 2 3 4 5 6 7 8 9 10二、填空题:本大题共7小题,每小题5分,共35分. 11.若复数z 满足(2-i)z =1+i (i 为虚数单位),则复数z 在复平面内对应的点的坐标为 . 12.设F 1、F 2是双曲线x 216-y 220=1的两焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,则点P 到焦点F 2的距离等于 .13.已知某程序框图如图所示,若分别输入的x 的值为0,1,2,执行该程序后,输出的y 的值分别为a ,b ,c ,则a +b +c = .14.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s 1、s 2、s 3,则它们的大小关系为 .(用“>”连接)15.若不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,则实数k 的取值范围是 . 16.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为 .17.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ),这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项,据此可得,最佳乐观系数x 的值等于 .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知B =60°,cos(B +C )=-1114.(Ⅰ)求cos C 的值;(Ⅱ)若a =5,求△ABC 的面积. 19.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点.已知PD =2,CD =4,AD =3.(Ⅰ)若∠ADE =π6,求证:CE ⊥平面PDE ;(Ⅱ)当点A 到平面PDE 的距离为2217时,求三棱锥A -PDE的侧面积. 20.(本小题满分13分)某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:(Ⅰ)求频率分布表中未知量n ,x ,y ,z 的值;(Ⅱ)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率. 21.(本小题满分14分)设a ∈R ,函数f (x )=ln x -ax .(Ⅰ)讨论函数f (x )的单调区间和极值;(Ⅱ)已知x 1=e (e 为自然对数的底数)和x 2是函数f (x )的两个不同的零点,求a 的值并证明:x 2>e 23. 22.(本小题满分14分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为23,半焦距为c (c >0),且a -c =1.经过椭圆的左焦点F ,斜率为k 1(k 1≠0)的直线与椭圆交于A ,B 两点,O 为坐标原点.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)当k 1=1时,求S △AOB 的值; (Ⅲ)设R (1,0),延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为k 2,求证:k 1k 2为定值.参考答案一、选择题:每小题5分,满分50分.1.B 2.D 3.B 4.D 5.B 6.A 7.B 8.C 9.B 10.D 二、填空题:每小题5分,满分35分.11.(15,35) 12.17 13.6 14.s 1>s 2>s 3 15.(-∞,2]16.433 17.5-12三、解答题:本大题共5小题,共65分.18.(本小题满分12分) 解:(Ⅰ)在△ABC 中,由cos(B +C )=-1114,得sin(B +C )=1-cos 2(B +C )=1-(-1114)2=5314,∴cos C =cos[(B +C )-B ]=cos(B +C ) cos B +sin(B +C ) sin B=-1114×12+5314×32=17.…………………………………………(6分)(Ⅱ)由(Ⅰ),得sin C =1-cos 2C =1-(17)2=437,sin A =sin(B +C )=5314.在△ABC 中,由正弦定理a sin A =csin C ,得5 5314=c 437,∴ c =8, 故△ABC 的面积为S =12ac sin B =12×5×8×32=103.…………………(12分)19.(本小题满分12分)解:(Ⅰ)在Rt △DAE 中,AD =3,∠ADE =π6,∴AE =AD ·tan ∠ADE =3·33=1. 又AB =CD =4,∴BE =3.在Rt △EBC 中,BC =AD =3,∴tan ∠CEB =BC BE =33,∴∠CEB =π6.又∠AED =π3,∴∠DEC =π2,即CE ⊥DE .∵PD ⊥底面ABCD ,CE ⊂底面ABCD , ∴PD ⊥CE .∴CE ⊥平面PDE .……………………………………………………………(6分) (Ⅱ)∵PD ⊥底面ABCD ,PD ⊂平面PDE ,∴平面PDE ⊥平面ABCD .如图,过A 作AF ⊥DE 于F ,∴AF ⊥平面PDE ,∴AF 就是点A 到平面PDE 的距离,即AF =2217.在Rt △DAE 中,由AD ·AE =AF ·DE ,得 3AE =2217·3+AE 2,解得AE =2.∴S △APD =12PD ·AD =12×2×3=62,S △ADE =12AD ·AE =12×3×2=3,∵BA ⊥AD ,BA ⊥PD ,∴BA ⊥平面P AD ,∵P A ⊂平面P AD ,∴BA ⊥P A .在Rt △P AE 中,AE =2,P A =PD 2+AD 2=2+3=5,∴S △APE =12P A ·AE =12×5×2=5.∴三棱锥A -PDE 的侧面积S 侧=62+3+5.…………………………(12分) 20.(本小题满分13分)解:(Ⅰ)由频率分布表可知,样本容量为n ,由2n=0.04,得n =50.∴x =2550=0.5,y =50-3-6-25-2=14,z =y n =1450=0.28.……………(6分)(Ⅱ)记样本中视力在(3.9,4.2]的3人为a ,b ,c ,在(5.1,5.4]的2人为d ,e . 由题意,从5人中随机抽取两人,所有可能的结果有:{a ,b },{a ,c },{a ,d },{a ,e },{b ,c },{b ,d },{b ,e },{c ,d },{c ,e },{d ,e },共10种. 设事件A 表示“两人的视力差的绝对值低于0.5”,则事件A 包含的可能的结果有:{a ,b },{a ,c },{b ,c },{d ,e },共4种.∴P (A )=410=25.故两人的视力差的绝对值低于0.5的概率为25.…………………………(13分)21.(本小题满分14分) 解:(Ⅰ)函数f (x )的定义域为(0,+∞).求导数,得f ′(x )=1x -a =1-ax x.①若a ≤0,则f ′(x )>0,f (x )是(0,+∞)上的增函数,无极值; ②若a >0,令f ′(x )=0,得x =1a.当x ∈(0,1a )时,f ′(x )>0,f (x )是增函数;当x ∈(1a,+∞)时,f ′(x )<0,f (x )是减函数.∴当x =1a 时,f (x )有极大值,极大值为f (1a )=ln 1a-1=-ln a -1.综上所述,当a ≤0时,f (x )的递增区间为(0,+∞),无极值;当a >0时,f (x )的递增区间为(0,1a ),递减区间为(1a ,+∞),极大值为-ln a -1.…(8分)(Ⅱ)∵x 1=e 是函数f (x )的零点,∴f (e )=0,即12-a e =0,解得a =12e =e2e .∴f (x )=ln x -12ex .∵f (e 23)=32-e 2>0,f (e 25)=52-e 22<0,∴f (e 23)f (e 25)<0.由(Ⅰ)知,函数f (x )在(2e ,+∞)上单调递减, ∴函数f (x )在区间(e 23,e 25)上有唯一零点,因此x 2>e 23.………………………………………………………………(14分)22.(本小题满分14分)解:(Ⅰ)由题意,得⎩⎪⎨⎪⎧c a =23,a -c =1。
高三文科数学高考复习试题(附答案)
高三文科数学高考复习试题(附答案)考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。
下面是店铺为大家整理的高三文科数学高考复习试题,请认真复习!高三文科数学高考复习试题一、选择题:每小题只有一项是符合题目要求的,将答案填在题后括号内.1.函数y=log2x-2的定义域是( )A.(3,+∞)B.[3,+∞)C.(4,+∞)D.[4,+∞)2.设集合A={(x,y) | },B={(x,y)|y=2x},则A∩B的子集的个数是( )A.1B.2C.3D.43.已知全集I=R,若函数f(x)=x2-3x+2,集合M={x|f(x)≤0},N={x| <0},则M∩∁IN=( )A.[32,2]B.[32,2)C.(32,2]D.(32,2)4.设f(x)是R上的奇函数,当x>0时,f(x)=2x+x,则当x<0时,f(x)=( )A.-(-12)x-xB.-(12)x+xC.-2x-xD.-2x+x5.下列命题①∀x∈R,x2≥x;②∃x∈R,x2≥x;③4≥3;④“x2≠1”的充要条件是“x≠1或x≠-1”.其中正确命题的个数是( )A.0B.1C.2D.36. 已知下图(1)中的图像对应的函数为,则下图(2)中的图像对应的函数在下列给出的四个式子中,只可能是( )7.在用二分法求方程x3-2x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为( )A.(1.4,2)B.(1,1.4)C.(1,32)D.(32,2)8.点M(a,b)在函数y=1x的图象上,点N与点M关于y轴对称且在直线x-y+3=0上,则函数f(x)=abx2+(a+b)x-1在区间[-2,2)上( )A.既没有最大值也没有最小值B.最小值为-3,无最大值C.最小值为-3,最大值为9D.最小值为-134,无最大值9.已知函数有零点,则的取值范围是( )A. B. C. D.二、填空题:将正确答案填在题后横线上.10.若全集U=R,A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为_______ _.11.若lga+lgb=0(a≠1),则函数f(x)=ax与g(x)=-bx的图象关于________对称.12.设 ,一元二次方程有正数根的充要条件是 = .13.若函数f(x)在定义域R内可导,f(2+x)=f(2-x),且当x∈(-∞,2)时,(x-2) >0.设a=f(1),,c=f(4),则a,b,c的大小为.14、已知。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学(文科)高频错题卷及答案(2套)模拟试题一满分:150分 时间:120分钟姓名: 班级: 考号:注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12题,每小题5分,共60分) 1.【2019年广东省名校试题】【年级得分率:0.5185】设,,,则a,b ,c 的大小关系是( ) A. B. C. D.2.【2019年福建省名校试题】【年级得分率:0.5185】已知数列满足,且,则( ) A.B.C.D. 2 3.【2019年福建省名校试题】【年级得分率:0.5185】在中,已知D 是BC 延长线上一点,点E 为线段AD 的中点,若,且,则( ) A. B. C.D.4.【2019年山东省名校试题】【年级得分率:0.5185】等差数列的前n 项和为,且,,则 )A. 10B.-30C.-15D. 255.【2019年福建省名校试题】【年级得分率:0.4444】已知向量,,设函数,则下列关于函数的性质的描述正确的是( ) A. 关于直线对称B. 关于点对称 C. 周期为D.在上是增函数6.【2019年河南省名校试题】【年级得分率:0.4815】 已知各项均为正数的等比数列,,若,则()0f '=( )A. B. C. 128 D.7.【2019年河北省名校试题】【年级得分率:0.6222】对于函数()y f x =,若存在区间[],a b ,当[],x a b ∈时的值域为[](),0ka kb k >,则称()y f x =为k 倍值函数.若()2xf x e x =+是k 倍值函数,则实数k 的取值范围是( )A .()1,e ++∞B .()2,e ++∞C .1,e e ⎛⎫++∞ ⎪⎝⎭D .,e e 2⎛⎫++∞ ⎪⎝⎭8.【2019年河北省名校试题】【年级得分率:0.6667】右图是来自古希腊数学家希波克拉底所研究的几何图形,此图由一个半圆和一个四分之一圆构成,两个阴影部分分别标记为A 和M .在此图内任取一点,此点取自A 区域的概率记为()P A ,取自M 区域的概率记为()P M ,则( ) A .()()P A P M > B .()()P A P M <C .()()P A P M =D .()P A 与()P M 的大小关系与半径长度有关9.【2019年湖北省名校试题】【年级得分率:0.1463】设m R ∈,动直线1:10l x my +-=过定点A ,动直线2:230l mx y m --+=过定点B ,若直线1l 与2l 相交于点P (异于点A ,)B ,则PAB ∆周长的最大值为( ) A .22+ B .221+ C .22+ D .222+10.【2019年江西省名校试题】【年级得分率:0.2105】在三棱锥P ABC -中,90BAC PBA PCA ∠=∠=∠=︒,2PB PC ==,点P 到底面ABC 的距离为1,则三棱锥P ABC -的外接球的表面积为( ) A .3πB .32π C .4πD .34π 11.【2019年湖南省名校试题】【年级得分率:0.2778】 已知定义在R 上的函数是奇函数且满足,,数列满足,且,其中为的前n 项和则)A. B. C. 3 D. 2 12.【2019年山西省名校试题】【年级得分率:0.0732】已知函数()(2x e ef x e x e -=+-为自然对数的底数),()4g x lnx ax ea =--+.若存在实数1x ,2x ,使得12()()12ef xg x -==,且,则实数a 的最大值为( ) A .2e B .25e e + C .52e D .1第II 卷(非选择题)二、填空题(本题共4题,每小题5分,共20分) 13.【2019年安徽省名校试题】【年级得分率:0.2558】 已知向量,,若,则的值为________.14.【2019年广东省名校试题】【年级得分率:0.1296】 已知,,且与的夹角为锐角,则x 的取值范围为________. 15.【2019年河北省名校试题】【年级得分率:0.0526】已知函数()()()e ln x f x ax x ax =--,若()0f x <恒成立,则a 的取值范围是________. 16.【2019年山东省名校试题】【年级得分率:0.4583】 在四面体ABCD 中,AD=AC=BC=BD,AB=CD=.球O 是四面体ABCD 的外接球,过点A 作球O 的截面,若最大的截面面积为,则四面体ABCD 的体积是________.三、解答题(第17题10分,第18-22题每题12分,共70分) 17.【2019年江西省名校试题】【年级得分率:0.5321】已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前n 项和.18.【2019年湖南省名校试题】【年级得分率:0.2841】已知向量1(cos ,),(3sin ,cos 2),R 2a xb x x x =-=∈,设函数()f x a =·b(1)求()f x 的最小正周期.(2)求函数()f x 的单调递减区间.(3)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.19.【2019年广东省名校试题】【年级得分率:0.5833】如图,底面ABCD 是等腰梯形,AD//BC,AD=2AB=2BC=4,点E 为AD 的中点,以BE 为边作正方形BEFG ,且平面BEFG ⊥平面ABCD.(1)证明:平面ACF ⊥平面BEFG , (2)求点D 到平面ACF 的距离.20.【2019年河北省名校试题】【年级得分率:0.1061】 已知A 是圆M :22270x y x +--=上的动点,()1,0B -,P 为线段AM 上一点,满足PA PB =.(1)求点P 的轨迹C 的方程;(2)E ,F 是曲线C 上关于直线l :12y kx =+对称的两点.若以EF 为直径的圆过原点O ,求k 的值.21.【2019年福建省名校试题】【年级得分率:0.1034】已知函数2()(0)a e f x a a x⋅=∈≠R,.(1)当1a =时,求曲线()f x 在点(1,(1))f 处切线的方程; (2)求函数()f x 的单调区间;(3)当(0,)x ∈+∞时,若()1f x ≥恒成立,求a 的取值范围.22.【2019年河南省名校试题】【年级得分率:0.1964】已知()ln xe f x a x ax x=+-. (1)若0a <,讨论函数()f x 的单调性;(2)当1a=-时,若不等式1()()0xf x bx b e xx+---≥在[1,)+∞上恒成立,求b的取值范围.参考答案1.【答案】D【解答】解:,,,.故选D.2.【答案】D【解答】解:数列满足,,可得,,,,数列的周期为3,.故选D.3.【答案】A【解答】解:, ,故选:A.4.【答案】C【解答】解:由等差数列的前n项和的性质可得:,,也成等差数列,,,解得,故选C.5.【答案】D【解答】解:,当时,,不关于直线对称,选项A 错误;当时,,关于直线5=12x π对称,不关于点对称,选项B 错误;得周期,选项C 错误;当时,,在在上是增函数,选项D 正确.故选D . 6.【答案】B【解析】令,其中, 则,故,各项均为正数的等比数列,,,故.故选:B .7.【答案】B 【解析】()y f x =在定义域R 内单调递增, (),()f a ka f b kb ∴==,即2,2a be a ka e b kb +=+=,即,a b 是方程2x e x kx +=的两个不同根,∴2xe k x =+,设2(1)()2,()x x e e x g x g x x x'-=+=, ∴01x <<时,()0g x '<;1x >时,()0g x '>, ∴1x =是()g x 的极小值点,()g x ∴的极小值为:(1)2g e =+,又x 趋向0时,()g x 趋向+∞;x 趋向+∞时,()g x 趋向+∞,2k e ∴>+时,y k =和()y g x =的图象有两个交点,方程2xe k x=+有两个解,∴实数k 的取值范围是()2,e ++∞.故选:B . 8.【答案】C9.【答案】D【解答】解:直线1:10l x my +-=过定点(1,0)A , 直线2:230l mx y m --+=即(2)3m x y -=-, 可得过定点(2,3)B ,()22132AB =+=由于1(1)0m m ⨯+⨯-=,得1l 与2l 始终垂直,又P 是两条直线的交点, PA PB ∴⊥,222||||||4PA PB AB ∴+==.由222a b ab +≥,可得2222()()a b a b +≥+, 那么2222(||||)(||||)PA PB PA PB +≥+, 即有||||2422PA PB +≤⨯=,当且仅当||||2PA PB ==时,上式取得等号, PAB ∴∆周长的最大值为222+.故选:D . 10.【答案】A 【解析】解:把三棱锥P-ABC 放在正方体中,如图所示,因为点P 到平面ABC 的距离为1,所以正方体棱长为1,三棱锥P-ABC 的外接球即此正方体的外接球,所以三棱锥P-ABC 的外接球的半径为13=22R AP =,所以三棱锥P-ABC 的外接球的表面积为243S R ππ==。
故选A. 11.【答案】C【解析】解:函数是奇函数,用代替x,得,用代替x,得所以是周期为3的周期函数.数列满足,且,,且,所以利用递推关系得2343,7,15a a a =-=-=-,故选C . 12.【答案】A【解析】解:显然函数()2x e e f x e x -=+-是单调递增函数,f (e )12e=+,故1x e =, 又211x e x ≤≤,且20x >,所以22e x e ≤≤, 因为()4g x lnx ax ea =--+,()1g x =,,由41lnx ax ea --+=,得()3a x e lnx +=+,3lnx a x e+=+, 设3()lnx h x x e+=+,22()()elnx x h x x e --'=+,对于2ey lnx x=--,是在2(,)e e 上递减函数,最大值为y (e )1120=--<,所以()0h x '< ()h x 单调递减,2()()max h x h e e ==,所以a 的最大值为2e. 故选:A .13.【答案】 【解析】 解:,,,, ,,故答案为. 14.【答案】【解析】 解:若,则,,与的夹角为锐角,.,与的夹角为锐角,,即,,故答案为.15.【答案】1,e e ⎛⎫⎪⎝⎭16.【答案】【解析】如图,因为AD=AC=BC=BD,AB=CD=,所以该长方体的长和宽都是4,设该长方体的高为h,球O 的半径为R,则,,因为过点A 作球O 的截面,最大的截面面积为9π,所以R=3,则h=2,故四面体ABCD 的体积是.17.【答案】解:设是公差为d 的等差数列,是公比为q 的等比数列, 由,,可得, ;即有,,则,则;,则数列的前n 项和为:.18.【答案】 解:由已知可得:,; 由,可得,的单调递减区间为.,,,的最大值为1,最小值为.19.【答案】(1)证明:因为点E 为AD 的中点,AD=2BC,所以AE=BC,因为AD//BC,所以AE//BC,所以四边形ABCE 是平行四边形.因为AB=BC,所以平行四边形ABCE 是菱形,所以AC ⊥BE.因为平面BEFG ⊥平面ABCD,且平面BEFG∩平面ABCD=BE,所以AC ⊥平面BEFG,因为AC ⊆平面ACF,所以平面ACF ⊥平面BEFG .(2)解:记AC,BE 的交点为O,连接OF. 由(1)可知AC ⊥平面BEFG,则AC ⊥OF因为底面ABCD 是等腰梯形,AD//BC,AD=2AB=2BC=4,所以四边形ABCE 是菱形,且∠BAD=60°, 则AE=CE=2,OA=OC=,从而△AEC 的面积S 1=因为平面BEFG ⊥平面ABCD,且四边形BEFG 为正方形,所以EF ⊥AE,EF⊥CE, 所以AF=CF==,则OF==设点D 到平面ACF 的距离为h. 因为,所以,即,解得故点D 到平面ACF 的距离为。