反函数及其图像.

合集下载

反函数课件ppt

反函数课件ppt

05
CATALOGUE
反函数与对数函数、指数函数 的关系
反函数与对数函数的关系
对数函数的反函数是指数函数 。
对数函数和指数函数互为反 函数,它们的图像关于直线
y=x对称。
对数函数和指数函数在数学和 工程中有广泛的应用,例如在 计算复利、解决方程和解决优
化问题等方面。
反函数与指数函数的关系
1
指数函数的反函数是指数函数的倒数,即对数函 数。
公式法
总结词
利用反函数的公式求解
详细描述
对于一些常见的函数,如对数函数、 三角函数等,已经有了它们的反函数 的公式。通过使用这些公式,可以快 速找到反函数的值。这种方法适用于 具有标准形式的函数。
04
CATALOGUE
反函数的应用
解方程
求解方程
通过反函数,可以将方程从一种形式转换为另一种形式,从而简 化求解过程。
反函数的几何意义
01
反函数的几何意义是原函数图像 上任意一点关于y=x对称的点的 集合。
02
反函数图像上的任意一点P(a,b), 在原函数图像上存在一个对称点 P'(b,a),即点P和点P'关于直线 y=x对称。
反函数与原函数的图像关系
当原函数图像是单调递增时,反函数 图像也是单调递增;当原函数图像是 单调递减时,反函数图像也是单调递 减。
ABCD
非单调函数的反函数可能不存在
对于非单调函数,可能不存在反函数,或者存在 多个反函数。
离散函数的反函数可能不存在
离散函数可能没有连续的反函数。
02
CATALOGUE
反函数的图像与几何意义
反函数的图像
反函数的图像是原函数图像关于y=x对称的图形。

反比例函数的图像与性质.

反比例函数的图像与性质.

x 0
y
0
x
如图,函数y=k/x和y=-kx+1(k≠0)在同 一坐标系内的图象大致是 ( D )
6
y
6
y
4
4
2
2
-5
O
-2
5
x
-5
O
-2
5
x
A
-4
B
y
6
-4
先假设某个函数 图象已经画好, 再确定另外的是否 符合条件.
6
y
4
4
2
2
-5
O
-2
5
x
-5
O
-2
5
x
-4
C
D
-4
k 3.已知反比例函数 y (k≠0) x
b’
b B A a’ a
0 书本练习P53. 1 .2
x
已知直线y=kx(k>0) 绕原点旋转,与反比例函数 8 在第一象限交于点P。 y=— X 过点P向X轴,y轴作垂线, 垂足分别是A,B。 问 OAPB是一个什么图形? 随着直线的转动,这个图形 的面积将如何变化?
B B
P
y=kx P
A
A
不变,等于8
C 4
x
Gibco胎牛血清/xueqing/ Gibco胎牛血清
mqu79hno
次装满一大海碗,对耿兰说:“兰儿,你去姥爷那儿跑一趟哇,这个饺子应该比饭店里做的好吃呢,让姥爷和舅舅他们也尝一 尝!”剩下的,郭氏装在干净的竹篮子里,吩咐耿英悬挂到地窖里去了。耿兰从姥爷那儿返回来的时候,娘和姐姐已经把所有 的剩饭剩菜都收拾妥当,并且把几大摞碗碟,以及酒瓶子酒盅筷子什么的都洗刷干净归置好了。郭氏说:“咱们都歇息一会儿 哇,晚上还要热闹呢!娘今儿个很高兴,可也有些个累了呢!”于是,娘三个就在东、西两个厢房内小睡去了。半下午时分, 耿英醒来了。看到妹妹还在酣睡呢,就轻手轻脚地起身下炕来。再轻轻走到西厢房的门口探头往里瞧瞧,见娘还睡得很沉,就 动作轻轻地把晚上“供月”的各色水果都洗干净了空在漏箩里。看到娘和妹妹还没有睡醒的迹象,耿英想,俺也看看水稻去! 于是,她轻手轻脚地出门倒挂上院门,又尽量动作轻轻地拉齐了。然后,就脚步轻盈地往爹试种的水稻田那边去了。耿英先去 了自家的水田边,看到齐刷刷秀了穗儿的水稻在微风中略显沉重地摇曳着。用手捏一捏,真是已经灌了半饱的浆了呢!再看看 稻田周围的几十个草人儿,见它们“手”里绑着的那些个拉了很长的纸旗儿一飘一飘的忒好玩儿,耿英不觉笑出了声儿。高高 兴兴地独自观看一圈后,她又往不远处舅舅家的水田那边溜达过去了。一直到黄昏时分,父子四个才高高兴兴地返回家来。这 个时候,郭氏和耿兰已经把八仙桌和餐桌全都搬到当院儿里了,正在那里摆放各种鲜瓜和鲜果子呢。见父子四个回来了,郭氏 说:“哎呀,这一下午,睡得可真叫个香哇。醒来以后,一点儿都不觉得累了!英子啊,你还是那样经得起摔打哇,早早地就 起来洗好了瓜果,还去看你爹的水稻了?”耿英轻轻笑一笑说:“俺睡了一会儿就不觉得累了。咱们上午那点儿活计,小菜一 碟儿!”耿兰不好意思地说:“可俺像死猪一样,几乎睡了整整一个下午呢!”耿直夸张地瞪大眼睛大声儿对妹妹说:“兰兰 啊,你哪里能跟咱姐比哇!你是咱娘在暖房里养大的嫩苗苗,咱姐可是在旷野中疯长的圪针啊,不光是硬实无比,还扎人呢!” 耿英笑着说:“小直子你就摆忽哇。将来啊,非得让你在咱们家盖的大戏台上,好好儿地过一把你这个喜欢瞎摆忽的瘾不可!” 郭氏不解地看看耿英,又看看耿直,说:“你们都在说些什么呢?嫩苗苗、圪针的,还要让小直子过什么瞎摆忽的瘾?俺怎么 越听越糊涂了?”耿兰假装生气地斜了姐姐和二哥一眼,恨恨地说:“俺也只是听明白了一半呢!娘,咱俩不理他们,还给咱 们咬文嚼字呢!谝他们强,看俺将来不超过他们!”耿老爹听了小女儿这话却非常高兴,笑着说:“就是,俺兰儿一点儿也不 比他们差,将来一定能超过他们的!”耿正对爹说:“俺就喜欢兰

反比例函数的图像和性质

反比例函数的图像和性质
y
A S1 B
A. B. C. D.
S1 S1 S3 S1
= < < >
S2 S2 S1 S2
= S3 < S3 < S2 >S3
C
o
S2 S3 A1 B1 C1
x
7.如图,过平面直角坐标系中的x轴上的整数 点1、2、3、4、5作x轴的垂线,分别交反比例函数 D、E作y轴的垂线。则图中阴影部分的面积是___.
1 4.如图在坐标系中,直线y=x+ 2
k与ห้องสมุดไป่ตู้
4.如图,点A、C是反比例函数
的图
像上的任意两点,过点A作x轴的垂线,过点C 作y轴的垂线,连接OA、OC,设Rt△OAB和 Rt△OCD(O为坐标原点)的面积分别是M和N, y 则M、N的大小关系是( ) A.M>N B.M<N C.M=N D.M和N的大小关系不能确定.
S1
A
B
o
S2
x
C
D
1 5. .如图, 在 y ( x > 0 )的图像上有三点 A , B , C , x 经过三点分别向 x 轴引垂线 , 交 x 轴于 A1 , B1 , C 1 三点 , 边结 OA , OB , OC , 记 OAA 1 , OBB 1 , OCC 1的 面积分别为 S 1 , S 2 , S 3 , 则有 __ .
3 2
5 D. 2
y A D C O B
x
例1.如图:一次函数y=ax+b的图象与 k 反比例函数y= x 交于M (2,m) 、N (1,-4)两点。(1)求反比例函数和一次 函数的解析式;(2)根据图象写出反比 例函数的值大于一次函数 y 的值的x的取值范围。

反比例函数及其图象

反比例函数及其图象

常数$k$。
02
当$k > 0$时,反比例函数的图像 分布在第一象限和第三象限;当 $k < 0$时,反比例函数的图像分 布在第二象限和第四象限。
反比例函数的性质
反比例函数是奇函数,因为对于 任意实数$x$,都有$f(-x) = f(x)$。
当$x$趋向于正无穷或负无穷时, $f(x)$趋向于0,但永远不会等
解决工程问题
材料强度与横截面积的关系
在材料力学中,材料的强度与横截面积成反比关系。这意味着当横截面积增大时,材料的强度减小; 反之,当横截面积减小时,材料的强度增大。这一关系对于设计工程结构和选择材料非常重要。
机械效率与摩擦力的关系
在机械系统中,机械效率与摩擦力之间存在反比例关系。随着摩擦力的增加,机械效率会降低;反之 ,随着摩擦力的减小,机械效率会提高。在设计机械系统时,了解这一关系有助于提高机械设备的效 率和性能。
当 $k < 0$ 时,函数 图像位于第二象限和 第四象限。
当 $k > 0$ 时,函数 图像位于第一象限和 第三象限。
解析式的求解
求函数值
将 $x$ 的值代入解析式中,即可求 得 $y$ 的值。
求未知数
通过已知的点或方程组,可以求出 $k$ 的值或确定函数的表达式。
解析式的应用
解决实际问题
反比例函数可以用于解决 一些实际问题,如电流与 电阻、速度与距离等关系 的问题。
当$k>0$时,反比例函数的图像 分布在第一象限和第三象限,且 随着$x$的增大,$y$的值逐渐减 小。
$k<0$时
当$k<0$时,反比例函数的图像 分布在第二象限和第四象限,且 随着$x$的增大,$y$的值逐渐增 大。
03 反比例函数的解析式

高中数学函数与反函数图像解析

高中数学函数与反函数图像解析

高中数学函数与反函数图像解析函数与反函数是高中数学中的重要概念,对于学生来说,理解函数与反函数的关系以及它们的图像特点是非常关键的。

本文将通过具体的例题,分析函数与反函数的图像特点,并给出解题技巧和使用指导。

一、函数与反函数的定义与关系在数学中,函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。

函数可以用一个公式、一段描述或者一个图像来表示。

反函数则是函数的逆运算,即将函数的输出作为输入,将函数的输入作为输出。

对于函数f(x),如果存在一个函数g(x),使得f(g(x))=x,且g(f(x))=x,那么g(x)就是f(x)的反函数。

函数与反函数之间存在一种互逆的关系,它们的图像关于直线y=x对称。

二、函数与反函数的图像特点1. 函数的图像特点函数的图像是一条曲线,它可以是直线、抛物线、指数曲线等。

对于不同的函数,它们的图像特点也不同。

例如,考虑函数f(x)=x^2,它的图像是一个开口向上的抛物线。

根据函数的定义域和值域,我们可以确定这个抛物线的形状和位置。

对于这个函数,它的定义域是全体实数集,值域是大于等于0的实数集。

因此,这个抛物线在y轴右侧的部分是上升的,而在y轴左侧的部分是下降的。

2. 反函数的图像特点反函数的图像与原函数的图像关于直线y=x对称。

这意味着,如果我们将原函数的图像沿着直线y=x折叠,那么就可以得到反函数的图像。

以前面提到的函数f(x)=x^2为例,它的反函数是g(x)=√x。

我们可以通过绘制函数f(x)和反函数g(x)的图像来观察它们的关系。

首先,我们绘制函数f(x)的图像,得到一个开口向上的抛物线。

然后,我们将这个图像沿着直线y=x折叠,得到反函数g(x)的图像,也就是一条开口向右上方的抛物线。

三、函数与反函数的考点与解题技巧1. 考点:函数的定义域和值域在解题过程中,我们常常需要确定函数的定义域和值域。

定义域是指函数的输入值的集合,值域是指函数的输出值的集合。

反函数与函数的图像变换

反函数与函数的图像变换

反函数与函数的图像变换一、反函数当一个函数是一个一一映射时,可以把这个函数的因变量作为一个新函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数。

比如,指数函数2x y =与对数函数2log x 互为反函数。

函数()y f x =的反函数用1()y f x -=表示。

设函数()y f x =()x A ∈的值域是C ,根据这个函数中,x y 的关系,我们可以用y 把x 表示出来,得到()x y ϕ=,若对于y 在C 中每一个值,都只有唯一的x A ∈与它对应,那么()x y ϕ=就表示以y 为自变量,x 为因变量的一个函数,这样的函数()x y ϕ=()y C ∈叫做函数()y f x =()x A ∈的反函数,记作1()x f y -=,习惯上改写成1()y f x -=。

1f -是对应法则,1()y f x -=是表示反函数的符号,是一个整体。

1f -表示的对应是f 的逆对应,11()()f x f x -≠。

()y f x =也是1()y f x -=的反函数,()y f x =、1()y f x -=互为反函数。

只有当()y f x =是一一映射时,()f x 才有反函数。

特例:2x y =,2log x y →=,2log y x →=,一般:()y f x =,1()x f y -→=,1()y f x -→=。

例1 求下列函数的反函数:(1)21xy -=+()0x >;(2)211,()11,x x f x x x ≤-⎧+=⎨>--+⎩。

二、互为反函数的两个函数的性质:指数函数2x y =与对数函数2log x 的图像关于直线y x =对称。

根据反函数的定义,如果点(),a b 在函数()y f x =上,则点(),b a 在函数1()y f x -=上,从而可知函数()y f x =的图像与函数1()y f x -=的图像关于直线y x =对称。

反比例函数图像和性质

反比例函数图像和性质

VS
化学反应中的浓度问题
在某些化学反应中,反应物的浓度与反应 时间可能成反比例关系。可以利用反比例 函数来分析这种关系,并求解相关问题, 如反应速率、反应时间等。
05
反比例函数与其他类型函数关系探讨
与一次函数关系
反比例函数与一次函数的交点
在某些特定条件下,反比例函数和一次函数可能会有交点。这些交点可以通过解方程组 来找到。
06
总结回顾与拓展延伸
关键知识点总结回顾
反比例函数定义:形如 $y = frac{k}{x}$ ($k$ 为常数 ,$k neq 0$)的函数称为反比例函数。
反比例函数性质
当 $k < 0$ 时,在每个象限内,随着 $x$ 的增大, $y$ 值逐渐增大。
反比例函数图像:反比例函数的图像是双曲线,且以原 点为对称中心。当 $k > 0$ 时,双曲线位于第一、三 象限;当 $k < 0$ 时,双曲线位于第二、四象限。
图像法
通过观察反比例函数的图像,可以发 现其关于原点对称,这也是奇函数的 一个特征。
周期性讨论
周期性定义
周期函数是指函数在某个特定的非零周期长度内重复出现的性质。对于反比例函数,由于其图像不呈 现周期性变化,因此不是周期函数。
非周期性证明
可以通过反证法证明反比例函数的非周期性。假设反比例函数是周期函数,那么在其周期内应该存在 两个相同的点,但是根据反比例函数的定义和性质,这是不可能的。因此,反比例函数不是周期函数 。
变速直线运动
在某些情况下,物体做变速直线运动时,其速度与时间也可能成反比例关系。同样可以利用反比例函数来进行分 析和求解。
浓度问题建模与求解
溶液稀释问题
在溶液稀释过程中,溶质的质量与溶液 的体积成反比例关系。可以通过反比例 函数来描述这种关系,并求解相关问题 ,如稀释后的浓度、所需溶质的质量等 。

最全反三角函数概念图像完整版.doc

最全反三角函数概念图像完整版.doc

反三角函数图像与特征反正弦曲线图像与特征反余弦曲线图像与特征拐点(同曲线对称中心):,该点切线斜率为1 拐点(同曲线对称中心):,该点切线斜率为-1反正切曲线图像与特征反余切曲线图像与特征拐点(同曲线对称中心):,该点切线斜率为1 拐点:,该点切线斜率为-1渐近线:渐近线:名称反正割曲线反余割曲线方程图像顶点渐近线反三角函数的定义域与主值范围函数主值记号定义域主值范围反正弦若,则反余弦若,则反正切若,则反余切若,则反正割若,则反余割若,则一般反三角函数与主值的关系为式中n为任意数数学术语将y作为的主值限在y=x对称。

其,π/2]arcsin x x的角,该角的范围在[-π/2,π/2]在[0,π]上的反函数,叫做反余弦函数。

arccosx的角,该角的范围在[0,π]区间内。

【图中蓝线】⑶在(-π/2,π/2)上的反函数,叫做反正切函数。

arctan x表示一x的角,该角的范围在(-π/2,π/2)区间内。

【图中绿线】注释:【图的画法根据反函数的性质即:反函数图像关于y=x对称】反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条;y=arccos(x),定义域[-1,1] ,值域[0,π],图象用蓝色线条;y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;y=arccot(x),定义域(-∞,+∞),值域(0,π),图象无;sin(arcsin x)=x,定义域[-1,1],值域[-1,1] arcsin(-x)=-arcsinx 证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得其他几个用类似方法可得cos(arccos x)=x,arccos(-x)=π-arccos x tan(arctan x)=x,arctan(-x)=-arctanx反三角函数其他公式:arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arccot(-x)=π-arccotx arcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x arcsin x = x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k-1)/(2k!!*(2k+1))+……(|x|<1) !!表示双阶乘arccos x = π -(x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……)(|x|<1) arctan x = x - x^3/3 + x^5/5 -……举例当x∈[-π/2,π/2] 有arcsin(sinx)=x x∈[0,π],arccos(cosx)=x x∈(-π/2,π/2),arctan(tanx)=x x∈(0,π),arccot(cotx)=x x>0,arctanx=π/2-arctan1/x,arccotx类似若(arctanx+arctany)∈(-π/2,π/2),则arctanx+arctany=arctan((x+y)/(1-xy)) 例如,arcsinχ表示角α,满足α∈[-π/2,π/2]且sinα=χ;arccos(-4/5)表示角β,满足β∈[0,π]且cosβ=-4/5;arctan2表示角φ,满足φ∈(-π/2,π/2)且tanφ=2基本知识:1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系;2.掌握反三角函数的定义域和值域,y=arcsinx, x∈[-1, 1], y∈[-,], y=arccosx, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围;3.符号arcsinx 可以理解为[-,]上的一个角或弧,也可以理解为区间[-,]上的一个实数;同样符号arccosx可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数;4.y=arcsinx等价于siny=x, y∈[-,], y=arccosx等价于cosy=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据;5.注意恒等式sin(arcsinx)=x, x∈[-1, 1] , cos(arccosx)=x, x∈[-1, 1], arcsin(sinx)=x, x∈[-,], arccos(cosx)=x, x∈[0, π]的运用的条件;6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用;7.注意恒等式arcsinx+arccosx=, arctgx+arcctgx=的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y 2x (x R) 有没有反函数?
2
回答:有。是 y 2x(x R)
结论: 若y=f(x)有反函数是y=f –1(x),则函数 y=f –1(x) 的反函数就是y=f(x),它们是互为反函数。
是否任何一个函数都有反函数?
(3)函数y=x2的定义域是__R___,值域是_[_0_,+___)___。如果由
并求f(- 2)与f(3)的值。
解: A
B
f(-2)=-4


3
6 f(3)=6
2 1
4 2
易知 f:A→B为一 一映射
0
0
-1
-2
-2
-4
-3
-6


二、探讨问题(1)若f(x1)=-4, f(x2)=6, 则 x1=_-_2__,x2=___3___
一、反函数的概念
一般地,函数y=f(x) (x A)中,设它的值域为C.我们根
x=f –1(y) 在函数x=f –1(y)中,y表示自变量,x表示函数.但在习惯上, 我们一般用x表示自变量,y用表示函数,为此我们常常对调函 数x=f –1(y) 中的字母x, y,把它改写成y=f –1(x)
反函数的概念的理解 :
问:y x (x R) 称作 y 2x(x R) 的反函数
2. 若y=f(x)有反函数是y=f –1(x),则函数y=f –1(x)的反函数就
是y=f(x),它们是互为反函数。
3. 函数y=f(x)存在反函数的充分必要条件
若函数y=f(x),x A是集合A到集合B的函数,当不同x的
对应不同的y且集合B无剩余元素时,函数y=f(x)存在反函数 4. 反函数与原函数的关系:
1
2
3
4
5x
8 7 6 5 4 3 2 1
8
6
4
2
1
y = f(x)
y = g(x)
2
4
6
8
10
二、图像的对称性
例1 求函数y 3x 2(x R)的反函数; 在同一坐标系中画出原函数 和它的反函数的图像。
解:由y 3x 2,的x y 2 3
y 3x 2的反函数是
反函数的定义域是原函数的值域, 反函数的值域是原函数的定义域。
5、求反函数的步骤: (1)求值:求出y=f(x)的值域 (2)反解: 把y=f(x)看作是x的方程,解出x=f –1(y); (3)互换:将x,y互换得y=f –1(x); (4)注明:注明y=f –1(x)其定义域
(即原 函数的值域 );
解: y 3x 1(x R) 的值域是R
由y 3x 1解得:x y 1,
3
互换经x, y得反函数为:y x 1
3
所以,y

3x
1(x

R)
的反函数是y

x
1 3
(x

R)
(2) y x3 1(x R)
解:y x3 1(x R)的值域是R
由y x3 1解得:x 3 y 1, 互换x, y得反函数为:y 3 x 1 所以,y x3 1(x R) 的反函数是
函数,当不同x的对应不同的y且集合B无剩余 元素时,函数y=f(x)存在反函数.
例:下列函数中,存在反函数的是( )
A y (x 1)2
B y (x 1)2 (x 0)
C y (x 1)2 (x 0) D y (x 1)2 (x 2)
y (x 1)2 的函数图象是:
y 3 x 1(x R)
(3) y x 1(x 0)
解:y x 1(x 0)的值域是y 1
由y x 1解得:x ( y 1)2 ,
互换x, y得反函数为:y (x 1)2
所以,y x 1(x 0) 的反函数是 y (x 1)2 (x 1)
y x 2 (x R) 3
B(-2,0)
图像关于直线
A(0,-2)
y=x对称
例2 求函数y x3(x R)的反函数; 在同一坐标系中画出原函数 和它的反函数的图像。
解: y x3 x 3 y y x3的反函数为y 3 x(x R)
三、小结:
1. 反函数的概念及记号; y=f(x)的反函数记为y=f –1(x) 由反函数的概念知:反函数也是函数
据这个函数中x,y的关系,用y把x表示出来,得到x( y) ,如 果对于y在C中的任何一个值 , 通过x( y) ,x在A中都有唯 一确定的值和它对应,那么,x( y) 就表示y是自变量,x是 自 变 量 y的函数,这样的 函数 x( y) ( y C) 叫做函数
y=f(x) (x A) 的反函数 ,记作
其中,x叫做自变量,x的取值范围A叫做函数的定 义域;与x的值相对应的y的值叫做函数值,函数值的集
合 C f (x) | x A 叫做函数的值域
函数的三要素:定义域A、值域C、对应法则f
什么叫函数?
简言之,函数就是非空数集到非空数集上的映射。
例:画出函数y=2x的定义域到值域上的映射示意图,
(4)
解:
的值域是y R且y 2
由y 2x 3解得:x y 3 ,
x 1
y2
互换x, y得反函数为:y x 3 x2
所以,
的反函数是
y

x x

2 3
(
x

R,
且x

2).
二、求反函数的步骤:
(1)求值:求出y=f(x)的值域 (2)反解:把y=f(x)看作是x的方程,解出x=f –1(y); (3)互换:将x,y互换得y=f –1(x); (4)注明:注明y=f –1(x)其定义域
反函数 3 2.5 2 1.5 1 0.5
2
1
1
2
3
4
镇沅一中 高一223班
复习:函数的概念
设A、B是非空的数集,如果按某个确定的对应关 系f,使对于集合A中的任意一个数x,在集合B中都有唯 一确定的数f(x)和它对应,那么就称f:A B为从集合A 到集合B的一个函数,记作
y=f(x), x A
y
6
5 A y (x 1)2
4 B y (x 1)2 (x 0)
3 C y (x 1)2 (x 0)
2
D y (x 1)2 (x 2)
1
-6
-5
-4
-3
-2
-1
0 -1
1 2 34 5 6x
-2
答案:C
请问,一个函数具有在某区间具有单调 性,那么这个函数一定有反函数吗?
y=x2解出x=_____y____,对于y在[0,+)上任一个值,通过式子
x y, x在R上有_两__个__值和它对应,故x_不__是_y的函数。
这表明函数y=x2没有反函数!
并非所有的函数都有反函数! 什么样的函数才有反函数呢?
函数y=f(x)存在反函数的充分必要条件
若函数y=f(x), x A是集合A 到集合B的
值域:
C
A
结论:反函数的定义域是原函数的值域,
反函数的值域是原函数的定义域。
问:y x (x Z )是不是函数y 2x(x Z )的反函数?
2
答:不是。因为前者的值域显然不是后者的定义域
所以求原来函数的反函数时,必须先确定反函数的定义域
即:确定原函数的值域
例.求下列函数的反函数:
(1) y 3x 1(x R)
例:y=x2在[0,+∞)上是增函数, y=x2也有反函数
例是:它y在=x1x≠在0 上x≠没0 有上单面调具性有!反函数,但
所以,函数在某区间上面具有单调性, 那么肯定有反函数,但是若函数有反 函数,不一定是单调的!
4、反函数与原函数的关系:
表达式: 定义域:
原函数
y=f(x) A
反数数
y=f –1(x) ( x=f –1(y) ) C
(即原函数的值域 );
反函数的图象关系 3 2.5 2 1.5 1 0.5
2
1
1
2
3
4
首先,我们来看两个函数
y log2x y 2x
思考一下,这两个函数图像 有什么关系?
4
y
y=log2x
3
2
1
x
2
O
A2
4
6
8
10
1
2
4.5
y
4 3.5
3 2.5
2 1.5
1 0.5
4
3
2
1
O
0.5
y=2x
相关文档
最新文档