参数方程知识讲解及典型例题
直线的参数方程及其应用举例

-.直线的参数方程及应用问题1:〔直线由点和方向确定〕求经过点P 0(00,y x ),倾斜角为α的直线l设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向〕过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点.1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 那么P 0Q =P 0Pcos α Q P =P 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数,又∵P 0Q =0x x -, 0x x -=tcos αQ P =0y y -∴0y y -=t sin α 即⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从点P 0(00,y x )到点P(y x ,)的有向线段的数量,且|P 0P|=|t|① 当t>0时,点P 在点P 0的上方;② 当t =0时,点P 与点P 0重合;③ 当t<0时,点P 在点P 0的下方;特别地,假设直线l 的倾斜角α=0⎧+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合;⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系?我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系.xx- . 问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 ,那么P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t-t ∣问题4:假设P 0为直线l 上两点P 1、P 2的中点,P 1、P 2 参数分别为t 1、t 2 ,那么t 1、t 2 根据直线l 参数方程t 的几何意义,P 1P =t 1,P 2P =t 2,∵P 0为直线l 上两点P 1、P 2的中点,∴|P 1P|=|P 2P| P 1P =-P 2P ,即t 1=-t 2, t 1t 2<0 一般地,假设P 1、P 2、P 3是直线l 上的点,所对应的参数分别为t 1、t 2、t 3,P 3为P 1、P 2 那么t 3=221t t +〔∵P 1P 3=-P 2P 3, 根据直线l 参数方程t 的几何意义,∴P 1P 3= t 3-t 1,P 2P 3=t 3-t 2,∴t 3-t 1=-(t 3-t 2,) 〕总结:1、 直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x 〔t 为参数〕t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点.(2)假设P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,那么P 1P 2=t 2-t 1∣P 1P 2∣=∣t 2-t 1∣(3) 假设P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3那么P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)假设P 0为P 1P 2的中点,那么t 1+t 2=0,t 1·t 2<02、 直线参数方程的一般式过点P 0(00,y x ),斜率为ab k =的直线的参数方程是 ⎩⎨⎧+=+=bty y at x x 00 〔t 为参数〕 x例题:1、参数方程与普通方程的互化例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义.解:令y=0,得x =1,∴直线1l 过定点(1,0). k =-31=-33 设倾斜角为α,tg α=-33,α=π65, cos α =-23, sin α=21 1l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231 〔t 为参数〕t 是直线1l 上定点M 0〔1,0〕到t 对应的点M(y x ,)的有向线段M M 0的数量.由⎪⎪⎩⎪⎪⎨⎧=-=-(2) 21(1) 231t y t x (1)、(2)两式平方相加,得222)1(t y x =+-∣t ∣=22)1(y x +-∣t ∣是定点M 0〔1,0〕到t 对应的点M(y x ,)的有向线段M M 0的长.点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.例2:化直线2l 的参数方程⎩⎨⎧+=+-= t 313y t x 〔t 为参数〕为普通方程,并求倾斜角, 说明∣t ∣的几何意义.解:原方程组变形为⎩⎨⎧=-=+ (2) t31 (1) 3y t x (1)代入(2)消去参数t , 得)3(31+=-x y (点斜式) 可见k=3, tg α=3,倾斜角α=3π 普通方程为 01333=++-y x(1)、(2)两式平方相加,得2224)1()3(t y x =-++∴∣t ∣=2)1()3(22-++y x ∣t ∣是定点M 0〔3,1〕到t 对应的点M(y x ,)的有向线段M M 0的长的一半.点拨:注意在例1、例2中,参数t 的几何意义是不同的,直线1l 的参数方程 为⎪⎪⎩⎪⎪⎨⎧=-=t y t x 21231即⎪⎩⎪⎨⎧=+=ππ65sin 65cos 1t y t x 是直线方程的标准形式,(-23)2+(21)2=1, t 的几何意义是有向线段M M 0的数量.直线2l 的参数方程为⎩⎨⎧+=+-= t 313y t x 是非标准的形式,12+(3)2=4≠1,此时t 的几何意义是有向线段M M 0的数量的一半.你会区分直线参数方程的标准形式吗?例3:直线l 过点M 0〔1,3〕,倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211〔t 为参数〕和方程⎩⎨⎧+=+= t331y t x 〔t 为参数〕是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.解:由于以上两个参数方程消去参数后,均可以得到直线l 的的普通方程 0333=+--y x ,所以,以上两个方程都是直线l 的参数方程,其中⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211 cos α =21, sin α=23,是标准形式,参数t 是有向线段M M 0的数量.,而方程⎩⎨⎧+=+= t331y t x 是非标准形式,参数t 不具有上述的几何意义. 点拨:直线的参数方程不唯一,对于给定的参数方程能区分其标准形式,会利用参数t 的几何意义解决有关问题.问题5:直线的参数方程⎩⎨⎧+=+= t 331y t x 能否化为标准形式? 是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)⎩⎨⎧+=+= t 331y t x ⇔⎪⎪⎩⎪⎪⎨⎧+++=+++=))3(1()3(13 3))3(1()3(11122222222t y t x 令t '=t 22)3(1+ 得到直线l 参数方程的标准形式⎪⎪⎩⎪⎪⎨⎧'+='+=t 233211y t x t '的几何意义是有向线段 M M 0的数量.2、直线非标准参数方程的标准化一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,.⎩⎨⎧+=+=bty y at x x 00〔t 为参数〕, 斜率为a b tg k ==α(1)当22b a +=1时,那么t 的几何意义是有向线段M M 0的数量.(2) 当22b a +≠1时,那么t 不具有上述的几何意义.⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+ 那么可得到标准式⎪⎪⎩⎪⎪⎨⎧'++='++=t b a b y y t b a a x x 220220 t '的几何意义是有向线段M M 0的数量.例4:写出经过点M 0〔-2,3〕,倾斜角为43π的直线l 的标准参数方程,并且 求出直线l 上与点M 0相距为2的点的坐标. 解:直线l 的标准参数方程为⎪⎩⎪⎨⎧+=+-=ππ43sin 343cos 2t y t x 即⎪⎪⎩⎪⎪⎨⎧+=--=t y t x 223222〔t 为参数〕〔1〕 设直线l 上与点M 0相距为2的点为M 点,且M 点对应的参数为t, 那么| M 0M|=|t| =2, ∴t=±2 将t 的值代入(1)式当t=2时,M 点在 M 0点的上方,其坐标为〔-2-2,3+2〕;当t=-2时,M 点在 M 0点的下方,其坐标为〔-2+2,3-2〕.点拨:假设使用直线的普通方程利用两点间的距离公式求M 点的坐标较麻烦, 而使用直线的参数方程,充分利用参数t 的几何意义求M 点的坐标较 容易.例5:直线⎩⎨⎧-=+= 20cos 420sin 3t y t x 〔t 为参数〕的倾斜角 . 解法1:消参数t,的34--x y =-ctg20°=tg110°解法2:化为标准形式:⎩⎨⎧-+=-+= 110sin )(4110cos )(3t y t t x 〔-t 为参数〕 ∴此直线的倾斜角为110°根底知识测试1:1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、 直线l 的方程:⎩⎨⎧+=-=25cos 225sin 1t y t x 〔t 为参数〕,那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=t y t x 521511〔t 为参数〕的斜率和倾斜角分别是( ) A) -2和arctg(-2) B) -21和arctg(-21) C) -2和π-arctg2 D) -21和π-arctg 21 4、 直线⎩⎨⎧+=+=ααsin cos 00t y y t x x 〔t 为参数〕上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ〔λ≠-1〕,那么P 所对应的参数是.5、直线l 的方程: ⎩⎨⎧+=+=bt y y at x x 00 〔t 为参数〕A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣ B22b a +∣t 1-t 2∣ C 2221b a t t +- D ∣t 1∣+∣t 2∣ 6、 直线l :⎩⎨⎧+-=+= t 351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离.例6:直线l 过点P 〔2,0〕,斜率为34,直线l和抛物线x y 22=相交于A 、B 两点,设线段AB 的中点为M,求: (1)P 、M 两点间的距离|PM|; (2)M 点的坐标; (3)线段AB 的长|AB|解:(1)∵直线l 过点P 〔2,0〕,斜率为34,设直线的倾斜角为α,tg α=34 cos α =53, sin α=54∴直线l 的标准参数方程为⎪⎩⎪⎨⎧=+=t y t x 54532〔t 为参数〕* ∵直线l 和抛物线相交,将直线的参数方程代入抛物线方程x y 22=中,整理得 8t 2-15t -50=0 Δ=152+4×8×50>0,设这个二次方程的两个根为t 1、t 2,由韦达定理得 t 1+t 2=815, t 1t 2=425- ,由M 为线段AB 的中点,根据t 的几何意义,得| PM|=221t t +=1615 ∵中点M 所对应的参数为t M =1615,将此值代入直线的标准参数方程*, M 点的坐标为⎪⎩⎪⎨⎧=•==•+=4316155416411615532y x 即 M 〔1641,43〕 (3) |AB|=∣t 2-t 1∣= 222114)(t t t t -+=7385 点拨:利用直线l 的标准参数方程中参数t 的几何意义,在解决诸如直线l 上两点间的距离、直线l 上某两点的中点以及与此相关的一些问题时,比用直线l 的普通方程来解决显得比拟灵活和简捷. 例7:直线l 经过点P 〔1,-33〕,倾斜角为3π, (1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ|;(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积.解:(1)∵直线l 经过点P 〔1,-33〕,倾斜角为3π,∴直线l 的标准参数方 程为⎪⎩⎪⎨⎧+-=+=3sin 333cos 1ππt y t x ,即⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211〔t 为参数〕代入直线l ':32-=x y 得032)2333()211(=-+--+t t 整理,解得t=4+23 t=4+23即为直线l 与直线l '的交点Q 所对应的参数值,根据参数t 的几 何意义可知:|t|=| PQ|,∴| PQ|=4+23.(2) 把直线l 的标准参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211〔t 为参数〕代入圆的方程22y x +=16,得16)2333()211(22=+-++t t ,整理得:t 2-8t+12=0, Δ=82-4×12>0,设此二次方程的两个根为t 1、t 2 那么t 1t 2=12根据参数t 的几何意义,t 1、t 2 分别为直线和圆22y x +=16的两个交点A, B 所对应的参数值,那么|t 1|=| PA|,|t 2|=| PB|,所以| PA|·| PB|=|t 1 t 2|=12点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘- . 积〔或商〕的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便.例8:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右, 直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.解:由题意,得抛物线的对称轴方程为y=2.设抛物线顶点坐标为〔a ,2〕 方程为(y ―2)2=2P(x -a ) (P>0) ①∵点B(-1,-2)在抛物线上,∴(―2―2)2=2P(-1-a )a P=-8-P 代入① 得(y ―2)2=2P x +2P+16 ②将直线方程y=2x +7化为标准的参数方程tg α=2,α为锐角,cos α =51, sin α=52 得⎪⎪⎩⎪⎪⎨⎧+=+-=t y t x 525511〔t 为参数〕 ③ ∵直线与抛物线相交于A ,B, ∴将③代入②并化简得:75212542--+t P t =0 ,由Δ=355)6(42+-P >0,可设方程的两根为t 1、t 2, 又∵|AB|=∣t 2-t 1∣= 222114)(t t t t -+=4104354]4)212(5[2⨯+-P =(410)2 化简,得(6-P)2=100 ∴ P=16 或P=-4(舍去) 所求的抛物线方程为(y ―2)2=32x +48点拨:(1)〔对称性〕由两点A(-1,6)和B(-1,-2)的对称性及抛物线的对称性质,设出抛物线的方程〔含P 一个未知量,由弦长AB 的值求得P 〕.(2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。
参数方程大题及答案

参数方程大题及答案【篇一:高考极坐标参数方程含答案(经典39题)】p class=txt>a,b两点.(1)求圆c及直线l的普通方程.(224.已知直线lc(1)求圆心c的直角坐标;(2)由直线l上的点向圆c引切线,求切线长的最小值.l,且ll分别交于b,c两点.在极坐标系(与直角坐标系5.在直角坐标系xoy 中,直线lxoy取相同的长度单位,且以原点o为极点,以x轴正半轴为极轴)中,圆c的方程为??4cos?. (Ⅰ)求圆c在直角坐标系中的方程;(Ⅱ)若圆c与直线l相切,求实数a的值.6.在极坐标系中,o为极点,已知圆c(Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线l和直线l(Ⅱ)求|bc|的长.3.在极坐标系中,点m轴为x轴的正半轴建立平面直角坐标系,斜率是?1(1)写出直线l的参数方程和曲线c的直角坐标方程;(2)求证直线l和曲线c相交于两点a、b,并求|ma|?|mb|的值.cr=1,p在圆c上运动。
(i)求圆c的极坐标方程;(ii)在直角坐标系(与极坐标系取相同的长度单位,且以极点o为原点,以极轴为x轴正半轴)中,若q为线段op的中点,求点q轨迹的直角坐标方程。
l的极坐7.在极坐标系中,极点为坐标原点o,已知圆c(1)求圆c的极坐标方程;(2)若圆c和直线l相交于a,b两点,求线段ab的长.9.在直角坐标平面内,以坐标原点o为极点,x轴的正半轴为极轴建立极坐标系,曲线c的极坐标方程是??4cos?,直线lt为参数)。
求极点在直线l上的射影点p的极坐标;若m、n分别为曲线c、直线l10.已知极坐标系下曲线c的方程为??2cos??4sin?,直线l?x?4cos??y?sin?8.平面直角坐标系中,将曲线?(?为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移1个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线c1 .以坐标原点为极点,x的非负半轴为极轴,建立的极坐标中的曲线c2的方程为??4sin?,求c1和c2公共弦的长度.(Ⅰ)求直线l在相应直角坐标系下的参数方程;(Ⅱ)设l与曲线c相交于两点a、b,求点p到a、b两点的距离之积.11.在直角坐标系中,曲线c1的参数方程为??x?4cos?(?为参数).以坐标原点为极点,x轴的正?y?3sin?14.已知椭圆cf1,f2为其左,右焦点,直线l的参数半轴为极轴的极坐标系中.曲线c2(1)分别把曲线c1与c2化成普通方程和直角坐标方程;并说明它们分别表示什么曲线.(2)在曲线c1上求一点q,使点q到曲线c2的距离最小,并求出最小距离.12.设点m,n分别是曲线??2sin??01)求直线l和曲线c的普通方程;(2)求点f1,f2到直线l的距离之和.?x?3cos?15.已知曲线c:?,直线l:?(cos??2sin?)?12.y?2sin??⑴将直线l的极坐标方程化为直角坐标方程;⑵设点p在曲线c上,求p点到直线l距离的最小值.m,n间的最小距离.16.已知?o1的极坐标方程为??4cos?.点a的极坐标是(2,?).(Ⅰ)把?o1的极坐标方程化为直角坐标参数方程,把点a的极坐标化为直角坐标.(Ⅱ)点m(x0,y0)在?o1上运动,点p(x,y)是线段am的中点,求点p运动轨迹的直角坐标方程.求曲线c2上的点到直线l距离的最小值.19.在直接坐标系xoy中,直线l的方程为x-y+4=0,曲线c的参数方程为(1)已知在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点o为极点,以x轴正半轴为极轴)中,点p17.在直角坐标系xoy中,直线l为参数),若以o为极点,x轴正半轴为极轴建立极坐标系,则曲线c的极坐标方程为?长.18.已知曲线c1的极坐标方程为??4cos?,曲线c2p与直线l的位置关系;,求直线l被曲线c所截的弦(2)设点q 是曲线c上的一个动点,求它到直线l的距离的最小值.20l交曲线c:?比数列,求直线l的方程.?x?2cos?(?为参数)于a、b?y?2sin?的方程是4x?y?4, 直线l的参数方程22(t为参数).(1)求曲线c1的直角坐标方程,直线l的普通方程;(2)21.已知曲线c1的极坐标方程是,曲线c2的参数方程是(1)写出曲线c和直线l的普通方程;(2)若|pm|,|mn|,|pn|成等比数列,求a的值.1)写出曲线c1的直角坐标方程和曲线c2的普通方程;(2)求t 的取值范围,使得c1,c2没有公共点.22.设椭圆e24.已知直线lc(1)设y?sin?,?为参数,求椭圆e的参数方程;(2)点p?x,y?是椭圆e 上的动点,求x?3y的取值范围.23.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线a2c?s??,已知过点0p??2,?4?的直线l的参数方程为?oal与曲线c(i)求圆心c的直角坐标;(Ⅱ)由直线l上的点向圆c引切线,求切线长的最小值.25.在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方弦长.?x?2cos?c的参数方程为?(?为对数),求曲线c截直线l所得的?y?sin? c:?si2n??分别交于m,n【篇二:2015高考理科数学《参数方程》练习题】lass=txt>一、选择题?x=1+3t,1.若直线的参数方程为?答案:d?x=3t+2,2.参数方程为?2?y=t-1a.线段 c.圆弧2(t为参数),则直线的倾斜角为( )y-2-3t3(0≤t≤5)的曲线为( )b.双曲线的一支 d.射线解析:化为普通方程为x=3(y+1)+2,即x-3y-5=0,由于x =3t2+2∈[2,77],故曲线为线段.故选a. 答案:a3.曲线?解析:曲线化为普通方程为答案:c4.若直线2x-y-3+c=0与曲线?x2b.3 d.2312+y218=1,∴c=6,故焦距为26.b.6或-4-----欢迎登陆明师在线浏览更多的学习资讯!-----c.-2或8解析:将曲线?22d.4或-6|-3+c|=0与圆x+y=5相切,可知=5,解得c=-2或8.5答案:c5.已知曲线c:??x=t,?y=t+b(t为参数,b为实数),若曲线c上恰有3个点到直线l的距离等于1,则b=( )a.2 c.0解析:将曲线c和直线l的参数方程分别化为普通方程为x2+y2=4和y=x+b,依题意,若要|b|使圆上有3个点到直线l的距离为1,只要满足圆心到直线的距离为1即可,得到=1,解得b=答案:d?x=4t,6.已知点p(3,m)在以点f为焦点的抛物线??y=4ta.1 c.3b.2 d.42(t为参数)上,则|pf|=( )解析:将抛物线的参数方程化为普通方程为y2=4x,则焦点f(1,0),准线方程为x=-1,又p(3,m)在抛物线上,由抛物线的定义知|pf|=3-(-1)=4.答案:d 二、填空题??x=-2-2t,7.(2014年深圳模拟)直线??y=3+2t?坐标是________.??x=-2-2t,1222??y=3+2t2222(t为参数)上与点a(-2,3)的距离等于2的点的(t-----欢迎登陆明师在线浏览更多的学习资讯!-----为参数),得所求点的坐标为(-3,4)或(-1,2).答案:(-3,4)或(-1,2)8.(2014年东莞模拟)若直线l:y=kx与曲线c:?解析:曲线c化为普通方程为(x-2)2+y2=1,圆心坐标为(2,0),半径r=1.由已知l与圆相切,则r=|2k|333解析:利用直角坐标方程和参数方程的转化关系求解参数方程. 1?21?2x-+y=将x+y-x=0配方,得?2?4?22所以圆的直径为1,设p(x,y),?2210.已知曲线c的参数方程为?24??-----欢迎登陆明师在线浏览更多的学习资讯!-----(1)将曲线c的参数方程化为普通方程;解析:(1)由?2x2+y=1,x∈[-1,1].4???x+y+2=0,?2?x+y=1得x2-x-3=0.解得x=[-1,1],故曲线c与曲线d无公共点.2?x=2cos t,11.已知动点p、q都在曲线c:?(1)求m的轨迹的参数方程;m的轨迹的参数方程为?212.(能力提升)在直角坐标系xoy中,圆c1:x+y=4,圆c2:(x-2)+y=4.(1)在以o为极点,x轴正半轴为极轴的极坐标系中,分别写出圆c1,c2的极坐标方程,并求出圆c1,c2的交点坐标(用极坐标表示);222-----欢迎登陆明师在线浏览更多的学习资讯!-----3(2)解法一由?得圆c1与c2交点的直角坐标分别为(1,3),(1,-3).?x=1,故圆c1与c2的公共弦的参数方程为??y=t,?x=1,(或参数方程写成??y=y,-3≤t≤3.-3 ≤ y ≤3)解法二将x=1代入?于是圆c1与c2的公共弦的参数方程为 ?x=1,?======*以上是由明师教育编辑整理======------欢迎登陆明师在线浏览更多的学习资讯!-----【篇三:坐标系与参数方程典型例题(含高考题----答案详细)】ass=txt>一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系:①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. ⑤了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.2.参数方程:①了解参数方程,了解参数的意义.②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.③了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.④了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.二、基础知识归纳总结:?x????x,(??0),1.伸缩变换:设点p(x,y)是平面直角坐标系中的任意一点,在变换?:?的作用下,?y???y,(??0).?点p(x,y)对应到点p?(x?,y?),称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
极坐标和参数方程的典型例题

极坐标和参数方程的典型例题在数学中,极坐标和参数方程是研究平面曲线的重要工具。
极坐标是一种用极径和极角来表示平面上点位置的坐标系统,而参数方程则是用一个或多个参数来表示曲线上的点的坐标。
在本文中,我们将通过一些典型例题来探讨如何使用极坐标和参数方程解决问题。
例题一:极坐标下的圆首先让我们考虑一个非常简单的例子,即极坐标下的圆。
圆的极坐标方程为:$$ \\begin{cases} r = a \\\\ \\theta \\in [0, 2\\pi) \\end{cases} $$其中,r表示极径,a表示圆的半径,$\\theta$表示极角。
这个方程说明了圆上的每个点都满足极径等于半径a,并且极角可以在0到$2\\pi$之间取值。
例题二:参数方程下的抛物线接下来,我们考虑一个使用参数方程描述的曲线:抛物线。
抛物线的参数方程为:$$ \\begin{cases} x = at^2 \\\\ y = 2at \\end{cases} $$其中,a为常数,t为参数。
根据这个参数方程,我们可以看到x和y都是t的二次函数。
这个参数方程给出了抛物线上的每个点的坐标。
例题三:极坐标和参数方程的转换有时候,我们需要在极坐标和参数方程之间进行转换。
下面的例题将展示如何将一个极坐标方程转换为参数方程。
考虑极坐标方程:$$ \\begin{cases} r = 2\\cos\\theta \\\\ \\theta \\in [0, \\pi] \\end{cases} $$我们可以使用三角恒等式来将这个极坐标方程转换为参数方程。
首先,我们注意到r是$\\theta$的函数,而x和y是r的函数。
根据极坐标和直角坐标之间的关系,我们有下面的关系式:$$ \\begin{cases} x = r\\cos\\theta \\\\ y = r\\sin\\theta \\end{cases} $$将极坐标方程中的r代入上述关系式,我们得到参数方程:$$ \\begin{cases} x = 2\\cos(\\theta)\\cos(\\theta) = 2\\cos^2(\\theta) \\\\y = 2\\cos(\\theta)\\sin(\\theta) = \\sin(2\\theta) \\end{cases} $$ 通过这个转换,我们将极坐标方程转换为了参数方程。
专题75 参数方程(解析版)

2020年领军高考数学一轮复习(文理通用)专题75参数方程最新考纲1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆的参数方程.基础知识融会贯通1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.2.常见曲线的参数方程和普通方程重点难点突破【题型一】参数方程与普通方程的互化【典型例题】已知曲线C1:(t为参数),C2:(θ为参数)(Ⅰ)将C1,C2的方程化为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t,Q为C2上的动点,求PQ中点M到直线C3:(t 为参数)距离的最小值.【解答】解:(Ⅰ)C1:(x+4)2+(y﹣3)2=1,C2:y2=1C1为圆心是(﹣4,3),半径是1的圆C2为中心是坐标原点,焦点在x轴上,长半轴长是,短半轴长是1的椭圆(Ⅱ)当t时,P(﹣4,4),Q(cosθ,sinθ),故M(﹣2cosθ,2)C3为直线x﹣y﹣5=0,M到C3的距离d|sin(θ)+9|,从而当sin(θ)=﹣1时,d取得最小值4.【再练一题】在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),把曲线C1上的点的横坐标缩短到原来的倍数,纵坐标伸长到原来的2倍后得到曲线C2.(1)求曲线C1和C2的普通方程;(2)直线l的参数方程是(t为参数),直线l过定点P(0,1)且与曲线C2交于A,B两点,求|P A|•|PB|的值.【解答】(1)线C1的参数方程为(φ为参数),得到:x2+y2=4.把曲线C1上的点的横坐标缩短到原来的倍数,纵坐标伸长到原来的2倍后得到曲线C2.(φ为参数)转换为直角坐标方程为:.(2)把直线l的参数方程(t为参数),转换为标准的参数方程为:(t为参数)代入,得到:(t1和t2为A和B对应的参数),故:,故:.思维升华消去参数的方法一般有三种(1)利用解方程的技巧求出参数的表达式,然后代入消去参数.(2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.将参数方程化为普通方程时,要注意防止变量x和y取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f(t)和g(t)的值域,即x和y的取值范围.【题型二】参数方程的应用【典型例题】已知直线l:(t为参数),曲线C1:(θ为参数).(1)设直线l与曲线C1相交于A,B两点,求劣弧AB的弧长;(2)若把曲线C1上各点的横坐标缩短为原来的,纵坐标缩短为原来的,得到曲线C2,设点P是曲线C2上的一个动点,求点P到直线l的距离的最小值,及点P坐标.【解答】解:(1)由l:,得;由曲线C1:,得x2+y2=1;联立,解得或,则两交点为(1,0),(,).∴|AB |,则劣弧AB 的弧长为;(2)设P 点坐标为(,),点P 到直线l 的距离d . 当sin ()=﹣1时,d 取得最小值为,此时P (,).【再练一题】在平面直角坐标系xOy 中,曲线C 的参数方程为(θ为参数),直线l 的参数方程为(t 为参数).(1)求曲线C 和直线l 的普通方程,(2)直线l 与曲线C 交于A ,B 两点,若|AB |=1,求直线l 的方程.【解答】解:(1)由曲线C 和直线l 的参数方程可知,曲线C 的普通方程为x 2+y 2=1. 直线l 的普通方程:当cos α=0时为x =2;当cos α≠0时为y =tan α(x ﹣2). (2)把x =2+t cos α,y =t sin α代入x 2+y 2=1,得t 2+4t cos α+3=0, 因为△=16cos 2α﹣12>0,所以cos 2α.设A ,B 对应的参数为t 1,t 2,因为t 1+t 2=﹣4cos α,t 1t 2=3,|AB |=|t 1﹣t 2|=1, 所以(t 1﹣t 2)2=(t 1+t 2)2﹣4t 1t 2=16cos 2α﹣12=1, 所以cos 2α,所以tan 2α, 所以tan α=±,即直线l 的斜率为±. 所以直线l 的方程为y x或yx.思维升华 (1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决.(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【题型三】极坐标方程和参数方程的综合应用【典型例题】在直角坐标系xOy中,曲线C1的参数方程为(α是参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)若射线θ=β(0<β)与曲线C1交于O,A两点,与曲线C2交于O,B两点,求|OA|+|OB|取最大值时tanβ的值.【解答】解:(1)由(α是参数),得,∴,即,∴曲线C1的极坐标方程为.由ρ=4sinθ,得ρ2=4ρsinθ,将ρ2=x2+y2,y=ρsinθ代入得:x2+y2=4y,故曲线C2的直角坐标方程为x2+y2﹣4y=0.(2)设点A、B的极坐标分别为(ρ1,θ),(ρ2,θ),将θ=β(0<β)分别代入曲线C1、C2极坐标方程得:,ρ2=4sinβ,则|OA|+|OB|4sinβ(β+φ),其中φ为锐角,且满足sinφ,cosφ,当β+φ时,|OA|+|OB|取最大值,此时φ,tanβ=tan(φ).【再练一题】在直角坐标系xoy中,直线l的参数方程是(t为参数),曲线C的参数方程是(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求直线l和曲线C的极坐标方程;(2)已知射线与曲线C交于O,M两点,射线与直线l交于N 点,若△OMN的面积为1,求α的值和弦长|OM|.【解答】解:(1)直线l 的参数方程是(t 为参数),消去参数t 得直角坐标方程为:. 转换为极坐标方程为:,即.曲线C 的参数方程是(φ为参数),转换为直角坐标方程为:,…………………………化为一般式得化为极坐标方程为:. ………………………(2)由于,得,.所以,所以, 由于,所以,所以.…………………………思维升华 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以更简捷的解决问题.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.基础知识训练1.在平面直角坐标系xOy 中,直线l的参数方程为322x t y t ⎧=−⎪⎪⎨⎪=⎪⎩(t 为参数)。
参数方程与普通方程互化例题和知识点总结

参数方程与普通方程互化例题和知识点总结在数学的学习中,参数方程与普通方程的互化是一个重要的知识点,它不仅在解析几何中有着广泛的应用,对于解决实际问题也具有重要的意义。
下面我们将通过一些例题来深入理解参数方程与普通方程的互化,并对相关知识点进行总结。
一、参数方程的概念参数方程是指在平面直角坐标系中,如果曲线上任意一点的坐标\(x\)、\(y\)都是某个变数\(t\)的函数,并且对于\(t\)的每一个允许的取值,由方程组确定的点\((x,y)\)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数\(x\)、\(y\)的变数\(t\)叫做参变数,简称参数。
例如,圆的参数方程为:\(\begin{cases}x = r\cos\theta \\ y= r\sin\theta\end{cases}\)(\(\theta\)为参数),其中\(r\)为圆的半径。
二、普通方程的概念普通方程是指用\(x\)和\(y\)直接表示其关系的方程。
例如,圆的普通方程为:\(x^2 + y^2 = r^2\)。
三、参数方程与普通方程互化的方法1、消去参数消去参数的方法主要有代入消元法、加减消元法、利用三角函数的恒等式消元法等。
例如,对于参数方程\(\begin{cases}x = t + 1 \\ y =t^2\end{cases}\),可以通过将\(x = t + 1\)变形为\(t = x 1\),然后代入\(y = t^2\)中,得到普通方程\(y =(x 1)^2\)。
2、利用三角函数的恒等式对于形如\(\begin{cases}x = a\cos\theta \\ y =b\sin\theta\end{cases}\)的参数方程,可以利用三角函数的平方和恒等式\(\cos^2\theta +\sin^2\theta = 1\)进行消参。
例如,将\(x = a\cos\theta\)两边平方得\(x^2 =a^2\cos^2\theta\),将\(y = b\sin\theta\)两边平方得\(y^2 =b^2\sin^2\theta\),然后将两式相加可得:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)。
高中数学选修4-4(人教A版)第二讲参数方程2.1知识点总结含同步练习及答案

描述:例题:高中数学选修4-4(人教A版)知识点总结含同步练习题及答案第二讲 参数方程 一 曲线的参数方程一、知识清单参数方程二、知识讲解1.参数方程曲线的参数方程定义设平面上取定了一个直角坐标系,把坐标系,表示为第三个变量的函数如果对于的每一个值(),式所确定的点都是在一条曲线上;而这条曲线上的任一点,都可由的某个值通过式得到,则称式为该曲线的参数方程,其中变量称为参数.直线的参数方程直线的参数方程的一般形式是.圆的参数方程若圆心在点,半径为,则圆的参数方程为 . 圆锥曲线的参数方程若椭圆的中心不在原点,而在点,相应的椭圆的参数方程为.抛物线的参数方程抛物线的参数方程为.双曲线的参数方程双曲线的参数方程为.摆线的参数方程一圆沿一直线作无滑动滚动式,圆周上的一定点的轨迹称为摆线.设半径为的圆在轴上滚动,开始时定点在原点处.取圆滚动时转过的角度(以弧度为单位)为参数.当圆滚过角时,圆心为,圆与轴的切点为,.所摆线的参数方程为.xOy x y t {a ≤t ≤b .(2−3)x =f (t )y =g (t )t a ≤t ≤b (2−3)M (x ,y )M (x ,y )t (2−3)(2−3)t {t ∈R x =+lt x 0y =+mty 0(,)M 0x 0y 0R {0≤θ≤2πx =+R cos θx 0y =+R sin θy 0(,)M 0x 0y 0{0≤t ≤2πx =+a cos t x 0y =+b sin ty 0{x =2p t 2y =2pt{x =a sec θy =b tan θM a x M O t t B x A ∠ABM =t {x =a (t −sin t )y =a (1−cos t )下列方程中可以看成参数方程的是( )A. B. C.x −y −t =0+−2ax −9=0x 2y 2{=x 2t 2y =2t −1。
高三数学参数方程知识点

高三数学参数方程知识点数学是一门抽象而又具有普适性的学科,它的应用广泛,对于高三学生来说,数学的学习变得更加重要和密集。
本文将着重介绍高三数学中的参数方程知识点,帮助学生全面理解并有效记忆这一概念。
一、参数方程的定义与特点参数方程是指用一个参数表示所有的自变量和因变量之间的函数关系。
通常用t作为参数,表示自变量的取值范围。
在参数方程中,将自变量和因变量用参数表示,使得函数的自变量和因变量之间的关系更为灵活。
二、参数方程的表示方法参数方程的表示方法有多种形式,常见的有向量表示法和分量表示法。
1. 向量表示法在向量表示法中,自变量和因变量都用向量表示。
例如,对于平面上的一个点P,其参数方程可表示为:P(t) = (x(t), y(t))其中,x(t)和y(t)分别表示点P的x坐标和y坐标,t为参数。
2. 分量表示法在分量表示法中,将自变量和因变量都分别表示为关于参数t的函数。
例如,对于平面上的一个点P,其参数方程可以表示为:x = f(t)y = g(t)其中,f(t)和g(t)分别表示x和y的函数,t为参数。
三、参数方程应用领域参数方程在数学中有广泛的应用,特别是在曲线的研究中起到重要作用。
下面分别介绍参数方程在平面曲线和空间曲线中的应用。
1. 平面曲线参数方程在平面曲线中的应用非常广泛,常见的曲线方程如圆、椭圆、抛物线、双曲线等都可以用参数方程表示。
通过参数方程,可以对曲线的形状和性质进行更深入的研究。
例如,对于圆的参数方程为:x = a*cos(t)y = a*sin(t)其中,a为半径,t为参数。
通过改变参数t的取值范围,可以绘制出一条圆的完整轨迹。
2. 空间曲线参数方程在空间曲线的研究中也起到重要作用,例如,直线、曲线、螺旋线等都可以通过参数方程来表示。
通过参数方程,可以描述物体在空间中的运动轨迹,从而研究物体的运动方式和变化规律。
四、参数方程的解法当给定一个参数方程时,我们需要求解参数方程对应的曲线方程或图形。
高中数学函数参数方程解析

高中数学函数参数方程解析一、引言在高中数学学习中,函数参数方程是一个重要的知识点。
本文将从基础概念出发,通过具体题目的举例,分析解题思路和考点,并给出一些解题技巧,帮助读者更好地理解和应用函数参数方程。
二、函数参数方程的基本概念函数参数方程是指用参数表示的函数方程。
一般形式为:y = f(x, a),其中a为参数。
参数可以是任意实数,通过改变参数的取值,可以得到不同的函数图像。
三、函数参数方程的应用举例1. 例题一:求参数方程y = a^2 - x^2的图像。
解析:将参数方程转化为直角坐标系下的函数方程。
令y = f(x, a) = a^2 - x^2,其中a为参数。
通过改变参数a的取值,可以得到不同的图像。
当a = 1时,函数图像为一个单位圆;当a = 2时,函数图像为一个半径为2的圆。
可以通过改变参数a的取值,观察图像的变化规律。
2. 例题二:求参数方程x = a + t,y = a - t的图像。
解析:将参数方程转化为直角坐标系下的函数方程。
令x = f(t, a) = a + t,y = g(t, a) = a - t,其中a为参数。
通过改变参数a的取值,可以得到不同的图像。
当a = 0时,函数图像为直线y = -x;当a = 1时,函数图像为直线y = 1 - x。
可以通过改变参数a的取值,观察图像的变化规律。
四、函数参数方程的考点分析1. 参数的取值范围:在解题过程中,需要注意参数的取值范围,以保证函数有意义。
例如,在例题一中,参数a不能取负值,否则函数图像将不存在。
2. 函数图像的特点:通过观察函数图像的特点,可以发现一些规律。
例如,在例题一中,当参数a取不同的值时,函数图像的形状和大小都会发生变化。
这表明参数a对函数图像具有一定的控制作用。
3. 函数图像的对称性:在解题过程中,可以通过观察函数图像的对称性来简化问题。
例如,在例题一中,函数图像y = a^2 - x^2关于y轴对称,这可以帮助我们更好地理解和绘制函数图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l2 : 2x
4y
5 相交于点 B ,又点 A(1,2) ,则
AB _______________。
1
x2 t
4.直线
2 (t为参数 ) 被圆 x2 y2 4 截得的弦长为 ______________。
1
y1t
2
三、解答题
2
2
1.已知点 P( x, y) 是圆 x y 2 y 上的动点,
( 1)求 2 x y 的取值范围;
C. (2, 3)
D. (1, 3)
x 2 sin 2
3.将参数方程 y sin2
( 为参数 ) 化为普通方程为(
)
A. y x 2 B. y x 2 C. y x 2(2 x 3) D. y x 2(0 y 1)
4.化极坐标方程 2 cos
0 为直角坐标方程为(
)
A. x2 y 2 0或 y 1 B. x 1 C. x2 y 2 0或 x 1 D. y 1
,求其倾斜角 .
极坐标与参数方程练习题
[ 基础训练 A 组]
一、选择题
x 1 2t
1.若直线的参数方程为
(t为参数 ) ,则直线的斜率为(
)
y 2 3t
2
A.
3
2.下列在曲线
2
B.
3
3
C.
2
3
D.
2
x sin 2
( 为参数 ) 上的点是(
)
y cos sin
A. (1 , 2) 2
B. ( 3 , 1) 42
参数方程
一、定义:在取定的坐标系中,如果曲线上任意一点的坐标 x、 y 都是某个参数
t 的函数,即
x f (t ) y f (t ) ,其中, t 为参数,并且对于 t 每一个允许值,由方程
组所确定的点 M(x,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方
程,联系 x、y 之间关系的变数 t 叫做参变数,简称参数.
)
y 1t
A. 98
二、填空题
1 B. 40
4
C . 82
D. 93 4 3
1.曲线的参数方程是
x11 t (t为参数 ,t
y 1 t2
0) ,则它的普通方程为 __________________ 。
x 3 at
2.直线
(t为参数 ) 过定点 _____________ 。
y 1 4t
3.点 P(x,y) 是椭圆 2 x2 3 y2 12 上的一个动点,则 x 2 y 的最大值为 ___________。
同心圆, M点的轨迹是椭圆,中心在( x0,y0)椭圆的参数方程: x x0 a cos y y0 b sin
x2
Eg:求椭圆
36
y2
=1 上的点到 M(2,0 )的最小值。
20
3、双曲线的参数方程:
x a sec 中心在原点,焦点在 x 轴上的双曲线:
y btan
( 为参数,代表离心角) ,
中心在( x0,y0),焦点在 x 轴上的双曲线: x x0 a sec y y0 b tan
5.点 M 的直角坐标是 ( 1, 3) ,则点 M 的极坐标为(
)
A. (2, ) 3
B. (2, ) 3
2 C. (2, )
3
D. (2,2 k
6.极坐标方程 cos 2sin 2 表示的曲线为(
)
),( k Z ) 3
A.一条射线和一个圆 二、填空题
B.两条直线 C.一条直线和一个圆
D .一个圆
D .两条射线
1 x1 t
2
3.直线
y 33
(t为参数 ) 和圆 x2 y2 16 交于 A, B 两点, 3
t 2
则 AB 的中点坐标为(
)
A. (3, 3)
B. ( 3,3) C . ( 3, 3) D . (3, 3)
4.圆 5cos 5 3 sin 的圆心坐标是(
)
A. ( 5, 4 ) B. ( 5, ) C. (5, ) D. ( 5, 5 )
3
3
3
3
xt
5.与参数方程为
(t为参数 ) 等价的普通方程为(
)
y 21 t
A. x2 y2 1 4
B. x2 y 2 1(0 x 1) 4
C. x2 y2 1(0 y 2) 4
D . x2 y2 1(0 x 1,0 y 2) 4
x
6.直线
2
t (t为参数 ) 被圆 ( x
3) 2
( y 1)2
25 所截得的弦长为(
16 9
2.已知直线 l 经过点 P(1,1), 倾斜角 ( 1)写出直线 l 的参数方程。
,
6
( 2)设 l 与圆 x2 y 2 4 相交与两点 A, B ,求点 P 到 A, B 两点的距离之积。
极坐标与参数方程练习题答案
[ 基础训练 A 组]
一、选择题 1. D 2. B 二、填空题
3.C
4. C 5. C
(2) x=sin y=cos
( 3) x=t+ 1 t
y=t
2+ 1
t2
总结:参数方程化为普通方程步骤: (1)消参( 2)求定义域
2、椭圆的参数方程:
中心在原点,焦点在 x 轴上的椭圆:
x a cos y b sin
( 为参数, 的几何意义是离心角,如图角 AON是离心角)
注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个
4.曲线的极坐标方程为
1
tan
,则曲线的直角坐标方程为 ________________ 。
cos
5.设 y tx (t为参数 ) 则圆 x2 y2 4 y 0 的参数方程为 __________________________ 。
三、解答题
x2 y2
1.点 P 在椭圆
1 上,求点 P 到直线 3x 4y 24 的最大距离和最小距离。
x 3 4t
1.直线
(t为参数 ) 的斜率为 ______________________ 。
y 4 5t
2.参数方程
x et e t y 2(et e t ) (t为参数 ) 的普通方程为 __________________ 。
x 1 3t
3.已知直线 l1 : y
2
(t为参数 ) 与直线 4t
2
2. (3, 1) 3. 22 4. x y
4t
x
2
1t
5.
4t 2
y 1 t2
x2
(tx )2
4tx
0 ,当 x
0 时, y
0 ;当 x
0 时, x
4t 1 t2
;
三、解答题
1.当 cos(
4t
而y
tx ,即 y
4t 2 1 t2
,得
x
1 t2 4t 2
y 1 t2
12
12
) 1 时, dmax
( 为参数, 的几何意义为圆心角) ,
Eg1:已知点 P( x , y )是圆 x 2+y2-6x-4y+12=0 上的动点,求:
( 1) x2+y2 的最值;( 2) x+y 的最值;( 3)点 P 到直线 x+y-1=0 的距离 d 的最值。
Eg2:将下列参数方程化为普通方程
( 1) x=2+3cos y=3sin
( 2)若 x y a 0 恒成立,求实数 a 的取值范围。
x 1t
2.求直线 l1 :
(t为参数 ) 和直线 l 2 : x y 2 3 0 的交点 P 的坐标, 及点 P
y 5 3t
与 Q (1, 5) 的距离。Fra bibliotekx2 y2
3.在椭圆
1 上找一点,使这一点到直线
16 12
x 2 y 12 0 的距离的最小值。
4、抛物线的参数方程:
顶点在原点,焦点在 x 轴正半轴上的抛物线:
x 2pt 2
y 2pt
(t 为参数, p> 0, t 的几何意义为过圆点的直线的斜率的倒数)
直线方程与抛物线方程联立即可得到。 三、一次曲线(直线)的参数方程
过定点 P0(x0,y 0),倾角为 的直线, P 是直线上任意一点,设 P0P=t,P0P 叫
(2 2) ;当 cos(
) 1时, dmin
(2
4
5
4
5
x 1 3t
2.解:( 1)
2
1
y1 t
2
(2) 2
2) 。
6.C
5
x2 y2
1.
2.
1,( x 2)
4
4 16
5
3.
2
4. 14
三、解答题
1.解:( 1)
5 1 2x y 5 1 ;( 2) a
21
2. 4 3
45
3.
5
[ 综合训练 B 组]
一、选择题 1. C 2. D 二、填空题
3.D 4. A
5. D
6. C
x( x 2)
1. y
2 (x 1)
(x 1)
[ 综合训练 B 组]
一、选择题
x at
1.直线 l 的参数方程为
y
b
(t为参数 ) ,l 上的点 t
P1 对应的参数是
t1,则点 P1 与 P(a,b )
之间的距离是(
)
A. t1
B. 2 t1
C. 2 t1
2
D.
t1
2
1
xt