2020届高中数学分册同步讲义(必修1) 初中、高中衔接课 第2课时
2020学年新教材高中数学第三章函数概念与性质3.1.2函数的表示法第二课时分段函数课件新人教A版必修第一册

x+2,x<0. 根据函数解析式作出函数图象,如图所示. 由图象可以看出,函数的值域为{y|y≤2}. 答案:{y|y≤2}
[方法技巧] 1.求分段函数函数值的方法 (1)先确定要求值的自变量属于哪一段区间. (2)然后代入该段的解析式求值,直到求出值为止. 当出现 f(f(x0))的形式时,应从内到外依次求值. 2.已知函数值求字母取值的步骤 (1)先对字母的取值范围分类讨论. (2)然后代入到不同的解析式中. (3)通过解方程求出字母的值. (4)检验所求的值是否在所讨论的区间内.
(1)分段函数是一个函数,切不可把它看成是几个函数.分段 函数在书写时要用大括号把各段函数合并写成一个函数的形式, 并且必须指明各段函数自变量的取值范围.
(2)一个函数只有一个定义域,分段函数的定义域只能写成一 个集合的形式,不能分开写成几个集合的形式.写分段函数的定 义域时,区间端点应不重不漏.
(3)求分段函数的值域,是分别求出各段上的值域后取并集.
[方法技巧]
分段函数图象的画法
(1)对含有绝对值的函数,要作出其图象,首先应根据绝 对值的意义去掉绝对值符号,将函数转化为分段函数,然后 分段作出函数图象.
(2)作分段函数的图象时,分别作出各段的图象,在作每 一段图象时,先不管定义域的限制,作出其图象,再保留定 义域内的一段图象即可,作图时要特别注意接点处点的虚实, 保证不重不漏.
[课堂一刻钟巩固训练]
一、基础经典题 1.下列给出的函数是分段+,1x,≤11<,x≤5,
【最新整理】2020初高中数学衔接教材(完整版) - 【教师版】

2020初高中数学衔接教材爱的新高一的同学们:祝贺你们步入高中时代,下面有一个摆在我们面前的棘手问题急需我们师生共同努力才能解决,即“初高中衔接问题”。
由于课程改革,目前我区初中是新课标,而高中也是新课程的学习,初高中不衔接问题现在显得比较突出。
面对教学中将存在的问题,我们高一数学组的老师们假期里加班加点,赶制了一份校本衔接教材,意在培养大家自学能力,同时降低同学们初高中衔接中的不适应度,希望大家将假期利用起来,一开学对这篇自学教材的学习将有相应的检测,愿大家为新学期做好准备。
现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。
而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。
2020年高中数学新教材同步必修第一册 第1章 1.3 第2课时 补 集

二、交、并、补的综合运算
例2 已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B, (∁UA)∪B,A∩(∁UB),∁U(A∪B).
1 知识梳理
PART ONE
知识点 全集与补集
1.全集 (1)定义:如果一个集合含有所研究问题中涉及的 所有元素 ,那么就称这个集合为 全集. (2)记法:全集通常记作 U .
思考 全集一定是实数集R吗?
答案 不一定.全集是一个相对概念,因研究问题的不同而变化,如在实数范围内解 不等式,全集为实数集R,而在整数范围内解不等式,则全集为整数集Z.
反思
感悟 解决集合交、并、补运算的技巧 (1)如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结 合交集、并集、补集的定义来求解.在解答过程中常常借助于Venn图来 求解.这样处理起来,相对来说比较直观、形象且解答时不易出错. (2)如果所给集合是无限集,则常借助数轴,把已知集合及全集分别表示 在数轴上,然后进行交、并、补集的运算.解答过程中要注意边界问题.
跟踪训练3 已知集合A={x|x<a},B={x|x<-1,或x>0}.若A∩(∁RB)=∅,求实数a 的取值范围. 解 ∵B={x|x<-1,或x>0}, ∴∁RB={x|-1≤x≤0}, ∴要使A∩(∁RB)=∅,结合数轴分析(如图),可得a≤-1.
跟踪训练1 (1)若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁UA等于
A.{x|0<x<2}
2020届高中数学分册同步讲义(选修1-1) 第2章 2.1.2 第2课时 椭圆几何性质的应用

第2课时椭圆几何性质的应用学习目标1.进一步巩固椭圆的简单几何性质.2.掌握直线与椭圆位置关系等相关知识.知识点一点与椭圆的位置关系点P(x0,y0)与椭圆x2a2+y2b2=1(a>b>0)的位置关系:点P在椭圆上⇔x20a2+y20b2=1;点P在椭圆内部⇔x20a2+y20b2<1;点P在椭圆外部⇔x20a2+y20b2>1.知识点二直线与椭圆的位置关系直线y=kx+m与椭圆x2a2+y2b2=1(a>b>0)的位置关系的判断方法:联立⎩⎪⎨⎪⎧y=kx+m,x2a2+y2b2=1.消去y得到一个关于x的一元二次方程.直线与椭圆的位置关系、对应一元二次方程解的个数及Δ的取值的关系如表所示.知识点三弦长公式设直线方程为y=kx+m(k≠0),椭圆方程为x2a2+y2b2=1(a>b>0)或y2a2+x2b2=1(a>b>0),直线与椭圆的两个交点为A(x1,y1),B(x2,y2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, ∴|AB |=(x 1-x 2)2+(kx 1-kx 2)2 =1+k 2(x 1-x 2)2=1+k 2(x 1+x 2)2-4x 1x 2, 或|AB |=⎝⎛⎭⎫1ky 1-1k y 22+(y 1-y 2)2=1+1k 2(y 1-y 2)2 =1+1k2(y 1+y 2)2-4y 1y 2. 其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y (或x )后得到关于x (或y )的一元二次方程求得.1.若直线的斜率一定,则当直线过椭圆的中心时,弦长最大.( √ ) 2.直线x 2-y =1被椭圆x 24+y 2=1截得的弦长为 5.( √ )3.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与点P (b,0),过点P 可作出该椭圆的一条切线.( × )4.直线y =k (x -a )与椭圆x 2a 2+y 2b2=1的位置关系是相交.( √ )题型一 直线与椭圆的位置关系例1 已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个公共点; (2)有且只有一个公共点; (3)没有公共点. 考点 题点解 直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m ,x 24+y 22=1,消去y ,得9x 2+8mx +2m 2-4=0.①方程①的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程①有两个不同的实数解,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个公共点.(2)当Δ=0,即m =±32时,方程①有两个相同的实数解,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程①没有实数解,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.反思感悟 判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交; Δ=0⇔直线与椭圆相切; Δ<0⇔直线与椭圆相离.跟踪训练1 若直线y =kx +1与焦点在x 轴上的椭圆x 25+y 2m =1总有公共点,则实数m 的取值范围为________. 考点 题点 答案 [1,5)解析 ∵直线y =kx +1过定点M (0,1),∴要使直线与该椭圆总有公共点,则点M (0,1)必在椭圆内或椭圆上, 由此得⎩⎪⎨⎪⎧0<m <5,025+12m ≤1,解得1≤m <5.题型二 直线与椭圆的相交弦问题例2 已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A ,B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程. 考点 直线与椭圆的位置关系 题点 中点弦问题解 (1)由已知可得直线l 的方程为y -2=12(x -4),即y =12x .由⎩⎨⎧y =12x ,x 236+y29=1,消去y 可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2).则x 1+x 2=0,x 1x 2=-18. 于是|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+14(x 1-x 2)2=52(x 1+x 2)2-4x 1x 2 =52×62=310.所以线段AB 的长度为310.(2)方法一 当直线l 的斜率不存在时,不合题意. 所以直线l 的斜率存在.设l 的斜率为k ,则其方程为y -2=k (x -4). 联立⎩⎪⎨⎪⎧y -2=k (x -4),x 236+y 29=1,消去y ,得(1+4k 2)x 2-(32k 2-16k )x +64k 2-64k -20=0. 显然,Δ>0,若设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=32k 2-16k1+4k 2,由于AB 的中点恰好为P (4,2),所以x 1+x 22=16k 2-8k 1+4k 2=4,解得k =-12,且满足Δ>0.这时直线的方程为y -2=-12(x -4),即x +2y -8=0.方法二 设A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧x 2136+y 219=1,x 2236+y229=1,两式相减得x 22-x 2136+y 22-y 219=0,整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1),由于P (4,2)是AB 的中点,∴x 1+x 2=8,y 1+y 2=4, 于是k AB =-9×836×4=-12,于是直线AB 的方程为y -2=-12(x -4),即x +2y -8=0.反思感悟 处理直线与椭圆相交的关系问题的通法是通过解直线与椭圆构成的方程.利用根与系数的关系或中点坐标公式解决,涉及弦的中点,还可使用点差法:设出弦的两端点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的关系.跟踪训练2 已知椭圆ax 2+by 2=1(a >0,b >0且a ≠b )与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程. 考点 直线与椭圆的位置关系题点 中点弦问题解 方法一 设A (x 1,y 1),B (x 2,y 2),代入椭圆方程并作差, 得a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0.① ∵A ,B 为直线x +y -1=0上的点,∴y 1-y 2x 1-x 2=-1.由已知得y 1+y 2x 1+x 2=k OC =22,代入①式可得b =2a .∵直线x +y -1=0的斜率k =-1. 又|AB |=1+k 2|x 2-x 1|=2|x 2-x 1|=22, ∴|x 2-x 1|=2.联立ax 2+by 2=1与x +y -1=0,可得(a +b )x 2-2bx +b -1=0.且由已知得x 1,x 2是方程(a +b )x 2-2bx +b -1=0的两根,∴x 1+x 2=2ba +b ,x 1x 2=b -1a +b ,∴4=(x 2-x 1)2=(x 1+x 2)2-4x 1x 2 =⎝⎛⎭⎫2b a +b 2-4·b -1a +b.② 将b =2a 代入②式,解得a =13,∴b =23.∴所求椭圆的方程是x 23+2y 23=1.方法二 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y -1=0消去y ,得(a +b )x 2-2bx +b -1=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2ba +b ,x 1x 2=b -1a +b ,且直线AB 的斜率k =-1, ∴|AB |=(k 2+1)(x 1-x 2)2 =(k 2+1)[(x 1+x 2)2-4x 1x 2] =2·4b 2-4(a +b )(b -1)a +b.∵|AB |=22,∴2·4b 2-4(a +b )(b -1)a +b =22,∴a +b -aba +b=1.①设C (x ,y ),则x =x 1+x 22=b a +b ,y =1-x =aa +b.∵OC 的斜率为22, ∴y x =a b =22,将其代入①式得,a =13,b =23. ∴所求椭圆的方程为x 23+2y 23=1.题型三 椭圆中的最值(或范围)问题 例3 已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程. 考点 直线与椭圆的位置关系 题点 直线与椭圆相交时的其他问题解 (1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m ,得5x 2+2mx +m 2-1=0,因为直线与椭圆有公共点,所以Δ=4m 2-20(m 2-1)≥0,解得-52≤m ≤52. (2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由(1)知5x 2+2mx +m 2-1=0, 所以x 1+x 2=-2m 5,x 1x 2=15(m 2-1),所以|AB |=(x 1-x 2)2+(y 1-y 2)2 =2(x 1-x 2)2=2[(x 1+x 2)2-4x 1x 2] =2⎣⎡⎦⎤4m 225-45(m 2-1)=2510-8m 2. 所以当m =0时,|AB |最大,此时直线方程为y =x . 引申探究本例中,设直线与椭圆相交于A (x 1,y 1),B (x 2,y 2)两点,求△AOB 面积的最大值及△AOB 面积最大时的直线方程. 解 可求得O 到AB 的距离d =|m |2, 又|AB |=2510-8m 2, ∴S △AOB =12|AB |·d=12×2510-8m 2×|m |2=25⎝⎛⎭⎫54-m 2m 2≤25·⎝⎛⎭⎫54-m 2+m 22=14,当且仅当54-m 2=m 2时,上式取“=”,此时m =±104∈⎝⎛⎭⎫-52,52. ∴所求直线方程为x -y ±104=0. 反思感悟 解析几何中的综合性问题很多,而且可与很多知识联系在一起出题,例如不等式、三角函数、平面向量以及函数的最值问题等.解决这类问题需要正确地应用转化思想、函数与方程思想和数形结合思想.其中应用比较多的是利用方程根与系数的关系构造等式或函数关系式,这其中要注意利用根的判别式来确定参数的限制条件. 跟踪训练3 已知椭圆C :x 2+2y 2=4.(1)若点P (a ,b )是椭圆C 上一点,求a 2+b 2的取值范围;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求|AB |的最小值. 考点 直线与椭圆的位置关系 题点 直线与椭圆相交时的其他问题 解 (1)由题意得a 2+2b 2=4, 则a 2=4-2b 2,∴a 2+b 2=4-2b 2+b 2=4-b 2, ∵b ∈[-2,2],∴4-b 2∈[2,4]. 故a 2+b 2∈[2,4],a 2+b 2的取值范围为[2,4]. (2)设A (t,2),B (x 0,y 0),x 0≠0.∵OA ⊥OB , ∴OA →·OB →=0,∴tx 0+2y 0=0,∴t =-2y 0x 0.又∵x 20+2y 20=4,∴0<x 20≤4.∴|AB |2=(x 0-t )2+(y 0-2)2=x 202+8x 20+4≥4+4=8,当且仅当x 202=8x 20,即x 20=4时等号成立, ∴|AB |的最小值为2 2.转化化归思想在椭圆中的应用典例 已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),左、右焦点分别是F 1,F 2,若椭圆C 上的点P ⎝⎛⎭⎫1,32到F 1,F 2的距离和等于4. (1)写出椭圆C 的方程和焦点坐标;(2)直线l 过定点M (0,2),且与椭圆C 交于不同的两点A ,B ,若原点O 在以线段AB 为直径的圆外,求直线l 的斜率k 的取值范围. 考点 题点解 (1)由题意得2a =4,即a =2, 又点P ⎝⎛⎭⎫1,32在椭圆C 上, ∴14+34b2=1,即b 2=1, ∴椭圆C 的方程为x 24+y 2=1,焦点F 1(-3,0),F 2(3,0).(2)由题意得直线l 的斜率存在且不为0, 设l :y =kx +2,代入x 24+y 2=1,整理得(1+4k 2)x 2+16kx +12=0, Δ=(16k )2-4(1+4k 2)·12=16(4k 2-3)>0, 得k 2>34.①设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=-16k 1+4k 2,x 1x 2=121+4k 2. ∵原点O 在以线段AB 为直径的圆外, ∴∠AOB 为锐角,∴cos ∠AOB >0, 则OA →·OB →=x 1x 2+y 1y 2>0, 又y 1y 2=(kx 1+2)·(kx 2+2) =k 2x 1x 2+2k (x 1+x 2)+4,∴x 1x 2+y 1y 2=(1+k 2)x 1x 2+2k (x 1+x 2)+4 =(1+k 2)121+4k 2+2k⎝⎛⎭⎫-16k 1+4k 2+4 =4(4-k 2)1+4k 2>0.∴k2<4,∴34<k 2<4, ∴直线l 的斜率k 的取值范围是⎝⎛⎭⎫-2,-32∪⎝⎛⎭⎫32,2. [素养评析](1)本例中点O 在以AB 为直径的圆外⇒∠AOB 为锐角⇒OA →·OB →>0⇒x 1x 2+y 1y 2>0 利用根与系数的关系与判别式可得到直线斜率的范围.(2)逻辑推理是得到数学结论、构建数学体系的重要方式,本例从条件出发与已有知识结合,逐步推出相应的结论.对逻辑推理素养的培养有很好的帮助.1.点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是( )A .-2<a < 2B .a <-2或a > 2C .-2<a <2D .-1<a <1考点 椭圆的几何性质 题点 点与椭圆的位置关系 答案 A解析 由题意知a 24+12<1,解得-2<a < 2.2.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是( )A .m >1B .m >1且m ≠3C .m >3D .m >0且m ≠3考点 直线与椭圆的位置关系 题点 直线与椭圆的公共点个数问题 答案 B解析 由⎩⎪⎨⎪⎧y =x +2,x 2m +y 23=1,得(3+m )x 2+4mx +m =0,∵Δ=(4m )2-4m (3+m )>0,∴16m 2-4m (3+m )>0, ∴m >1或m <0.又∵m >0且m ≠3,∴m >1且m ≠3.3.过椭圆x 28+y 24=1内一点P (1,1)的直线l 与椭圆交于A ,B 两点,且P 是线段AB 的中点,则直线l 的方程是( ) A .x +2y -3=0 B .x -2y +1=0 C .2x +y -3=0D .2x -y -1=0 考点 直线与椭圆的位置关系 题点 直线与椭圆的公共点个数问题 答案 A解析 设A (x 1,y 1),B (x 2,y 2),P (1,1)是线段AB 的中点,则x 1+x 2=2,y 1+y 2=2,将点A ,B 的坐标代入椭圆方程作差,得18(x 1+x 2)(x 1-x 2)+14(y 1+y 2)(y 1-y 2)=0,即14(x 1-x 2)+12(y 1-y 2)=0,由题意知,直线l 的斜率存在,∴k AB =y 1-y 2x 1-x 2=-12,∴直线l 的方程为y -1=-12(x-1),整理得x +2y -3=0.4.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个公共点,则椭圆的长轴长为___________________________________________. 考点 直线与椭圆的位置关系 题点 直线与椭圆的公共点个数问题 答案 27解析 由题意可设椭圆的方程为x 2a 2+y 2a 2-4=1(a >2),与直线方程x +3y +4=0联立,得4(a 2-3)y 2+83(a 2-4)y +(16-a 2)(a 2-4)=0, 由Δ=0,得a =7, 所以椭圆的长轴长为27.5.已知椭圆C 的两个焦点是F 1(-2,0),F 2(2,0),且椭圆C 经过点A (0,5). (1)求椭圆C 的标准方程;(2)若过左焦点F 1且倾斜角为45°的直线l 与椭圆C 交于P ,Q 两点,求线段PQ 的长. 考点 直线与椭圆的位置关系 题点 弦长与三角形面积解 (1)由已知得,椭圆C 的焦点在x 轴上,可设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),(0,5)是椭圆短轴上的一个顶点,可得b =5,由题意可得c =2,故a =b 2+c 2=3,则椭圆C 的标准方程为x 29+y 25=1.(2)由已知得,直线l 的斜率k =tan 45°=1,而F 1(-2,0),所以直线l 的方程为y =x +2,代入方程x 29+y 25=1,得5x 2+9(x +2)2=45,即14x 2+36x -9=0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-187,x 1x 2=-914,则|PQ |=1+k 2|x 1-x 2|=1+12×(x 1+x 2)2-4x 1x 2=2×⎝⎛⎭⎫-1872-4×⎝⎛⎭⎫-914=307.1.直线与椭圆的位置关系,可考虑由直线方程和椭圆方程得到的一元二次方程,利用“Δ”进行判定,求弦长时可利用根与系数的关系,中点弦问题考虑使用点差法.2.最值往往转化为函数最值或利用数形结合思想.一、选择题1.直线y=kx-k+1与椭圆x29+y24=1的位置关系为()A.相切B.相交C.相离D.不确定考点题点答案 B解析直线y=kx-k+1可变形为y-1=k(x-1),故直线恒过定点(1,1),而该点在椭圆x 29+y 24=1内部,所以直线y =kx -k +1与椭圆x 29+y 24=1相交,故选B.2.椭圆x 225+y 29=1上的点P 到椭圆左焦点的最大距离和最小距离分别是( )A .8,2B .5,4C .5,1D .9,1 考点 椭圆的几何性质题点 通过所给条件研究椭圆的几何性质 答案 D解析 因为a =5,c =4,所以最大距离为a +c =9,最小距离为a -c =1.3.已知AB 为过椭圆x 2a 2+y 2b 2=1中心的弦,F (c,0)为椭圆的右焦点,则△AFB 面积的最大值为( )A .b 2B .abC .acD .bc 考点 直线与椭圆的位置关系 题点 弦长与三角形面积 答案 D解析 当直线AB 为y 轴时,面积最大, 此时|AB |=2b ,△AFB 的高为c , ∴S △AFB =12·2b ·c =bc .4.椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,若直线y =kx 与椭圆的一个交点的横坐标x 0=b ,则k 的值为( ) A.22 B .±22 C.12 D .±12考点 直线与椭圆的位置关系 题点 求椭圆中的直线方程 答案 B解析 根据椭圆的离心率为22,得c a =22. 由x 0=b ,得y 20=b 2⎝⎛⎭⎫1-b 2a 2=b 2c 2a 2, ∴y 0=±bc a ,∴k =y 0x 0=±c a =±22.5.若直线ax +by +4=0和圆x 2+y 2=4没有公共点,则过点(a ,b )的直线与椭圆x 29+y 24=1的公共点个数为( ) A .0 B .1C .2D .需根据a ,b 的取值来确定考点 直线与椭圆的位置关系 题点 直线与椭圆的公共点个数问题 答案 C解析 ∵直线与圆没有交点,∴d =4a 2+b 2 >2, ∴a 2+b 2<4,即a 2+b 24<1,∴a 29+b 24<1, ∴点(a ,b )在椭圆内部, 故直线与椭圆有2个交点.6.设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1,F 2分别作x 轴的垂线,交椭圆的四点构成一个正方形,则椭圆的离心率e 为( ) A.3-12 B.5-12 C.22 D.32考点 椭圆几何性质的应用 题点 求椭圆离心率的值 答案 B解析 将x =±c 代入椭圆方程,得y =±b 2a .由题意得2b 2a =2c ,即b 2=ac ,所以a 2-c 2=ac ,则⎝⎛⎭⎫c a 2+ca -1=0, 解得c a =5-12(负值舍去).7.经过椭圆x 2+2y 2=2的一个焦点作倾斜角为45°的直线l ,交椭圆于M ,N 两点,设O 为坐标原点,则OM →·ON →等于( ) A .-3 B .±13 C .-13 D .-12考点 椭圆的几何性质 题点 椭圆范围的简单应用解析 由x 2+2y 2=2,得a 2=2,b 2=1,c 2=a 2-b 2=1,焦点为(±1,0),不妨设直线l 过右焦点,则直线l 的方程为y =x -1,代入x 2+2y 2=2,得x 2+2(x -1)2-2=0,化简得3x 2-4x =0.设M (x 1,y 1),N (x 2,y 2),则x 1x 2=0,x 1+x 2=43,y 1y 2=(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1=1-43=-13,所以OM →·ON →=x 1x 2+y 1y 2=0-13=-13. 8.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 考点 直线与椭圆的位置关系 题点 中点弦问题 答案 D解析 设A (x 1,y 1),B (x 2,y 2),代入椭圆方程,得x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式相减得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=12,因为线段AB 的中点坐标为(1,-1),所以b 2a 2=12.因为右焦点为F (3,0),c =3,所以a 2=18,b 2=9,所以椭圆E 的方程为x 218+y 29=1.二、填空题9.椭圆x 23+y 2=1被直线x -y +1=0所截得的弦长|AB |=________.考点 直线与椭圆的位置关系 题点 弦长问题 答案322解析 由⎩⎪⎨⎪⎧x -y +1=0,x 23+y 2=1,得交点为(0,1),⎝⎛⎭⎫-32,-12, 则|AB |=⎝⎛⎭⎫322+⎝⎛⎭⎫1+122=322. 10.F 1,F 2是椭圆x 22+y 2=1的两个焦点,过右焦点F 2作倾斜角为π4的弦AB ,则△F 1AB 的面积等于________.题点 答案 4311.如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y =3(x+c )与椭圆的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率为________.考点 椭圆几何性质的应用 题点 求椭圆离心率的值 答案3-1解析 由直线方程y =3(x +c ),得直线与x 轴的夹角∠MF 1F 2=π3,且过点F 1(-c,0).∵∠MF 1F 2=2∠MF 2F 1,∴∠MF 1F 2=2∠MF 2F 1=π3,即F 1M ⊥F 2M .∴在Rt △F 1MF 2中,|F 1F 2|=2c ,|F 1M |=c ,|F 2M |=3c ,∴由椭圆定义可得2a =c +3c , ∴离心率e =c a =21+3=3-1.12.若椭圆mx 2+ny 2=1(m >0,n >0且m ≠n )与直线x +y -1=0交于A ,B 两点,且nm =2,则原点与线段AB 的中点M 的连线的斜率为________. 考点 直线与椭圆的位置关系 题点 中点弦问题 答案22解析 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧mx 21+ny 21=1, ①mx 22+ny 22=1, ②①-②,得m (x 1+x 2)(x 1-x 2)+n (y 1+y 2)(y 1-y 2)=0, 即m n +y 1+y 2x 1+x 2·y 1-y 2x 1-x 2=0. ∵y 1-y 2x 1-x 2=-1,m n =22,∴y 1+y 2x 1+x 2=22,∴k OM =22.三、解答题13.已知椭圆x 23+y 22=1的左、右焦点分别为F 1,F 2,过F 1且倾斜角为45°的直线l 与椭圆相交于A ,B 两点. (1)求AB 的中点坐标; (2)求△ABF 2的周长与面积. 考点 直线与椭圆的位置关系 题点 弦长与三角形面积解 (1)由x 23+y 22=1,知a =3,b =2,所以c =1.所以F 1(-1,0),F 2(1,0), 所以直线l 的方程为y =x +1, 由⎩⎪⎨⎪⎧x 23+y 22=1,y =x +1消去y , 整理得5x 2+6x -3=0.设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),则 x 1+x 2=-65,x 1x 2=-35,x 0=x 1+x 22=-35,y 0=y 1+y 22=x 1+1+x 2+12=x 1+x 22+1=25⎝⎛⎭⎫或y 0=x 0+1=-35+1=25, 所以AB 的中点坐标为⎝⎛⎭⎫-35,25. (2)由题意,知F 2到直线AB 的距离d =|1-0+1|12+12=22=2,|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=835,所以2ABF S=12|AB |d =12×835×2=465, 所以△ABF 2的周长为4a =43,面积为465.14.椭圆x 2a 2+y 2b 2=1(a >b >0)与直线x +y -1=0相交于P ,Q 两点,且OP →⊥OQ →(O 为坐标原点).(1)求证:1a 2+1b 2等于定值;(2)若椭圆的离心率e ∈⎣⎡⎦⎤33,22,求椭圆长轴长的取值范围. 考点 直线与椭圆的位置关系 题点 直线与椭圆相交时的其他问题(1)证明 椭圆的方程可化为b 2x 2+a 2y 2-a 2b 2=0.由⎩⎪⎨⎪⎧b 2x 2+a 2y 2-a 2b 2=0,x +y -1=0消去y , 得(a 2+b 2)x 2-2a 2x +a 2(1-b 2)=0. 由Δ=4a 4-4(a 2+b 2)·a 2·(1-b 2)>0, 得a 2+b 2>1.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=2a 2a 2+b 2,x 1x 2=a 2(1-b 2)a 2+b 2.∵OP →⊥OQ →,∴x 1x 2+y 1y 2=0, 即2x 1x 2-(x 1+x 2)+1=0,即2a 2(1-b 2)a 2+b 2-2a 2a 2+b 2+1=0, ∴a 2+b 2=2a 2b 2,即1a 2+1b 2=2. ∴1a 2+1b 2等于定值. (2)解 ∵e =c a,∴b 2=a 2-c 2=a 2-a 2e 2. 又∵a 2+b 2=2a 2b 2,∴2-e 2=2a 2(1-e 2),即a 2=2-e 22(1-e 2)=12+12(1-e 2). ∵33≤e ≤22, ∴54≤a 2≤32,即52≤a ≤62, ∴5≤2a ≤6,即椭圆长轴长的取值范围是[5,6].15.已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c,0),F 2(c,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 考点 直线与椭圆的位置关系题点 弦长与三角形面积解 (1)由题设知⎩⎪⎨⎪⎧ b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1. (2)由题设,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心到直线l 的距离d =2|m |5, 由d <1,得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧ y =-12x +m ,x 24+y 23=1,消去y ,得x 2-mx +m 2-3=0,Δ=(-m )2-4(m 2-3)>0,得m 2<4.由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎡⎦⎤1+⎝⎛⎭⎫-122[m 2-4(m 2-3)] =1524-m 2. 由|AB ||CD |=534,得4-m 25-4m 2=1, 解得m =±33,满足(*)式,也满足Δ>0. ∴直线l 的方程为y =-12x +33或y =-12x -33.。
初高中数学衔接课(高一)PPT课件图文(2024)

02
展示正弦函数、余弦函数、正切函数的图像,分析三角函数的
周期性、奇偶性、单调性等性质。
三角恒等变换
03
介绍三角恒等式,如和差化积、积化和差等公式,以及它们在
三角函数计算中的应用。
13
数列与数学归纳法
2024/1/29
数列的概念及表示方法
阐述数列的定义、数列的通项公式及递推公式等基础知识 。
等差数列与等比数列
详细讲解等差数列和等比数列的定义、性质及求和公式。
数学归纳法及其应用
介绍数学归纳法的原理及步骤,通过实例演示数学归纳法 在证明数列问题中的应用。
14
04
初高中数学衔接关键点分析
2024/1/29
15
思维方式转变
从具象到抽象
初中数学以具象思维为主,而高 中数学则更强调抽象思维,需要 学生逐渐适应并培养抽象思维能
力。
从静态到动态
初中数学问题多为静态的,而高 中数学则涉及更多动态变化的问 题,需要学生理解并掌握变量之
间的关系。
从单一到多元
初中数学知识点相对单一,而高 中数学知识点更加多元化,需要 学生建立多元化的知识体系和思
维方式。
2024/1/29
16
学习方法调整
2024/1/29
课前预习与课后复习
高中数学内容相对复杂,需要学生做好课前预习和课后复习,加 深对知识点的理解和记忆。
教材内容
涵盖初中数学与高中数学衔接部 分的核心知识点,包括函数、方 程、不等式、数列、概率统计等
。
2024/1/29
教材结构
按照知识模块进行划分,每个模块 包含知识点讲解、例题分析、练习 题等内容,便于学生理解和掌握。
辅助资源
2020版教辅人教A数学必修1:第二课时 分段函数与映射

知 f(-5)=-5+1=-4,
f(- 3 )=(- 3 )2+2×(- 3 )=3-2 3 .
f(- 5 )=- 5 +1=- 3 ,而-2<- 3 <2,
22
2
2
所以 f(f(- 5 ))=f(- 3 )=(- 3 )2+2×(- 3 )= 9 -3=- 3 .
2
2
2
24
4
(2)若f(a)=3,求实数a的值.
一题多变:本题中若将(2)中的f(a)=3改为f[f(a)]=3,求a.
解:令 t=f(a),则 f(t)=3, 由例 1(2)的解法知 t=1 或 t=2. 当 t=1 时,f(a)=1.由于 x≤-2 时,x+1≤-1,x≥2 时,2x-1≥3. 因此只有-2<a<2 时,能满足 f(a)=1, 即 a2+2a-1=0. 解得 a= 2 -1 或 a=- 2 -1(舍去). 同理当 t=2 时,f(a)=2,则 a2+2a-2=0. 解得 a= 3 -1 或 a=- 3 -1(舍去). 综上可知,当 f[f(a)]=3 时,a= 2 -1 或 a= 3 -1.
1.分段函数 如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的 对应关系,则称这样的函数为分段函数. 思考1:怎样求分段函数的定义域、值域? 答案:分段函数的定义域是各段定义域的并集,分段函数的值域是各段 值域的并集.
2.映射 设A,B是 非空 的集合,如果按某一个确定的对应关系f,使对于集合A中 的 任意一个 元素x,在集合B中都有 唯一确定 的元素y与之对应,那么 就称对应 f:A→B 为从集合A到集合B的一个映射.
方法技巧
2020届高中数学分册同步讲义(必修1) 初中、高中衔接课 第1课时原卷版

初中、高中衔接课第1课时因式分解学习目标 1.理解提取公因式法、分组分解法.2.掌握十字相乘法.3.对于复杂的问题利用因式分解简化运算.知识点一常用的乘法公式(1)平方差公式:(a+b)(a-b)=a2-b2.(2)立方差公式:(a-b)(a2+ab+b2)=a3-b3.(3)立方和公式:(a+b)(a2-ab+b2)=a3+b3.(4)完全平方公式:(a±b)2=a2±2ab+b2.(5)三数和平方公式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(6)完全立方公式:(a±b)3=a3±3a2b+3ab2±b3.知识点二因式分解的常用方法(1)十字相乘法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数,即运用乘法公式(x+a)(x+b)=x2+(a+b)x+ab的逆运算进行因式分解.(2)提取公因式法:当多项式的各项有公因式时,可以把这个公因式提到括号外面,将多项式写成因式乘积形式的方法.(3)公式法:把乘法公式反过来用,把某些多项式因式分解的方法.(4)求根法:若关于x的方程ax2+bx+c=0(a≠0)的两个实数根是x1,x2,则二次三项式ax2+bx+c(a≠0)就可分解为a(x-x1)(x-x2).(5)试根法:对于简单的高次因式,可以通过先试根再分解的方法分解因式.如2x3-x-1,试根知x=1为2x3-x-1=0的根,通过拆项,2x3-x-1=2x3-2x2+2x2-2x +x-1提取公因式后分解因式.1.a3+b3=(a+b)(a2+ab+b2).(×)2.a2+2ab+b2+c2+2ac+2bc=(a+b+c)2.(√)3.a3-3a2b-3ab2+b3=(a-b)3.(×)4.多项式ax2+bx+c(a≠0)一定可以分解成a(x-x1)·(x-x2)的形式.(×)突破一配方法因式分解例1把下列关于x的二次多项式分解因式:(1)x2+2x-1;(2)x2+4xy-4y2.跟踪训练1分解因式x2+6x-16.突破二十字相乘法因式分解命题角度1形如x2+(p+q)x+pq型的因式分解例2把下列各式因式分解:(1)x2-3x+2;(2)x2+4x-12;(3)x2-(a+b)xy+aby2;(4)xy-1+x-y.跟踪训练2把下列各式因式分解:(1)x2+xy-6y2;(2)(x2+x)2-8(x2+x)+12.命题角度2形如一般二次三项式ax2+bx+c型的因式分解例3把下列各式因式分解:(1)12x2-5x-2;(2)5x2+6xy-8y2.跟踪训练3 把下列各式因式分解:(1)6x 2+5x +1;(2)6x 2+11x -7;(3)42x 2-33x +6;(4)2x 4-5x 2+3.1.分解因式x 2-3x +2为( )A.(x +1)(x +2)B.(x -1)(x -2)C.(x -1)(x +2)D.(x +1)(x -2)2.分解因式x 2-x -1为( )A.(x -1)(x +1)B.(x +1)(x -2)C.⎝ ⎛⎭⎪⎫x -1+52⎝ ⎛⎭⎪⎫x -1-52 D.⎝ ⎛⎭⎪⎫x +1-52⎝ ⎛⎭⎪⎫x -1+523.分解因式:m 2-4mn -5n 2=________.4.分解因式:(a -b )2+11(a -b )+28=________.5.分解因式:x 2-y 2-x +3y -2=____________.一、选择题1.计算(-2)100+(-2)101的结果是( )A.2B.-2C.-2100D.21002.边长为a ,b 的长方形周长为12,面积为10,则a 2b +ab 2的值为( ) A.120 B.60 C.80 D.403.下列各式中,能运用两数和(差)的平方公式进行因式分解的是()A.x2+4xB.a2-4b2C.x2+4x+1D.x2-2x+14.将代数式x2+4x-5因式分解的结果为()A.(x+5)(x-1)B.(x-5)(x+1)C.(x+5)(x+1)D.(x-5)(x-1)5.要在二次三项式x2+()x-6的括号中填上一个整数,使它能按公式x2+(a+b)x+ab=(x+a)(x+b)分解因式,那么这些数只能是()A.1,-1B.5,-5C.1,-1,5,-5D.以上答案都不对6.已知多项式x2+bx+c因式分解的结果为(x-1)(x+2),则b+c的值为()A.-3B.-2C.-1D.07.下列变形正确的是()A.x3-x2-x=x(x2-x)B.x2-3x+2=x(x-3)-2C.a2-9=(a+3)(a-3)D.a2-4a+4=(a+2)28.若2m+n=25,m-2n=2,则(m+3n)2-(3m-n)2的值为()A.200B.-200C.100D.-100二、填空题9.因式分解:ax+ay+bx+by=______________________.10.因式分解:(x+y)2-2y(x+y)=_________________________________________________.11.分解因式:(a2+1)2-4a2=__________________.三、解答题12.分解因式:(1)x2+6x+8;(2)x2-x-6.14.若x(x+1)+y(xy+y)=(x+1)·M,则M=_______________________________________.15.分解因式:(1)(x-y)2+4(x-y)+3;(2)m(m+2)(m2+2m-2)-3.。
2019-2020同步人A数学必修第一册新教材讲义:第1章+1.1+第2课时 集合的表示和答案

第2课时 集合的表示1.列举法把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法一般地,设A 是一个集合,把集合A 中所有具有共同特征P (x )的元素x 所组成的集合表示为{x ∈A |P (x )},这种表示集合的方法称为描述法.思考:(1)不等式x -2<3的解集中的元素有什么共同特征? (2)如何用描述法表示不等式x -2<3的解集? 提示:(1)元素的共同特征为x ∈R ,且x <5. (2){x |x <5,x ∈R }.1.方程x 2=4的解集用列举法表示为( ) A .{(-2,2)} B .{-2,2} C .{-2}D .{2}B [由x 2=4得x =±2,故用列举法可表示为{-2,2}.] 2.用描述法表示函数y =3x +1图象上的所有点的是( )A .{x |y =3x +1}B .{y |y =3x +1}C .{(x ,y )|y =3x +1}D .{y =3x +1}C [该集合是点集,故可表示为{(x ,y )|y =3x +1},选C.] 3.用描述法表示不等式4x -5<7的解集为________. {x |x <3} [用描述法可表示为{x |x <3}.]用列举法表示集合【例1】 用列举法表示下列给定的集合: (1)不大于10的非负偶数组成的集合A ; (2)小于8的质数组成的集合B ;(3)方程2x 2-x -3=0的实数根组成的集合C ;(4)一次函数y =x +3与y =-2x +6的图象的交点组成的集合D . [解] (1)不大于10的非负偶数有0,2,4,6,8,10,所以A ={0,2,4,6,8,10}. (2)小于8的质数有2,3,5,7, 所以B ={2,3,5,7}.(3)方程2x 2-x -3=0的实数根为-1,32, 所以C =⎩⎨⎧⎭⎬⎫-1,32. (4)由⎩⎪⎨⎪⎧ y =x +3,y =-2x +6,得⎩⎪⎨⎪⎧x =1,y =4.所以一次函数y =x +3与y =-2x +6的交点为(1,4), 所以D ={(1,4)}.用列举法表示集合的3个步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次; (3)用花括号括起来.提醒:二元方程组的解集,函数图象上的点构成的集合都是点的集合,一定要写成实数对的形式,元素与元素之间用“,”隔开.如{(2,3),(5,-1)}.1.用列举法表示下列集合:(1)满足-2≤x ≤2且x ∈Z 的元素组成的集合A ; (2)方程(x -2)2(x -3)=0的解组成的集合M ; (3)方程组⎩⎨⎧2x +y =8,x -y =1的解组成的集合B ;(4)15的正约数组成的集合N .[解] (1)满足-2≤x ≤2且x ∈Z 的元素有-2,-1,0,1,2,故A ={-2,-1,0,1,2}.(2)方程(x -2)2(x -3)=0的解为x =2或x =3, ∴M ={2,3}.(3)解⎩⎪⎨⎪⎧ 2x +y =8,x -y =1,得⎩⎪⎨⎪⎧x =3,y =2,∴B ={(3,2)}.(4)15的正约数有1,3,5,15,故N ={1,3,5,15}. 用描述法表示集合【例2】 用描述法表示下列集合: (1)比1大又比10小的实数组成的集合;(2)平面直角坐标系中第二象限内的点组成的集合; (3)被3除余数等于1的正整数组成的集合. [解] (1){x ∈R |1<x <10}.(2)集合的代表元素是点,用描述法可表示为{(x ,y )|x <0,且y >0}. (3){x |x =3n +1,n ∈N }.描述法表示集合的2个步骤2.用描述法表示下列集合:(1)函数y =-2x 2+x 图象上的所有点组成的集合; (2)不等式2x -3<5的解组成的集合; (3)如图中阴影部分的点(含边界)的集合; (4)3和4的所有正的公倍数构成的集合.[解] (1)函数y =-2x 2+x 的图象上的所有点组成的集合可表示为{(x ,y )|y =-2x 2+x }.(2)不等式2x -3<5的解组成的集合可表示为{x |2x -3<5},即{x |x <4}.(3)图中阴影部分的点(含边界)的集合可表示为⎩⎨⎧ (x ,y )⎪⎪⎪⎭⎬⎫0≤x ≤32,0≤y ≤1.(4)3和4的最小公倍数是12,因此3和4的所有正的公倍数构成的集合是{x |x =12n ,n ∈N *}.,集合表示方法的综合应用[探究问题] 下面三个集合:①{x |y =x 2+1};②{y |y =x 2+1};③{(x ,y )|y =x 2+1}.(1)它们各自的含义是什么? (2)它们是不是相同的集合?提示:(1)集合①{x |y =x 2+1}的代表元素是x ,满足条件y =x 2+1中的x ∈R ,所以实质上{x |y =x 2+1}=R ;集合②的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以实质上{y |y =x 2+1}={y |y ≥1};集合③{(x ,y )|y =x 2+1}的代表元素是(x ,y ),可以认为是满足y =x 2+1的数对(x ,y )的集合,也可以认为是坐标平面内的点(x ,y )构成的集合,且这些点的坐标满足y =x 2+1,所以{(x ,y )|y =x 2+1}={P |P 是抛物线y =x 2+1上的点}.(2)由(1)中三个集合各自的含义知,它们是不同的集合.【例3】 集合A ={x |kx 2-8x +16=0},若集合A 中只有一个元素,求实数k 的值组成的集合.[思路点拨]A 中只有一个元素――→等价转化方程kx 2-8x +16=0只有一解――→分类讨论求实数k 的值[解] (1)当k =0时,方程kx 2-8x +16=0变为-8x +16=0,解得x =2,满足题意;(2)当k ≠0时,要使集合A ={x |kx 2-8x +16=0}中只有一个元素,则方程kx 2-8x +16=0只有一个实数根,所以Δ=64-64k =0,解得k =1,此时集合A ={4},满足题意.综上所述,k =0或k =1,故实数k 的值组成的集合为{0,1}.1.(变条件1.若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键,如例3中集合A中的元素就是所给方程的根,由此便把集合的元素个数问题转化为方程的根的个数问题.2.在学习过程中要注意数学素养的培养,如本例中用到了等价转化思想和分类讨论的思想.1.表示一个集合可以用列举法,也可以用描述法,一般地,若集合元素为有限个,常用列举法,集合元素为无限个,多用描述法.2.处理描述法给出的集合问题时,首先要明确集合的代表元素,特别要分清数集和点集;其次要确定元素满足的条件是什么.1.思考辨析(1){1}=1.()(2){(1,2)}={x =1,y =2}.( ) (3){x ∈R |x >1}={y ∈R |y >1}.( ) (4){x |x 2=1}={-1,1}.( ) [答案] (1)× (2)× (3)√ (4)√2.由大于-3且小于11的偶数所组成的集合是( ) A .{x |-3<x <11,x ∈Z } B .{x |-3<x <11} C .{x |-3<x <11,x =2k } D .{x |-3<x <11,x =2k ,k ∈Z }D [由题意可知,满足题设条件的只有选项D ,故选D.]3.一次函数y =x -3与y =-2x 的图象的交点组成的集合是( ) A .{1,-2} B .{x =1,y =-2} C .{(-2,1)}D .{(1,-2)}D [由⎩⎪⎨⎪⎧ y =x -3,y =-2x ,得⎩⎪⎨⎪⎧x =1,y =-2,∴两函数图象的交点组成的集合是{(1,-2)}.]4.设集合A ={x |x 2-3x +a =0},若4∈A ,试用列举法表示集合A . [解] ∵4∈A ,∴16-12+a =0,∴a =-4, ∴A ={x |x 2-3x -4=0}={-1,4}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时二次函数、二次方程及简单的一元二次不等式学习目标理解和掌握二次函数的图象和性质,理解和掌握一元二次方程的相关知识并能熟练解出一元二次方程,借助于二次函数的图象会解简单一元二次不等式.知识点一 一元二次方程的根的判别式 一元二次方程ax 2+bx +c =0(a ≠0),用配方法将其变形为⎝⎛⎭⎫x +b 2a 2=b 2-4ac 4a 2. (1)当b 2-4ac >0时,右端是正数.因此,方程有两个不相等的实数根:x 1,2=-b ±b 2-4ac2a;(2)当b 2-4ac =0时,右端是零.因此,方程有两个相等的实数根:x 1,2=-b2a ;(3)当b 2-4ac <0时,右端是负数.因此,方程没有实数根.由于可以用b 2-4ac 的取值情况来判定一元二次方程的根的情况.因此,把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,表示为Δ=b 2-4ac . 知识点二 一元二次方程的根与系数的关系 一元二次方程ax 2+bx +c =0(a ≠0)的两个根为 x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a ,所以:x 1+x 2=-b +b 2-4ac 2a +-b -b 2-4ac2a=-ba ,x 1x 2=-b +b 2-4ac 2a ·-b -b 2-4ac 2a=(-b )2-(b 2-4ac )2(2a )2=4ac 4a 2=c a .一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为“韦达定理”.定理:如果一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,那么x 1+x 2=-b a ,x 1x 2=ca .知识点三 二次函数的图象与性质 仅讨论y =ax 2+bx +c (a >0)的情况:1.x 的取值范围为一切实数.2.y 的取值范围为⎣⎡⎭⎫4ac -b 24a ,+∞ 当x =-b2a 时,y 取得最小值4ac -b 24a .3.二次函数的三种表达方式: ⎩⎪⎨⎪⎧y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -h )2+k .4.对称轴x =-b 2a (图象关于x =-b2a 对称).5.(1)当x 1<x 2≤-b2a 时,则y 1>y 2.(2)当x 2>x 1≥-b2a时,则y 1<y 2.6.二次函数、一元二次方程、一元二次不等式之间的联系列表如下:1.方程ax2+bx+c=0如果有实数根,则Δ=b2-4ac≥0.(×)2.二次函数y=ax2+bx+c(a≠0)在x=-b2a时取得最值.(√)3.一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根,则ax2+bx+c>0的范围为x>x2或x<x1.(×)突破一一元二次方程的相关知识的应用例1已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值.解设x1,x2是方程的两根,由根与系数的关系,得x1+x2=-2(m-2),x1·x2=m2+4.∵x21+x22-x1·x2=21,∴(x1+x2)2-3x1·x2=21,即[-2(m -2)]2-3(m 2+4)=21, 化简得,m 2-16m -17=0, 解得m =-1,或m =17.当m =-1时,方程为x 2+6x +5=0,Δ>0,满足题意;当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m =-1.反思感悟 (1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大于21”求出m 的值,取满足条件的m 的值即可.(2)在今后的解题过程中,如果仅仅由根与系数的关系解题时,还要考虑到根的判别式Δ是否大于或等于零.因为,根与系数的关系成立的前提是一元二次方程有实数根. 跟踪训练1 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根, (1)求|x 1-x 2|的值; (2)求1x 21+1x 22的值;(3)x 31+x 32.解 ∵x 1和x 2是一元二次方程2x 2+5x -3=0的两根, ∴x 1+x 2=-52,x 1x 2=-32.(1)∵|x 1-x 2|2=x 21+x 22-2x 1x 2=(x 1+x 2)2-4x 1x 2=⎝⎛⎭⎫-522-4×⎝⎛⎭⎫-32 =254+6=494, ∴|x 1-x 2|=72.(2)1x 21+1x 22=x 21+x 22x 21·x 22=(x 1+x 2)2-2x 1x 2(x 1x 2)2⎝⎛⎭⎫-522-2×⎝⎛⎭⎫-32⎝⎛⎭⎫-322=254+394=379.(3)x 31+x 32=(x 1+x 2)(x 21-x 1x 2+x 22)=(x 1+x 2)[(x 1+x 2)2-3x 1x 2]=⎝⎛⎭⎫-52×⎣⎡⎦⎤⎝⎛⎭⎫-522-3×⎝⎛⎭⎫-32=-2158. 突破二 二次函数的图象与性质例2 已知函数y =x 2,-2≤x ≤a ,其中a ≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值.解 (1)当a =-2时,函数y =x 2的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值都是4,此时x =-2;(2)当-2<a <0时,由图①可知,当x =-2时,函数取最大值4;当x =a 时,函数取最小值a 2;(3)当0≤a <2时,由图②可知,当x =-2时,函数取最大值4;当x =0时,函数取最小值0; (4)当a ≥2时,由图③可知,当x =a 时,函数取最大值a 2;当x =0时,函数取最小值0.反思感悟 在本例中,利用了分类讨论的方法,对a 的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题.跟踪训练2 求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?画出该函数的图象,并指出y >0时x 的取值范围. 解 ∵y =-3x 2-6x +1 =-3(x +1)2+4, ∴函数图象的开口向下; 对称轴是直线x =-1; 顶点坐标为(-1,4);当x =-1时,函数取最大值y =4,无最小值;当x <-1时,y 随着x 的增大而增大;当x >-1时,y 随着x 的增大而减小; 采用描点法画图,选顶点A (-1,4),与x 轴交于点B ⎝ ⎛⎭⎪⎫23-33,0和C ⎝⎛⎭⎪⎫-23-33,0,与y轴的交点为D (0,1),过这四点画出图象(如图所示).由图象可知,y >0时x 的取值范围为-23-33<x <23-33.突破三 一元二次不等式的解法 例3 求不等式4x 2-4x +1>0的解. 解 因为Δ=(-4)2-4×4×1=0, 所以方程4x 2-4x +1=0的解是x 1=x 2=12,所以原不等式的解为x <12或x >12.反思感悟 (1)在求解一个一般形式的一元二次不等式的过程中,要密切结合一元二次方程的根的情况以及二次函数的图象.(2)当所给不等式是非一般形式的不等式时,应先化为一般形式. 跟踪训练3 求不等式-3x 2+6x >2的解. 解 不等式可化为3x 2-6x +2<0, ∵Δ=(-6)2-4×3×2=12>0, ∴x 1=1-33,x 2=1+33, ∴不等式-3x 2+6x >2的解为 1-33<x <1+33.1.不等式9x 2-6x +1≤0的解为( ) A.全体实数 B.无解 C.x ≠13D.x =13答案 D解析 原不等式可化为(3x -1)2≤0,所以3x -1=0,所以x =13,故选D.2.不等式-4x 2+4x <-15的解为( ) A.-32<x <52B.-52<x <32C.x >52或x <-32D.x >32或x <-52答案 C解析 原不等式可化为4x 2-4x -15>0,即(2x -5)(2x +3)>0,解得x >52或x <-32,故选C.3.函数y =x 2-2x ,当-1≤x ≤t 时,该函数的最大值为3,则t 的最大值为__________. 答案 3解析 令y =3,则x 2-2x =3,解得x =-1或3.由图可知,t 的最大值为3.4.方程x 2-ax +1=0的两根为x 1,x 2,若|x 1-x 2|=5.则a =________. 答案 ±3解析 依题意⎩⎪⎨⎪⎧x 1+x 2=a ,x 1·x 2=1,又|x 1-x 2|=5,所以(x 1-x 2)2=5,所以(x 1+x 2)2-4x 1x 2=5,即a 2-4=5,解得a =±3. 5.不等式ax 2+bx +1>0的解为-12<x <13,则a +b =________.答案 -7解析 依题意-12,13是方程ax 2+bx +1=0的两根且a <0,所以⎩⎨⎧-b a =-12+13,1a =⎝⎛⎭⎫-12×13,解得a =-6,b =-1 所以a +b =-7.一、选择题1.若关于x 的方程(a +1)x 2-3x -2=0是一元二次方程,则a 的取值范围是( ) A.a ≠0 B.a ≠-1 C.a >-1 D.a <-1答案 B解析 根据题意,得a +1≠0,解得a ≠-1.故选B.2.若一元二次方程x 2-2x +1-a =0无实根,则a 的取值范围是( ) A.a <0 B.a >0 C.a <34D.a >34答案 A解析 ∵一元二次方程x 2-2x +1-a =0无实根,∴Δ=(-2)2-4×1×(1-a )<0,解得a <0,故选A.3.若m ,n 是一元二次方程x 2+x -2=0的两个根,则m +n -mn 的值是( ) A.-3 B.3 C.-1 D.1 答案 D解析 ∵m ,n 是一元二次方程x 2+x -2=0的两个根,∴m +n =-1,mn =-2,则m +n -mn =-1-(-2)=1,故选D. 4.不等式2x 2-x -1>0的解是( ) A.-12<x <1B.x >1C.x <1或x >2D.x <-12或x >1答案 D解析 ∵2x 2-x -1=(2x +1)(x -1),∴由2x 2-x -1>0得(2x +1)(x -1)>0,解得x >1或x<-12. 5.关于二次函数y =-2x 2+1,下列说法中正确的是( )A.它的开口方向是向上B.当x <-1时,y 随x 的增大而增大C.它的顶点坐标是(-2,1)D.当x =0时,y 有最大值是2答案 B解析 ∵二次函数y =-2x 2+1,a =-2,∴该函数图象开口向下,故选项A 错误,当x <0时,y 随x 的增大而增大,故选项B 正确,它的顶点坐标为(0,1),故选项C 错误,当x =0时,y 有最大值1,故选项D 错误,故选B.6.若二次函数y =x 2-mx 的对称轴是x =-3,则关于x 的方程x 2+mx =7的解是( )A.x 1=0,x 2=6B.x 1=1,x 2=7C.x 1=1,x 2=-7D.x 1=-1,x 2=7 答案 D解析 ∵二次函数y =x 2-mx 的对称轴是x =-3,∴--m 2=-3,解得m =-6, ∴关于x 的方程x 2+mx =7可化为x 2-6x -7=0,即(x +1)(x -7)=0,解得x 1=-1,x 2=7.故选D.7.y =ax 2+ax -1对于任意实数x 都满足y <0,则a 的取值范围是( )A.a ≤0B.a <-4C.-4<a <0D.-4<a ≤0 答案 D解析 当a =0时,y =-1<0成立.当a ≠0时,则⎩⎪⎨⎪⎧ a <0,Δ<0,即⎩⎪⎨⎪⎧a <0,a 2+4a <0,解得-4<a <0, 综上可知-4<a ≤0时,对任意实数x 都有y <0.二、填空题8.已知关于x 的不等式x 2+ax +b <0的解为1<x <2,则关于x 的不等式bx 2+ax +1>0的解为________________________________________________________________________.答案 x <12或x >1 解析 ∵x 2+ax +b <0的解为1<x <2,∴1,2是x 2+ax +b =0的两根.由根与系数的关系得⎩⎪⎨⎪⎧ -a =1+2,b =1×2, 得⎩⎪⎨⎪⎧a =-3,b =2, 代入所求不等式,得2x 2-3x +1>0.由2x 2-3x +1>0,得(2x -1)(x -1)>0,得x <12或x >1. 9.函数y =-x 2+1,当-1≤x ≤2时,函数y 的最小值是________.答案 -3解析 y =-x 2+1的图象开口向下,且对称轴为x =0.当x <∵-1<0,∴当x >0时,y 随x 的增大而减小,当x <0时,y 随x 的增大而增大,∵当x =-1时,y =-1+1=0;当x =2时,y =-4+1=-3,∴函数y 的最小值为-3.10.不等式x 2-5x +6≤0的解为________________.答案 2≤x ≤3解析 ∵x 2-5x +6≤0,∴(x -2)(x -3)≤0.∴2≤x ≤3.11.x 1,x 2是方程x 2+2x -3=0的两个根,则代数式x 21+3x 1+x 2=________.答案 1解析 ∵x 1,x 2是方程x 2+2x -3=0的两个根,∴x 21+2x 1-3=0,即x 21+2x 1=3,x 1+x 2=-2,则x 21+3x 1+x 2=x 21+2x 1+x 1+x 2=3-2=1. 三、解答题12.画出函数y =2x 2-4x -6的草图.解 y =2x 2-4x -6=2(x 2-2x )-6=2(x 2-2x +1-1)-6=2[(x -1)2-1]-6=2(x -1)2-8.函数图象的开口向上,顶点坐标为(1,-8),对称轴为直线x =1.令y=0得2x2-4x-6=0,即x2-2x-3=0,∴x=-1或x=3,故函数图象与x轴的交点坐标为(-1,0),(3,0).画法步骤:(1)描点画线:在平面直角坐标系中,描出点(1,-8),(-1,0),(3,0),画出直线x=1;(2)连线:用光滑的曲线连点(1,-8),(-1,0),(3,0),在连线的过程中,要保持关于直线x =1对称,即得函数y=2x2-4x-6的草图,如图所示.13.已知关于x的一元二次方程x2-2(k-1)x+k2-1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两根分别为x1,x2,且满足|x1+x2|=2x1x2,求k的值.解(1)Δ=[-2(k-1)]2-4(k2-1)=4k2-8k+4-4k2+4=-8k+8.∵原方程有两个不相等的实数根,∴-8k+8>0,解得k<1,即实数k的取值范围是k<1.(2)由根与系数的关系,x1+x2=2(k-1),x1x2=k2-1,∵|x1+x2|=2x1x2,∴|2(k-1)|=2k2-2,∵k<1,∴2-2k=2k2-2,化简得k2+k-2=0,∴k=1(舍)或k=-2,∴k=-2.14.将抛物线y=(x-1)2+1向左平移1个单位,得到的抛物线解析式为()A.y=(x-2)2+1B.y=x2+1C.y=(x+1)2+1D.y=(x-1)2答案 B解析将抛物线y=(x-1)2+1向左平移1个单位,得到的抛物线解析式为y=(x-1+1)2+1=x2+1,即y=x2+1.故选B.15.解关于x的不等式x2-ax-2a2<0.解原不等式变形为(x-2a)(x+a)<0.(1)若a>0,则-a<x<2a,此时不等式的解为-a<x<2a;(2)若a<0,则2a<x<-a,此时不等式的解为2a<x<-a;(3)若a=0,则原不等式即为x2<0,此时无解.。