最大值最小值问题ppt课件
合集下载
人教版必修1教学课件:1 第2课时 函数的最大值、最小值课件牛老师

t≤1 时, f(x)在区间[t,t+1]上先减再增, 故当 x=1 时,f(x)取得最小值, 此时 g(t)=f(1)=2. ③当 t+1<1,即 t<0 时,f(x)在[t,t+1]上单 调递减,
所以当 x=t+1 时,f(x)取得最小值, 此时 g(t)=f(t+1)=t2+2,
()
A.f(2),f(-2) C.f(12),f(-32) 答案: C
B.f(12),f(-1) D.f(12),f(0)
2.函数 f(x)=2xx++76
x∈[1,2] x∈[-1,1]
,则 f(x)
的最大值、最小值为( )
A.10,6
B.10,8
C.8,6
D.以上都不对
解析: 本题为分段函数最值问题,其最大值 为各段上最大值中的最大值,最小值为各段上 最小值中的最小值. 当1≤x≤2时,8≤2x+6≤10, 当-1≤x≤1时,6≤x+7≤8. ∴f(x)min=f(-1)=6,f(x)max=f(2)=10. 答案: A
[题后感悟] 利用函数图象求最值是求函数最 值的常用方法.这种方法以函数最值的几何意 义为依据,对较为简单的且图象易作出的函数 求最值较常用.图象法求最值的一般步骤是:
值.
1.试求函数 y=|x-2|+ x+12的最
解析: 原函数变为 y=|x-2|
+|x+1|=
-2x+1
3 2x-1
x≤-1 -1<x≤2
数M满足:
条件
(1)对于任意的x∈I, 都有_f_(x_)_≤__M__.
(1)对任意x∈I,都 有_f(_x_)_≥__M_.
_(f_2(x_)存0_)_=在__Mx_0.∈I,使
(_f2_()x_存0_)_=在__Mx_0∈I,使
所以当 x=t+1 时,f(x)取得最小值, 此时 g(t)=f(t+1)=t2+2,
()
A.f(2),f(-2) C.f(12),f(-32) 答案: C
B.f(12),f(-1) D.f(12),f(0)
2.函数 f(x)=2xx++76
x∈[1,2] x∈[-1,1]
,则 f(x)
的最大值、最小值为( )
A.10,6
B.10,8
C.8,6
D.以上都不对
解析: 本题为分段函数最值问题,其最大值 为各段上最大值中的最大值,最小值为各段上 最小值中的最小值. 当1≤x≤2时,8≤2x+6≤10, 当-1≤x≤1时,6≤x+7≤8. ∴f(x)min=f(-1)=6,f(x)max=f(2)=10. 答案: A
[题后感悟] 利用函数图象求最值是求函数最 值的常用方法.这种方法以函数最值的几何意 义为依据,对较为简单的且图象易作出的函数 求最值较常用.图象法求最值的一般步骤是:
值.
1.试求函数 y=|x-2|+ x+12的最
解析: 原函数变为 y=|x-2|
+|x+1|=
-2x+1
3 2x-1
x≤-1 -1<x≤2
数M满足:
条件
(1)对于任意的x∈I, 都有_f_(x_)_≤__M__.
(1)对任意x∈I,都 有_f(_x_)_≥__M_.
_(f_2(x_)存0_)_=在__Mx_0.∈I,使
(_f2_()x_存0_)_=在__Mx_0∈I,使
极差PPT精品课件

(1)这50个家庭存款的极差是多少?
(2)请你根据上述数据作出频数分布直方图。
2、公园有两条石级路,第一条石级 路的高度分别是(单位:cm):15, 16,16,14,15,14;第二条石级 路的高度分别是11,15,17,18, 19,10,哪条路走起来更舒服?
交流反思
1.了解极差的意义.
极差是最简单的一种度量数据波动情况 的量,但只能反映数据的波动范围,不能衡 量每个数据的变化情况,而且受极端值的 影响较大.
25
20
15
2001年
10
2002年
5
0
极差越大,波动越大
21日 22日 23日 24日 25日 26日 27日 28日
练习
1.试计算下列两组数据的极差: A组:0, 10, 5, 5, 5, 5, 5, 5, 5, 5; B组:4, 6, 3, 7, 2, 8, 1, 9, 5, 5.
A组:10 – 0 = 10 B组:9 – 1 = 8
2.知道极差的计算方法.
极差=最大值-最小值.
3.会绘制和观察折线图,能应用极差对简单问题 做出判断.
长安回望《绣过成华堆清,山宫顶绝千句门》次第开。
骑 一 红尘妃子笑,无人知是荔枝来。
——唐 杜牧
专题四 第二节
• 交通和通信工具的进步
• •
第一框题我们将学到:
• 中国古代到近现代交通工具演进的
(3)电信事业发展 ——电报、电 话
材料一:李鸿章指出:“用兵之道必以神速为贵,是以西方各国讲求 枪炮之外,水路则有快轮船,陆路则有火轮车,而数万里海洋, 欲通军信,则又有电报之法。”由于开设电报利于防务、外交和 商务,清政府便下令沿海疆吏设法查办。1881年,李鸿章架设 了北塘直达天津的电报线。到1892年,经过10多年努力,全国 主要地区都开设了电报。
(2)请你根据上述数据作出频数分布直方图。
2、公园有两条石级路,第一条石级 路的高度分别是(单位:cm):15, 16,16,14,15,14;第二条石级 路的高度分别是11,15,17,18, 19,10,哪条路走起来更舒服?
交流反思
1.了解极差的意义.
极差是最简单的一种度量数据波动情况 的量,但只能反映数据的波动范围,不能衡 量每个数据的变化情况,而且受极端值的 影响较大.
25
20
15
2001年
10
2002年
5
0
极差越大,波动越大
21日 22日 23日 24日 25日 26日 27日 28日
练习
1.试计算下列两组数据的极差: A组:0, 10, 5, 5, 5, 5, 5, 5, 5, 5; B组:4, 6, 3, 7, 2, 8, 1, 9, 5, 5.
A组:10 – 0 = 10 B组:9 – 1 = 8
2.知道极差的计算方法.
极差=最大值-最小值.
3.会绘制和观察折线图,能应用极差对简单问题 做出判断.
长安回望《绣过成华堆清,山宫顶绝千句门》次第开。
骑 一 红尘妃子笑,无人知是荔枝来。
——唐 杜牧
专题四 第二节
• 交通和通信工具的进步
• •
第一框题我们将学到:
• 中国古代到近现代交通工具演进的
(3)电信事业发展 ——电报、电 话
材料一:李鸿章指出:“用兵之道必以神速为贵,是以西方各国讲求 枪炮之外,水路则有快轮船,陆路则有火轮车,而数万里海洋, 欲通军信,则又有电报之法。”由于开设电报利于防务、外交和 商务,清政府便下令沿海疆吏设法查办。1881年,李鸿章架设 了北塘直达天津的电报线。到1892年,经过10多年努力,全国 主要地区都开设了电报。
高等数学-第七版-课件-3-6 函数的极值与最大值最小值

o
x
定义 设函数f(x)在点x0的某邻域U(x0)内有定义, 如果对于去心邻域U0(x0)内的任一x,有 y f(x)<f(x0)(或f(x)>f(x0)) 称f(x0)为函数f(x)的一个极大值(极小值) 函数的极大值与极小值统称为函数的极值, 使函数取得极值的点称为极值点 注 极值是一个局部的概念
海岸位于A点南侧40km,是一条东西走向的笔直长堤. 演习中部队先从A出发陆上行军到达海堤,再从海堤处乘舰艇 到达海岛B. 已知陆上行军速度为每小时36km,舰艇速度为
每小时12km.问演习部队在海堤的何处乘舰艇才能使登岛用 y 时最少? 分析 陆上行军耗时 o 海上行军耗时 A
(0,40)
? R(x,0) B
x
(140,-60)
三、最大值最小值问题
(一)最大值最小值求法
(二)最值应用问题
三、最大值最小值问题
(一)最大值最小值求法
(二)最值应用问题
例4 从边长为a的一张正方形薄铁皮的四角切去 边长为x的四个小正方形,折转四边,作一 个盒子,问x为何值时盒子的容积最大?
例5 某企业以钢材为主要生产材料。设该厂每天的钢材需求量为 R吨,每次订货费为C1元,每天每吨钢材的存贮费为C2元 (其中R、 C1、 C2为常数),并设当存贮量降为零时,能 立即得到补充(在一个订货周期内每天的平均存贮量为订货 量的二分之一)求一个最佳的订货周期,使每天的平均费用 最小? q(t) Q o T C C0
o
x
定义 设函数f(x)在区间I上有定义,如果存在x0∈I,使得对于区间I内 的任一x,有 f(x)≤f(x0)(或f(x)≥f(x0)),则称f(x0)为函数f(x) 在区间I上的最大值(或最小值).
高数数学必修一《3.2.1.2函数的最大(小)值》教学课件

几何意义
f(x)图象上最高点的 ___纵_坐_标_____
f(x)图象上最低点的 ___纵_坐_标_____
微点拨❶
(1)最大(小)值必须是一个函数值,是值域中的一个元素,如函数y= x2(x∈R)的最小值是0,有f(0)=0.
(2)最大(小)值定义中的“任意”是说对于定义域内的每一个值都必 须满足不等式,即对于定义域内的全部元素,都有f(x)≤M(f(x)≥M)成 立,也就是说,函数y=f(x)的图象不能位于直线y=M的上(下)方.
①比较两个函数的图象,它们是否都有最高点? ②通过观察图1你能发现什么?
(2)观察下面两个函数的图象,回答下列问题.
①比较两个函数的图象,它们是否都有最低点? ②通过观察图3你能发现什么?
提示:①题图3中函数f(x)=x2的图象有一个最低点. 题图4中函数y=x的图象没有最低点. ②对任意x∈R,都有f(x)≥f(0).
M].( × )
2.函数f(x)在[-2,+∞)上的图象如图所示,则此函数的最大值和最
小值分别为( )
A.3,0
B.3,1
C.3,无最小值 D.3,2
答案:C 解析:由图可知,f(x)在[-2,+∞)上的最大值为3,最小值取不到.故选C.
3.已知函数y=2x,x∈[1,2],则此函数的最大值是____2____,最小 值是____1____.
课堂小结 1.函数最大值、最小值的定义. 2.求函数最值的方法.
提示:(1)最大值为f(b),最小值为f(a). (2)不一定,需要考虑函数的单调性.
例2 已知f(x)=2xx++11. (1)用定义证明f(x)在区间[1,+∞)上单调递增; (2)求该函数在区间[2,4]上的最大值.
新教材人教B版必修第一册 3.1.2.2 函数的最大值、最小值 课件(57张)

5 4a,a 2.
(2)当a≤1时,f(x)max=f(2)=5-4a;
当a>1时,f(x)max=f(0)=1,
所以f(x)max=
5 4a,a 1, 1,a 1.
【解题策略】一元二次函数的最值
(1)不含参数的一元二次函数的最值配方或利用公式求出对称轴,根据对称轴和定义域的关系确定最值
【思路导引】求函数的最大值、最小值问题,应先考虑其定义域,由于是二次函 数,所以可以采用配方法和图像法求解.
【解题策略】 (1)函数y=ax2+bx+c(a>0)在区间 (, b ]上是减函数,在区间
2a
[ b , )上是增函数,当x=- b 时,函数取得最小值.
2a
2a
(2)函数y=ax2+bx+c(a<0)在区间 (, b ] 上是增函数,在区间 [ b , ) 上是
点,代入函数解析式求最值.
(2)含参数的一元二次函数的最值以一元二次函数图像开口向上、对称轴为x=m,区间[a,b]为例,
f a , m a,
①最小值:f(x)min=
f
m
,
a
m
b,
f b, m b.
②最大值:f(x)max=
f f
a, b,
m m
a a
2 2
b, b.
当开口向下、区间不是闭区间等时,类似方法进行讨论,其实质是讨论对称轴与区间的位置关系.
x1≠x2,记y1=f(x1),y2=f(x2), y y2 y1 (即 f ___x_2___x_1____),
x x2 x1 x
称 f f x2 f x1 为函数在区间[x1,x2](x1<x2时)或[x2,x1](x1>x2时)上的平均
(2)当a≤1时,f(x)max=f(2)=5-4a;
当a>1时,f(x)max=f(0)=1,
所以f(x)max=
5 4a,a 1, 1,a 1.
【解题策略】一元二次函数的最值
(1)不含参数的一元二次函数的最值配方或利用公式求出对称轴,根据对称轴和定义域的关系确定最值
【思路导引】求函数的最大值、最小值问题,应先考虑其定义域,由于是二次函 数,所以可以采用配方法和图像法求解.
【解题策略】 (1)函数y=ax2+bx+c(a>0)在区间 (, b ]上是减函数,在区间
2a
[ b , )上是增函数,当x=- b 时,函数取得最小值.
2a
2a
(2)函数y=ax2+bx+c(a<0)在区间 (, b ] 上是增函数,在区间 [ b , ) 上是
点,代入函数解析式求最值.
(2)含参数的一元二次函数的最值以一元二次函数图像开口向上、对称轴为x=m,区间[a,b]为例,
f a , m a,
①最小值:f(x)min=
f
m
,
a
m
b,
f b, m b.
②最大值:f(x)max=
f f
a, b,
m m
a a
2 2
b, b.
当开口向下、区间不是闭区间等时,类似方法进行讨论,其实质是讨论对称轴与区间的位置关系.
x1≠x2,记y1=f(x1),y2=f(x2), y y2 y1 (即 f ___x_2___x_1____),
x x2 x1 x
称 f f x2 f x1 为函数在区间[x1,x2](x1<x2时)或[x2,x1](x1>x2时)上的平均
三角函数的最值PPT优秀课件

=
(2+sinx)2-1 2+sinx
=2+sinx-
1 2+sinx
.
令 2+sinx=t,
则
y=f(t)=t-
1 t
(1≤t≤3).
对于任意的 t1, t2[1, 3], 且 t1<t2 有
f(t1)-f(t2)=(t1-
1 t1
)-(t2-
1 t2
)
=(t1-t2)(
1+t1t2 t1t2
) <0.
求 m 的取
解法 2 题中不等式即为 2(1-sin)m>-1-sin2.
∵[0,
2
],
∴0≤sin≤1.
当 sin=1 时, 不等式显然恒成立, 此时 mR;
当 0≤sin<1 时,
m>-
1+sin2 2(1-sin)
恒成立.
令 t=1-sin, 则 t(0, 1], 且
m>-
一、高考要求
1.能利用三角函数的定义域、值域、单调性和它们的图象 等, 求三角函数的最大值和最小值.
2.能利用换元法求某些三角函数在给定区间上的最大值和 最小值.
3.会把实际问题化归成三角函数的最大值和最小值问题来 解决.
二、重点解析
最值问题是三角中考试频率最高的重点内容之一, 需要综 合运用三角函数概念、图象、性质以及诱导公式、同角三角函 数基本关系式、三角变换等, 也是函数内容的交汇点, 常见方 法有:
1 2
[(t+a)2+a2-1].
∵a 为常数, ∴只需求 y=(t+a)2 的最值.
∵t[- 2 , 2 ], 且 a≥0,
人教版高中数学选择性必修2《函数的极值与最大(小)值》PPT课件

根据以上信息,我们画出f(x)的大致图象如图所示.
(3)方程()=( ∈ )的解的个数为函数=()的图象与直线=的
交点个数.
1
由(1)及图可得,当= − 2时,()有最小值( − 2)=− e2.
所以,关于方程()=( ∈ )的解的个数有如下结论:
1
当 < − e2时,解为0个;
结合上面两图以及函数极值中的例子,不难看出,只要把函数=()的所有极值连同
端点的函数值进行比较,就可以求出函数的最大值与最小值.
在开区间(,)上函数的最值常见的有以下几种情况:
图(1)中的函数=()在(,)上有最大值而无最小值;
图(2)中的函数=()在(,)上有最小值而无最大值;
(2),(4),(6)是函数=()的极大值.
探究:进一步地,你能找出函数=()在区间[,]上的最小值、最大值吗?
从图中可以看出,函数=()在区间[,]上的最小值是(3 ),最大值是().
在下面两图中,观察[,]上的函数=()和=()的图象,它们在[,]上
当半径 < 2时, ′() < 0,()单调递减,即半径越大,利润越低.
(1)半径为6 cm时,利润最大.
(2)半径为2 cm时,利润最小,这时(2) < 0,表示此种瓶内饮料的利润还不
够瓶子的成本,此时利润是负值.
换一个角度:如果我们不用导数工具,直接从函数()的图象上观察,你
=()=0.2 ×
4
3
π
3
−
3
2
0.8π =0.8π
3
− 2 ,0 < ≤ 6.
所以 ′()=0.8π(2 − 2).
令 ′()=0,解得=2.
当 ∈ (0,2)时, ′() < 0;当 ∈ (2,6)时, ′() > 0.
初中八年级(初二)数学课件 最大值、最小值问题

f (1) 7; f (4) 142. 比较得 最大值 f (4) 142, 最小值 f (1) 7.
实际问题求最值应注意: (1)建立目标函数; (2)求最大值或最小值; 若目标函数只有唯一驻点,则该点处的函数值 即为所求的最大值或最小值.
例2 某房地产公司有50套公寓要出租,当租 金定为每月180元时,公寓会全部租出去.当租金 每月增加10元时,就有一套公寓租不出去,而租出 去的房子每月需花费20元的整修维护费.试问房租 定为多少可获得最大收入?
注意:如果函数在区间内只有一个极值,则这个 极值就是最大值或最小值.
二、应用
例1 求函数 y 2x3 3x2 12x 14 的在 [3,4]
上的最大值与最小值.
解 f ( x) 6( x 2)( x 1)
解方程 f ( x) 0,得 x1 2, x2 1.
计算 f (3) 23; f (2) 34;
R(350)
(350
20)
6831500 108 Nhomakorabea0 (元).
例4 由直线 y 0,x 8 及抛物线 y x2 围
成一个曲边三角形,在曲边 y x2 上求一点,使 曲线在该点处的切线与直线 y 0 及 x 8 所围成 的三角形面积最大.
解 如图,
设所求切点为P( x0 , y0 ),
x0 16 (舍去).
P
oA
T B
Cx
S(16) 8 0. S(16) 4096 为极大值 .
3
3 217
故 S(16) 4096为所有三角形中面积的最大者. 3 27
则切线 PT 为 y y0 2x0( x x0 ),
y
P
oA
T B
Cx
y0 x02 ,
实际问题求最值应注意: (1)建立目标函数; (2)求最大值或最小值; 若目标函数只有唯一驻点,则该点处的函数值 即为所求的最大值或最小值.
例2 某房地产公司有50套公寓要出租,当租 金定为每月180元时,公寓会全部租出去.当租金 每月增加10元时,就有一套公寓租不出去,而租出 去的房子每月需花费20元的整修维护费.试问房租 定为多少可获得最大收入?
注意:如果函数在区间内只有一个极值,则这个 极值就是最大值或最小值.
二、应用
例1 求函数 y 2x3 3x2 12x 14 的在 [3,4]
上的最大值与最小值.
解 f ( x) 6( x 2)( x 1)
解方程 f ( x) 0,得 x1 2, x2 1.
计算 f (3) 23; f (2) 34;
R(350)
(350
20)
6831500 108 Nhomakorabea0 (元).
例4 由直线 y 0,x 8 及抛物线 y x2 围
成一个曲边三角形,在曲边 y x2 上求一点,使 曲线在该点处的切线与直线 y 0 及 x 8 所围成 的三角形面积最大.
解 如图,
设所求切点为P( x0 , y0 ),
x0 16 (舍去).
P
oA
T B
Cx
S(16) 8 0. S(16) 4096 为极大值 .
3
3 217
故 S(16) 4096为所有三角形中面积的最大者. 3 27
则切线 PT 为 y y0 2x0( x x0 ),
y
P
oA
T B
Cx
y0 x02 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的极值点和区间端点处取得
7
2.函数y f (x)在给定的区间上取得最值的条件?
y
y f (x)
a x1 o
X2
X3
bx
8
最值定理
若函数y f ( x)在闭区间[a, b]上的图像 是一条连续不间断的曲线,则该函数在[a, b] 上一定能取得最值,最值在区间的端点或者 极值点处取得.
9
3.给定函数y f (x),x [a,b]如何求取最值?
11
练习1:求函数y x3 12x2 45x 10, x [0,10] 的最值? 练习2:求函数f ( x) sin x cos x, x [ , ]的
22 最大值最小值
12
课堂小结
1.最值定理: 2.求取函数最值的步骤:
13
作业布置
课本P69第2题,P71第2题
14
15
y
y f (x)
a x1 o
X2
X3
bx
10
4.函数y f (x)的最值与极值的联系与区别?
(1). 函数的极大(小)值可能有多个,而最大(小)值只 有唯一的一个
(2)极大值不一定比极小值大,但是最大值一定比最小值大 (3)极值只能在区间的内部取得,不能在端点处取得,而函 数的最值可以在端点处取得 (4)函数的最值在函数在整个定义域内的整体性质,极 值只是函数在某一点附近的局部性质
函数在这个区间上所有点的函数值都不大于f ( x0 ) 函数f ( x)在区间[a, b]上的最小值点x0指的是:
函数在这个区间上所有的点的函数值都不小于f ( x0 )
3
2.函数y f (x)在闭区间[a,b]上最值的取值规律?
(1) f ( x) x 1
x [2,0] x [2,4] x [2,2]
最大值与最小值问题(一)
导数与函数的最值问题
1
情境引入
如图,在边长为60cm的正方形铁片的四角上切去 相等的正方形,再把它的边沿虚线折起,做成一个无 盖的方底箱子,要求箱子的高度不小于5cm且不大于
20cm,问当箱子的高度为多少时,容积最大?最大容
积是多少?
2
探究新知
一、函数的最值的概念
函数f ( x)在区间[a, b]上的最大值点x0指的是:
y
y x142ຫໍສະໝຸດ -20245
x
-2
-4
4
2.函数y f (x)在闭区间[a,b]上最值的取值规律?
(2) f ( x) x2 2x 3
x [2,0] x [2,4] x [2,2]
y y f (x)
4
2
-2
0 12
4 55 x
-2
-4
5
2.函数y f (x)在闭区间[a,b]上最值的取值规律?
(3) f ( x) x3 3x 3
x [2,0] x [0,2]
x [2,2]
y
6
5
y f (x)
4
2
1
-2 -1 0 1 2
x
6
函数y f (x)在闭区间[a,b]上最值的取值规律?
(3) y f ( x), x [a,b]
y
y f (x)
a x1 o
X2
X3
bx
结论:函数y f ( x)在[a, b]上的最值在函数
7
2.函数y f (x)在给定的区间上取得最值的条件?
y
y f (x)
a x1 o
X2
X3
bx
8
最值定理
若函数y f ( x)在闭区间[a, b]上的图像 是一条连续不间断的曲线,则该函数在[a, b] 上一定能取得最值,最值在区间的端点或者 极值点处取得.
9
3.给定函数y f (x),x [a,b]如何求取最值?
11
练习1:求函数y x3 12x2 45x 10, x [0,10] 的最值? 练习2:求函数f ( x) sin x cos x, x [ , ]的
22 最大值最小值
12
课堂小结
1.最值定理: 2.求取函数最值的步骤:
13
作业布置
课本P69第2题,P71第2题
14
15
y
y f (x)
a x1 o
X2
X3
bx
10
4.函数y f (x)的最值与极值的联系与区别?
(1). 函数的极大(小)值可能有多个,而最大(小)值只 有唯一的一个
(2)极大值不一定比极小值大,但是最大值一定比最小值大 (3)极值只能在区间的内部取得,不能在端点处取得,而函 数的最值可以在端点处取得 (4)函数的最值在函数在整个定义域内的整体性质,极 值只是函数在某一点附近的局部性质
函数在这个区间上所有点的函数值都不大于f ( x0 ) 函数f ( x)在区间[a, b]上的最小值点x0指的是:
函数在这个区间上所有的点的函数值都不小于f ( x0 )
3
2.函数y f (x)在闭区间[a,b]上最值的取值规律?
(1) f ( x) x 1
x [2,0] x [2,4] x [2,2]
最大值与最小值问题(一)
导数与函数的最值问题
1
情境引入
如图,在边长为60cm的正方形铁片的四角上切去 相等的正方形,再把它的边沿虚线折起,做成一个无 盖的方底箱子,要求箱子的高度不小于5cm且不大于
20cm,问当箱子的高度为多少时,容积最大?最大容
积是多少?
2
探究新知
一、函数的最值的概念
函数f ( x)在区间[a, b]上的最大值点x0指的是:
y
y x142ຫໍສະໝຸດ -20245
x
-2
-4
4
2.函数y f (x)在闭区间[a,b]上最值的取值规律?
(2) f ( x) x2 2x 3
x [2,0] x [2,4] x [2,2]
y y f (x)
4
2
-2
0 12
4 55 x
-2
-4
5
2.函数y f (x)在闭区间[a,b]上最值的取值规律?
(3) f ( x) x3 3x 3
x [2,0] x [0,2]
x [2,2]
y
6
5
y f (x)
4
2
1
-2 -1 0 1 2
x
6
函数y f (x)在闭区间[a,b]上最值的取值规律?
(3) y f ( x), x [a,b]
y
y f (x)
a x1 o
X2
X3
bx
结论:函数y f ( x)在[a, b]上的最值在函数