直流无刷电机与永磁同步电机的比较只是分享

合集下载

无刷直流电机与开关磁阻电机进行比较有哪些不同点?

无刷直流电机与开关磁阻电机进行比较有哪些不同点?

无刷直流电机与开关磁阻电机进行比较有哪些不同点?
无刷直流电机与开关磁阻电机进行比较,他们主要有以下几点不同:
1.无刷直流电机转子上嵌有高性能永磁材料,产生用于电机做工的主磁场,电机运转时不用从电网中吸收电能励磁,而开关磁阻电机转子上没有永磁体,电机需要从电网中吸收电能励磁,产生主磁场,造成能量消耗,因而无刷直流电机节能效果好。

2.无刷直流电机定子采用多槽结构,转子磁场与转子磁场几乎同步运转,电机运转平稳性好,震动小;开关磁阻电机定转子均开有少数的齿槽,电机转动时齿槽效应较大,电机震动较大、噪声大。

3.无刷直流电机永磁转子磁场强度高,在电机启动时很小的电流就能长生足够大的转矩,这是其它任何形式的电机所不能比拟的;开关磁阻电机的转矩来自于磁阻效应,起动转矩远不如无刷直流电机大。

4.因无刷直流电机转子上具有超强的磁场,在需要能量反馈的场合,如车辆新型刹车和下坡滑行时,该电动机马上变为发电机给电瓶充电,而不需要任何励磁电流,反馈性能优良;开关磁阻电机转子上既无磁钢又无可加励磁电流的线圈,只能靠磁阻效应发电,反馈性能很差。

5.开关磁阻电机转子既没有任何线圈或磁钢,电机本身的可靠性较高,电机成本较低。

综上所述无刷直流电机与开关磁阻电机相比具有以下特点:
☆电机转速平稳、振动小,增加系统可靠性。

☆系统效率提高20%以上,能使电网品质因数极大提高。

☆启动转矩大、启动电流小。

☆制动性能好,制动电流小。

☆回馈性能好,回馈线路简单。

☆成本较高、本身可靠性稍低。

无刷直流电机与永磁同步电机的比较研究_张勇

无刷直流电机与永磁同步电机的比较研究_张勇
[8 ]
。对于 BLD-
CM 和 PMSM 的无位置传感器控制方法,基于反电动 势过 零 检 测 的 方 法 只 适 用 于 BLDCM, 不 适 用 于 PMSM。其余均适用于 PMSM 和 BLDCM 的无位置传 感器控制法有电感法、基于观测器法、 人工智能法、 磁链法等
[89 ]
2
结构比较
BLDCM 和 PMSM 的基本结构相似。以三相全桥
Comparison Study of Brushless DC Motors and Permanent Magnet Synchronous Motors
ZHANG Yong,CHENG Xiaohua ( School of Electric Power,South China University of Technology,Guangzhou 510460 ,China) Abstract: Brushless DC motor and permanent magnet synchronous motor has many similarities, but there are also some differences between them. The define methods of the brushless DC motor with permanent magnet synchronous motor was analyzed in the paper, the structures between them was compared, The operational performance indicators such as the speed range, starting performance, torque ripple, energy consumption and efficiency,the maximum transmission power capability of the motor, parameter sensitivity of brushless DC motor and permanent magnet synchronous motors were compared,and detailed theoretical explanation or proof was given. Based on the above comparison, the similarities and differences between the two was understood,meaningful guidance was given in the actual selection of the motor case. Key words: brushless DC motor; permanent magnet synchronous motor; structure; operating performance 造成知其然不知其所以然的局面。 为此, 本文立足 前人研究的科研成果,对 BLDCM 和 PMSM 做了一个 系统的理论比较,为同行的学习、 研究起指导作用, 为各生产企业选用电机提供一定参考价值 。

无刷直流电动机与永磁同步电动机的结构和性能比较

无刷直流电动机与永磁同步电动机的结构和性能比较

无刷直流电动机与永磁同步电动机的结构和性能比较1.在电动机结构与设计方面这两种电动机的基本结构相同,有永磁转子和与交流电动机类似的定子结构。

但永磁同步电动机要求有一个正弦的反电动势波形,所以在设计上有不同的考虑。

它的转子设计努力获得正弦的气隙磁通密度分布波形。

而无刷直流电机需要有梯形反电动势波,所以转子通常按等气隙磁通密度设计。

绕组设计方面进行同样目的的配合。

此外,BLDC控制希望有一个低电感的绕组,减低负载时引起的转速下降,所以通常采用磁片表贴式转子结构。

内置式永磁(IPM)转子电动机不太适合无刷直流电动机控制,因为它的电感偏高。

IPM结构常常用于永磁同步电动机,和表面安装转子结构相比,可使电动机增加约15%的转矩。

2.转矩波动两种电动机性能最引人关注的是在转矩平稳性上的差异。

运行时的转矩波动由许多不同因素造成,首先是齿槽转矩的存在。

已研究出多种卓有成效的齿槽转矩最小化设计措施。

例如定子斜槽或转子磁极斜极可使齿槽转矩降低到额定转矩的1%~2%以下。

原则上,永磁同步电动机和无刷直流电动机的齿槽转矩没有太大区别。

其他原因的转矩波动本质上是独立于齿槽转矩的,没有齿槽转矩时也可能存在。

如前所述,由于永磁同步电动机和无刷直流电动机相电流波形的不同,为了产生恒定转矩,永磁同步电动机需要正弦波电流,而无刷直流电动机需要矩形波电流。

但是,永磁同步电动机需要的正弦波电流是可能实现的,而无刷直流电动机需要的矩形波电流是难以做到的。

因为无刷直流电动机绕组存在一定的电感,它妨碍了电流的快速变化。

无刷直流电动机的实际电流上升需要经历一段时间,电流从其最大值回到零也需要一定的时间。

因此,在绕组换相过程中,输入到无刷直流电动机的相电流是接近梯形的而不是矩形的。

每相反电动势梯形波平顶部分的宽度很难达到120°。

正是这种偏离导致无刷直流电机存在换相转矩波动。

在永磁同步电动机中驱动器换相转矩波动几乎是没有的,它的转矩纹波主要是电流纹波造成的。

专升本《电力拖动与控制系统》_试卷_答案

专升本《电力拖动与控制系统》_试卷_答案

专升本《电力拖动与控制系统》一、(共75题,共150分)1。

异步电动机在采用能耗制动时需要( )。

(2分)A.转子回路串电阻B.定子回路串电阻C.把定子回路从电源断开,接制动电阻D。

定子回路通直流电流。

标准答案:D2。

三相桥式交叉连接可逆调速电路需要配置()个限环流电抗器。

(2分)A.1B.2C.3D.4。

标准答案:B3。

闸管反并联可逆调速电路中采用配合控制可以消除( ). (2分)A.直流平均环流B.静态环流C。

瞬时脉动环流 D.动态环流.。

标准答案:A4。

为了检测直流电流信号,且与系统主电路隔离,常用的电流检测方法是( )。

(2分)A。

串联采样电阻 B。

并联采样电阻C。

采用电流互感器 D.采用霍尔传感器。

标准答案:D5. 电流可反向的两象限直流PWM调速系统稳态工作时,当输出电压的平均值小于电机反电势时,电机工作在( )象限。

(2分)A。

1 B。

2 C.3 D。

4.标准答案:B6。

直流斩波调速系统在回馈电流可控的回馈发电制动时,直流电动机的反电势( )直流电源的电压。

(2分)A.大于B.等于 C。

小于。

标准答案:C7。

异步电动机串级调速系统,当调速范围较小时,一般采用的起动方法是(). (2分)A.用串级调速装置起动 B。

定子降压起动。

标准答案:B8。

串级调速系统中,串级调速装置的容量(). (2分)A.随调速范围D的增大而增加;B.随调速范围D的增大而减少;C。

与调速范围D无关..标准答案:A9。

绕线转子异步电动机的串级调速属于( )的调速方法。

(2分)A。

转差功率消耗型 B。

转差功率回馈型C.转差功率不变型.标准答案:B10。

永磁无刷直流电动机的调速系统中功率变换器的变频方式是( )。

(2分)A.他控式变频 B。

自控式变频;C.矢量控制式变频。

标准答案:B11。

无刷直流电动机调速系统的位置检测器使用的是( ) (2分)A.增量式位置检测器 B。

正余弦变压器.标准答案:A12. 永磁无刷直流电动机与永磁同步电动机结构非常相似,永磁无刷直流电动机的气隙磁密波形是() (2分)A.近似方波 B。

永磁电机简要分类

永磁电机简要分类


变频器供电的永磁同步电动机加上转子位置闭环控 制系统构成自同步永磁电动机,既具有电励磁直流 电动机的优异调速特性,又实现了无刷化,在要求 高控制精度和高可靠性的场合,如航空、航天、数 控机床、加工中心、机器人、电动汽车、计算机外 围设备和家用电器等方面都获得广泛应用。通常, 反电动势和供电电流波形都是矩形波的电动机称之 为无刷直流永磁电动机;反电动势和供电电流波形 都是正弦波的电动机,称为永磁同步电动机。


直流永磁电机虽然省却了电励磁系统,由于用“电 刷/换向器”机械接触机构,换向火花、电磁干扰、 寿命短和可靠性等问题仍然存在,极大限制了其使 用范围。 随着微电子器件和电力电子器件方面的进步和发展, 电子换向替代机械换向的技术日益成熟,无刷直流 永磁电机迅猛发展起来。如日常生活中几乎随处可 见的电动摩托车、电动自行车,全部采用了外转子 无刷直流永磁电机。

运行性能方面,有刷直流电动机电枢绕组的元件数 和换向器的换向片数多于无刷直流电动机电枢绕组 的相数,运行过程中有较大的差别:有刷直流电动 机的磁极磁场与电枢磁场始终处于正交状态,而无 刷直流电动机的磁极磁场与电枢磁场在某一角度范 围内变动,正交状态仅只是其中的一个瞬时位置。 因此,在其他条件相同的情况下,在运行过程中, 无刷直流电动机的力矩脉动要大于有刷直流电动机 的力矩脉动,无刷直流电动机的电磁力矩要小于有 刷直流电动机的电磁力矩。

永磁同步电机与传统的电励磁同步电机运行原理相 同。因不需要励磁绕组和直流励磁电源,故取消了 容易出问题的集电环和电刷装置,成为无刷电机。

永磁发电机制成后难以调节磁场以控制其输出电压 和功率因数,从而限制了它的使用范围。如直驱式 永磁风力发电机,与电网间的能量交换必须通过变 频器实现,无法直联。

直流无刷和有刷电机优缺点对比

直流无刷和有刷电机优缺点对比

直流无刷和有刷电机优缺点对比直流无刷电机的原理是在有刷电机的基础上开发和演变的。

在未来的一段时间里将是有刷的替代品随着世界各地发起的保护地球的口号有刷终终究会被无刷所取代。

无刷直流电机的基本原理去掉了碳刷用电子元器件代替。

用电子元器件的开关特性取代机械碳刷使换向变得无机械接触。

无刷相对有刷的电机来说有如下优点一、运行声音小这将是我们这个文明社会必将行进的方向。

另何工具它都要求降低噪声来保护我们的声音环境。

现在最关键的是用在一些需要安静的地方如医院、银行、机场学校等等安静的场所。

二、无火花在一些场合就可以大显身手了有一些易燃易爆的地方。

三、寿命长因为它用控制器代替了换向器和碳刷是有刷电机的几倍甚至十几倍。

碳刷的寿命是有一定的限度的比如一千个小时碳刷就会磨损殆尽只能更换电刷可是更换电机。

四、速度高因为采用了磁场感应没有实质的接触速度可以做的更快。

有了这么多的优点但是也有不好的地方一、造价高控制器的成本增加至少百元拿微电机来说。

原来的换向器和碳刷的成本要低的多。

二、如果使用的环境是在高磁场的地方或曾经接触或和高磁场很近电机将失去作用。

因为电机本身的转子部件是磁体所作是经过充磁才有磁性的经过高磁场将改变转子的磁场或是消掉了部分的磁性电机都将不能正常工作。

再给你补全一点 1 有位置传感器控制方式优点①因为有霍尔位置传感器所以电机换相准确转子位置检测的准确度不受电机转速的影响②不需要外加的转子位置检测电路硬件电路简单③电机换相控制编程简单不需要处理滤波延迟等问题。

缺点①增大了电机的体积。

安装了位置传感器后一方面电机结构变复杂了另一方面电机的体积相对来说变大了妨碍了电机的小型化②增加了电机成本。

容量在数百瓦以下的小容量方波型无刷直流电机常用的霍尔位置传感器的成本相对于电机本体来说所占比例比较大③传感器的输出信号易受到干扰。

传感器的输出信号都是弱电信号在高温、冷冻、湿度大、有腐蚀物质、空气污浊等工作环境及振动、高速运行等工作条件下都会降低传感器的可靠性。

永磁无刷直流电机与永磁同步电机区比较和分析

用的材料大体都一样,主要是设计上的不同.一般无刷直流电机设计的时候,气隙磁场是方波的(梯形波)而且平顶的部分越平越好,因此在极对数选择上一般选取整数槽集中绕组例如4极12槽,并且磁钢一般是同心的扇形环,径向冲磁. 并且一般装Hall传感器来检测位置和速度,驱动方式一般是六步方波驱动,用于位置要求不是很高的场合;而永磁同步是正弦波气隙, 越正弦越好,因此极对数上选择分数槽绕组,如4极15槽,10极12槽等,磁钢一般是面包形,平行充磁, 传感器一般配置增量型编码器,旋转变压器,绝对编码器等.驱动i方式一般采用正弦波驱动,如FOC算法等.用于伺服场合.你可以从内部结构, 传感器, 驱动器,以及应用场合判别.这种电机也可以互换使用,不过会使性能下降.对于大多数气隙波形介于两者之间永磁电机,主要看驱动方式.无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。

无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。

控制时各相电流也尽量控制成方波,逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。

本质上,无刷直流电动机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。

通常说的永磁同步电动机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。

永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制策略。

两者区别可以认为是方波和正弦波控制导致的设计理念不同。

最后纠正一个概念,“直流变频”实际上是交流变频,只不过控制对象通常称之为“无刷直流电机”我的理解中,应该说BLDC和PMSM的差别真的难说,有时候取决于应用了。

传统的说法是他们的反电动势不同,BLDC接近于方波,PMSM接近于正弦波。

新能源汽车驱动电机分类及其特点

新能源汽车驱动电机分类及其特点1.根据结构和工作原理分类驱动电机按照工作电源种类可分为直流电机和交流电机。

按结构和工作原理可分为直流电机、异步电机、同步电机。

目前,在新能源汽车领域,常用的驱动电机有直流电机(DC Motor)、感应电机(IM)、直流无刷电机(BLDC)、永磁同步电机(PMSM)以及开关磁阻电机(SRM)等。

(1)直流电机。

在电动汽车发展的早期,很多电动汽车都是采用直流电机方案。

主要是看中了直流电机的产品成熟,控制方式容易,调速优良的特点。

但由于直流电机本身的短板非常突出,其自身复杂的机械结构(电刷和机械换向器等),制约了它的瞬时过载能力和电机转速的进一步提高;而且在长时间工作的情况下,电机的机械结构会产生损耗,提高了维护成本。

此外,电机运转时的电刷火花会使转子发热,浪费能量,散热困难,还会造成高频电磁干扰,这些因素都会影响整车性能。

由于直流电机的缺点非常突出,目前的电动汽车已经将直流电机淘汰。

(2)交流异步电机。

交流异步电机是目前工业中应用十分广泛的一类电机,其特点是定、转子由硅钢片叠压而成,两端用铝盖封装,定、转子之间没有相互接触的机械部件,结构简单,运行可靠耐用,维修方便。

交流异步电机与同功率的直流电机相比效率更高,质量约轻了1/2。

如果采用矢量控制的控制方式,可以获得与直流电机相媲美的可控性和更宽的调速范围。

由于有着效率高、比功率较大、适合于高速运转等优势,交流异步电机是目前大功率电动汽车上应用较广的电机。

但在高速运转的情况下电机的转子发热严重,工作时要保证电机冷却,同时交流异步电机的驱动、控制系统很复杂,电机本体的成本也偏高,另外,运行时还需要变频器提供额外的无功功率来建立磁场,故相与永磁电机和开关磁阻电机相比,交流异步电机的效率和功率密度偏低,不是能效化的选择。

汽车一般以一定的高速持续行驶,所以能够让高速运转而且在高速时有较高效率的交流异步电机得到广泛应用。

(3)永磁同步电机。

永磁直流无刷电机和永磁同步电机

永磁直流无刷电机和永磁同步电机1. 引言说到电机,很多人可能觉得这就是个硬邦邦的技术话题,其实啊,电机就像我们生活中的小助手,默默为我们的日常服务。

今天,我们就来聊聊两种电机:永磁直流无刷电机(BLDC)和永磁同步电机(PMSM)。

它们都是以“永磁”命名,听起来是不是很高大上?实际上,这两位“电机明星”各有千秋,各有自己的粉丝群体,来,咱们一起深入了解一下它们的故事。

2. 永磁直流无刷电机(BLDC)2.1 什么是BLDC?首先,永磁直流无刷电机就像是一位现代的“高科技小伙”,它的无刷设计让它比传统的有刷电机更加出色。

大家知道,电机里有刷子,像是老古董,容易磨损,还得频繁换,真是让人烦。

可是BLDC就不同了,它彻底告别了刷子,效率高得惊人,使用寿命也大大延长。

听说,有的人用了好几年都没出毛病,简直就像是电机界的“长青树”!2.2 BLDC的应用场景说到应用,BLDC可不是个闲人,简直可以说是无处不在。

无论是电动车、空调,还是咱们常见的吸尘器,甚至是智能手机里的马达,BLDC都有一席之地。

试想一下,当你在炎热的夏天打开空调,清凉的风吹来,那可都是BLDC在默默工作呢!而且,它运行的时候安静得就像小猫咪,让你在家里享受宁静时光。

3. 永磁同步电机(PMSM)3.1 PMSM的特性再来说说永磁同步电机,PMSM也不甘示弱。

它像是一位稳重的绅士,拥有极高的扭矩密度和出色的控制性能。

这位绅士可是电机界的“技术流”,使用的是同步原理,能在各类负载下稳定工作,简直是个全能选手。

很多时候,PMSM被广泛应用在工业领域,比如数控机床、自动化设备等。

它的表现就像一位经验丰富的老手,踏实稳重,给人一种值得信赖的感觉。

3.2 PMSM的优缺点当然,PMSM也有自己的小脾气。

相比BLDC,它的制造成本稍高,毕竟技术含量在那里。

不过,物有所值,使用寿命和运行效率可都是杠杠的,能让你省不少电费呢!这就好比买了个高档手机,虽然贵,但它的性能和体验真心让人满意。

无刷直流电机与永磁同步电机的运行控制比较

12
无刷直流电机的基本控制系统 无刷直流电机的基本控制系统
电流闭环控制结构
I ref
+

位置
PID 调节器
Ia
无刷直流 电动机
I phase
MAX ABS ( I a , I b )
数字低通 滤波
Ib
转矩闭环控制结构
ωr
M ref
位置
1 k2
I ref
+
PID

无刷直流 电动机
Ia
调节器
I phase
ωt
ia
ib
ωt
PWM b
ωt ωt
1 6
1 2
ωt ωt
1 6
1 2 3 2
PWM c
3 2
ic
3 4 5 4 5 6 1 6
(3)梯形波反电势 TT TT T T T T T T T T TT TT TT T T T T T T T T TT 与方波电流在相位上严 格同步。 HALL状态与PWM、三相反电势和三相电流的对应关系 格同步。
T1
T4
H_on-L_pwm型调制方式 (3)H_on-L_pwm型调制方式
T1
T4
ωt
ωt
ωt
ωt
ωt
ωt
T3 T6 T5
T2
0
o
ωt
ωt ωt
T3 T6 T5
T2
ωt
ωt ωt
T3 T6 T5
T2
0
o
ωt
ωt ωt
ωt
60
o
ωt
o
ωt
60
o
120 180 240 300 360 420
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直流无刷电机BLDCM与永磁同步电机PMSM的比较
直流无刷电机BLDCM
Brushless Direct Current Motor
永磁同步电机(交流无刷电机) PMSM(BLACM)
Permanent Magnet Synchronous Motor (Brushless Alternating Current Motor)
1 PMSM和BLDCM相同点和不同点
1.1 PMSM和BLDCM的相似之处
两者其实都是交流电机,起源不同但从结构上看,两者非常相似。

PMSM起源于饶线式同步电机,它用永磁体代替了绕线式同步电机的激磁绕组,它的一个显著特点是反电势波形是正弦波,与感应电机非常相似。

在转子上有永磁体,定子上有三相绕组。

BLDCM起源于永磁直流电机,它将永磁直流电机结构进行“里外翻”,取消了换相器和电刷,依靠电子换相电路进行换相。

转子上有永磁体,定子上有三相绕组。

1.2 PMSM和BLDCM的不同之处
反电势不同,PMSM具有正弦波反电势,而BLDCM具有梯形波反电势。

定子绕组分布不同,PMSM采用短距分布绕组,有时也采用分数槽或正弦绕组,以进一步减小纹波转矩。

而BLDCM采用整距集中绕组。

运行电流不同,为产生恒定电磁转矩,PMSM需要正弦波定子电流;BLDCM需要矩形波电流。

PMSM和BLDCM反电势和定子电流波形如图1所示。

永磁体形状不同,PMSM永磁体形状呈抛物线形,在气隙中产生的磁密尽量呈正弦波分布;BLDCM永磁体形状呈瓦片形,在气隙中产生的磁密呈梯形波分布。

运行方式不同,PMSM采用三相同时工作,每相电流相差120°电角度,要求有位置传感器。

BLDCM采用绕组两两导通,每相导通120°电角度,每60°电角度换相,只需要换相点位置检测。

正是这些不同之处,使得在对PMSM和BLDCM的控制方法、控制策略和控制电路上有很大差别。

2 PMSM和BLDCM特性分析
2.1按照空间应用中最关心的特性:功率密度、转矩惯量比、齿槽转矩和转矩波动、反馈元
件、逆变器容量等特性对PMSM和BLDCM进行对比分析。

2.1功率密度
在机器人和空间作动器等高性能指标应用场合,对于给定的输出功率,要求电机重量越小越好。

功率密度受电机散热能力即电机定子表面积的限制。

对于永磁电机,绝大多数的功率损耗产生在定子,包括铜耗、涡流损耗和磁滞损耗,而转子损耗经常被忽略。

所以对于一个给定的结构尺寸,电机损耗越小,允许的功率密度就越高。

假设PMSM和BLDCM的涡流损耗、磁滞损耗和铜耗相同,比较两种电机的输出功率。

PMSM中,正弦波电流可以通过滞环或PWM电流控制器得到,而铜耗基本上由电流决定。

所以,在相同的尺寸下,BDLCM与PMSM相比,可以多提供15%的功率输出。

如果铁耗也相同,BDLCM的功率密度比PMSM可提高15%。

2.2转矩惯量比
在伺服系统中,通常要求电机的最大加速度,转矩惯量比就是电机本身所能提供的最大加速度。

因为BDLC可以比PMSM多提供15%的输出功率,所以它可获得被PMSM多15%的电磁转矩。

如果BDLC和PMSM具有相同速度,它们的转子转动惯量也相同,那么BDLC的转矩惯量比要比PMSM大15%
2.3齿槽转矩和波动转矩
转矩脉动是机电伺服系统的最大困扰,它使精确的位置控制和高性能的速度控制很困难。

在高速情况下,转子惯量可以过滤掉转矩波动。

但在低速和直接驱动应用场合,转矩波动将严重影响系统性能,将使系统的精度和重复性恶化。

而空间精密机电伺服系统绝大多数工作在低速场合,因此电机转矩脉动问题是影响系统性能的关键因素之一。

PMSM和BLDCM都存在转矩脉动问题。

转矩脉动主要有以下几个原因造成:齿槽效应和磁通畸变、电流换相引起的转矩及机械加工制造引起的转矩。

a.齿槽效应引起的转矩脉动
在永磁电机的电枢电流为零的情况下,当转子旋转时,由于定子齿槽的存在,定子铁芯磁阻的变化产生了齿槽磁阻转矩,齿槽转矩是交变的,与转子的位置有关,它是电动机本身空间和永磁场的函数。

在电机制造上,将定子齿槽或永磁体斜一个齿距,可以使齿槽转矩减小到额定转矩的1%-2%左右。

或者采用定子无槽结构,可以彻底消除齿槽效应,但这些方法都将降低电机的出力。

PMSM和BDLC中的齿槽转矩脉动没有明显的差别。

b.磁通畸变和换相电流畸变引起的转矩脉动
磁通畸变和电流畸变是指PMSM中气隙磁场、反电势和电枢电流是非正弦波,BLDCM中气隙磁场和反电势非梯形波,电枢电流是非矩形波。

气隙磁场和电枢电流相互作用后会产生转矩波动,反电动势与理想波形的偏差越大,引起的转矩脉动越大。

BLDCM中,电机的电感限制了换相时绕组电流的变化率,定子绕组电流不可能是矩形波。

只能得到梯形波电流,引起较大的转矩波动。

另外,BLDCM定子合成磁通不是平滑地旋转,而是以一种不连续地状态向前步进,定、转子旋转磁通不可能是严格同步的,这会造成转矩的脉动,脉动频率为基波的6倍。

而在PMSM中产生正弦波电流是连续的,PMSM理想运行状态是正弦分布的气隙磁密同正弦绕组电流产生恒定转矩,而实际上,PMSM中气隙磁密度也并非完全是正弦波分布,无疑也会引起了转矩脉动。

但它和电枢电流波形不匹配引起的转矩波动要比BDLC中的转矩波动小的多,况且PMSM定子合成磁通是平滑地连续旋转。

因此PMSM的转矩波动明显要小于BLDCM。

c.逆变器电流控制环节引起的转矩脉动
在BLDCM中,电流滞环控制器中滞环宽度和PWM电流控制器开关频率将引起BLDCM实际电流围绕期望电流上下高频波动,电机转矩也出现高频波动,通常幅度要低于换相电流引起的转矩波动。

在PMSM中,也会出现由滞环或PWM电流控制器引起的高频转矩波动,通常比较小,并由于开关频率较高,很容易被转子惯量过滤掉。

因此,从转矩波动看,PMSM比BDLC具有明显的优势,BDLCM适合用在低性能低精度的速度和位置伺服系统。

而PMSM适合用在高性能的速度和位置伺服系统。

2.4伺服系统中的信号反馈元件
PMSM需要正弦波电流,而BLDCM需要矩形波电流,导致了反馈元件的不同。

BLDCM中,每一时刻只有两相绕组导通,每相导通120°电角度,电流每60°电角度换相一次,只要正确检测出这些换相点,就能保证电机正常运行,在通常的机电系统中最常见的位置传感器是霍尔位置开关。

在PMSM中,需要正弦波电流,电流幅值由转子瞬时位置决定,电机工作时所有三相绕组同时导通,需要连续的位置传感器,在速度伺服系统中仍需连续位置传感器,空间机电系统中最常见的位置传感器有旋转变压器+RDC解码模块或光电编码器。

BLDCM构成的速度伺服系统中,只需要一个低分辨率的传感器,从这一点看,如果换相引起的转矩波动可以接受,BLDCM比PMSM更适合于速度伺服系统,而在位置伺服系统中,由于需要位置传感器,BLDCM与PMSM相比没有优势。

2.5逆变器容量
2.6控制系统结构不同
分别以空间应用常见PMSM位置伺服系统和BLDCM位置伺服系统为例说明主要区别。

基于三环控制结构的PMSM转子磁场定向位置伺服系统见图2所示。

因此,在转子磁链定向控制中,把定子电流矢量始终控制在q轴上,即定子电流d轴励磁分量id=0,准确检测出转子空间位置(d轴),通过控制逆变器使三相定子的合成电流矢量位于q轴上,那么电机的电磁转矩只与定子电流的幅值成正比,就能很好地控制转矩。

电流环通常采用PWM电流跟踪控制。

基于三环控制结构的BLDCM位置伺服系统控制框图见图3所示。

从上面系统控制结构可以看出,基于PMSM和BLDCM组成的伺服系统两者最大的区别在于电流环的控制上。

在PMSM位置伺服系统中,只要改变给定位置信号的极性,就可以使PMSM 方便地在四象限运行。

而在BLDCM位置伺服系统中,必须经过运行状态(正、反转,电、制
动)判别后,经过逻辑控制单元产生功率开关控制信号,再与PWM信号综合后驱动功率电路,从而控制BLDCM的运行。

相关文档
最新文档