固体超强酸制备

固体超强酸制备
固体超强酸制备

探究思路:两个要求:“保证活性高作为前提,以使用次数作为重要比较指标”

其实,一个固定酯化反应采用不同的固体超强酸(均以该酯化反应作为探究优化制备条件)作为催化剂,所得到的酯化效率差别不会大,只要肯花功夫、时间探究便可达到,所以探究重点摆在对比固体超强酸的稳定性上即提高其使用寿命,而使用寿命以催化活性高作为前提(不同催化剂间催化效用相差不大下,尽管催化效率较差点,但使用次数好,这也算是好催化剂),但在催化效用有一定情况下,探究使用寿命才有意义,随意首先需要探究出优化的固体超强酸的制备条件和酯化条件。

借助微波酯化反应探究最佳活性的催化剂制备条件,然后以活性最佳的催化剂探究微波酯化反应条件。

微波辐射酯化反应——“微波辐射催化合成乙酸正丁酯”:

用微波辐射技术以乙酸和正丁醇为原料,S2O2-8/M X O Y型固体超强酸为催化剂的酯化反应,最佳的微波合成条件为:催化剂用量2。0 g,酸醇物质的量的比为1。0∶2。0,微波功率为595 W,微波辐射时间为30 min,产率84。1%。

主要试剂和仪器:冰醋酸(CP),正丁醇(AR),微波炉,阿贝折光仪(或红外光谱波峰测试)实验过程:

在100 mL圆底烧瓶中加入5。7 mL(0。1 mol·L-1)的冰醋酸和9。1 mL(0。1 mol·L-1)的正丁醇(最适宜的酸醇比为1。0∶2。0),加入2。0 g催化剂,然后将圆底烧瓶装好回流冷凝管和搅拌装置,置于微波炉内。在搅拌下先以65 W的功率加热1 min,再以最适宜的微波功率是595 W,一定反应时间加热回流时间30 min。反应完毕取出圆底烧瓶,待反应物稍冷,过滤出催化剂,粗产品经提纯、干燥、蒸馏,收集124~126℃的馏分。称重,计算产率。

在合成反应中,有些反应是可逆反应生成水,为了提高转化率,常用带水剂把水从反应体系中分离出来。可作带水剂的物质必须要与水水作用产生共沸物使得水更易被蒸出,且在水中的溶解度很小.它可以是反应物或者产物,例如如:环已烯合成是利用产物与水形成共沸物;乙酸异戊酯合成中,反应初期利用原料异戊醇与水形成二元共沸物或原料,产物和水形成三元共沸物,并用分水器分水,同时将原料送回反应体系,随着反应的进行,原料减少,则利用产物乙酸异戊酯与水形成

二元共沸物.

带水剂也可以是外加的。反应物及产物沸点比水高但反应又产生水的,外加第三组分,但第三组分必需是对反应物和产物不起反应的物质,通常加入的第三组分有石油醚,苯甲苯,环已烷,氯仿,四氯化碳等。

在250mL单口平底烧瓶中加入10mL正丁醇、6mL乙酸,再加入适量的三氯化铁作催化剂,放入微波炉内,装上回流冷凝管及分水器,在一定功率微波连续辐射后停止反应。冷却至室温,用饱和食盐水洗涤,分出有机层,水洗至中性,用无水硫酸镁干燥,蒸馏,收集124℃~126℃的馏分,

回流冷凝管:

分水器:

微波诱导稀土固体超强酸催化合成乙酸正丁酯——按n(醇)∶n(酸)=2.5∶1.0量取一定量的乙酸、正丁醇,倾入250 mL烧瓶中,加入自制催化剂,催化剂用量为反应物总质量的2.0%。然后置于经顶端开孔的微波炉内,将球形冷凝管与烧瓶相联,并在冷凝管上端接一只分水器,再接一只球形冷凝管,通水冷凝。于528 W辐射功率下反应微波辐射20 min,取出反应液滤出催化剂。常压下蒸馏,收集125~126℃的馏分。依次用饱和食盐水、饱和碳酸氢钠液及去离子水洗涤,分出酯层,用无水硫酸镁干燥,放置过夜,再将其过滤,即得。

为考查催化剂的重复使用效果,待第一次反应结束后,过滤,分出催化剂,于600℃左右活化3 h。

产品的测定:

折光率的测定。产品为无色透明液体,具有浓烈的水果香味,测得其折光率n D20=1。3945与文

献相符,证明是目标产物

刘玮炜等用磷钨酸作催化剂合成经基苯甲酸丁醋,产率达97 %O,反应速率提高8倍

探究内容:

①不同活性中心之间比较(S2O2-8与SO2-4之间)

②不同载体之间稳定性影响比较——重点(a。S2O2-8/ZrO2-Ti O2-Al2O3与S2O2-8/ZrO2-Ti O2、S2O2-8/ZrO2-Al2O3之间;b。而S2O2-8/ZrO2-Ti O2与S2O2-8/ZrO2-Al2O3之间;c。最后S2O2-8/ZrO2-Ti O2或S2O2-8/ZrO2-Al2O3与S2O2-8/ZrO2之间;d。S2O2-8/Ti O2-Al2O3与S2O2-8/ZrO2-Al2O3及S2O2-8/ZrO2-Ti O2之间)

③制备条件优化与使用次数间关联(其实也包含①探究在内)

④前面探究后均需添加补充一点“失活催化剂再生后使用活性、使用寿命记录探讨”

难点:

本探究实验采用逐一单因素固定以正交法获取最佳活性的制备条件,但固体超强酸制备条件间可能存在相互影响趋向,唯有一人为认为的影响因素较大的某一点入手,逐一顺序探究最佳活性制备条件:(物料配比(按物质的量)→焙烧温度(初定500℃、550℃、600℃三个,到时再在两边展开)→焙烧时间(初定4h、6h)→浸渍液浓度→浸渍时间→陈化时间→→→)。

例子:“不同n(Ti) :n(Zr)与浸渍物对催化剂活性的影响:取适量的复合氧化物用0。5 mol/ L(NH4)2S2O8液浸渍6 h,焙烧温度550 ℃,焙烧4h,考察不同的n(Ti) :n(Zr)对催化剂活性的影响,图1为不同的n(Ti}:n(Zr}制备的催化剂催化马来酸酚与正辛醇的酯化反应的酯化率随时间的变化。由图可以看出,n(Ti) :n(Zr)对催化剂的活性影响很大。n(Ti) :n(Zr)为6:1和8:1时催化活性较高。”

酯化反应条件与催化剂制备条件间相影响,如不同的固体超强酸制备条件所对应的最佳酯化反应条件就会有所不同(催化剂用量、醇酸配比等),其实酯化制备反应条件的确定是在催化剂优化制备条件确定后才进行探究的。

实验进行大体流程:

(1)S2O2-8/ZrO2-Ti O2

方法取:

①考察筛选合适的n(Ti) :n(Zr):取适量的不同配比的n(Ti) :n(Zr)复合氧化物用0。5 mol/ L(NH4)2S2O8液浸渍6 h,焙烧温度550 ℃,焙烧4h,借助酯化反应的酯化率来考察不同的n(Ti) :n(Zr)对催化剂活性的影响;

②考察筛选合适的焙烧温度:应用上面所得的最佳n(Ti) :n(Zr) 复合氧化物用0。5 mol/ L(NH4)2S2O8液浸渍6 h,分别在焙烧温度为500℃、550 ℃、600℃,焙烧4h,借助酯化反应的酯化率作为判断比较依据:方法按上

③考察筛选合适的焙烧时间:方法按上

④考察筛选合适的浸渍液浓度:方法按上

⑤考察筛选合适的浸渍时间:方法按上

⑥考察筛选合适的室温陈化时间:方法按上

(2)S2O2-8/ZrO2--Al2O3

(3)S2O2-8/ZrO2

(4)SO2-4/ZrO2

2-

固定试验试剂:氧氯化锆(ZrOCl2·8H2O)、氯化钛(TiCl4)、硝酸铝(Al(NO3)3·9H2O)浓氨水(浓度):

一、固体酸制备:

催化剂焙烧温度对收率的影响催化剂焙烧温度对催化剂的活性影响很大,焙烧过程是脱水、分子结构和晶相结构转变的复杂过程。其温度的高低对酸中心的形成、酸强度、分布及孔结构等性质产生影响,其活性大小直接反映在酯收率上。采用0.1 mol乙酸、0.2 mol正丁醇中,加入用量为反应物总质量的1.5%在不同温度下焙烧3~4 h的固体酸催化剂,选取微波辐射功率528 W,反应时间控制为15 min。

焙烧温度对催化剂活性有显著影响,焙烧温度在500~600℃时活性最高。原因是温度较低时催化剂结构为无定形态,温度达550℃左右时,转变为具有较多缺陷的晶体,因而有较高的活性,在催化剂的制备过程中进行低温陈化和添加稀土,也使其具有较多的超强酸位。温度过高时,其晶形发生了转变,从而降低了活性。另外,SO2-4是固体超强酸催化剂的活性组分,温度的高低直接对酸中心的形成、酸强度及孔结构等性质产生影响。温度过低,催化剂上吸附的SO2-4少;温度过高,SO2-4又易于脱附,从而造成催化剂表面的活性中心减少,活性降低。

1、制备步骤:

⑴S2O2-8/ZrO2-Ti O2 -Al2O3型固体超强酸

按不同比例的n(Zr):n(Ti):n(Al)分别称取定量的氧氯化锆、氯化钛和硝酸铝于水中,用氨水作为沉淀剂,不断搅拌,控制pH为9~10,静置3 h。然后将这三种沉淀物在母液中充分混合,并70℃左右的水浴中陈化5 h,过滤,洗涤至无Cl-存在(用0。1 mol/L AgNO3溶液检验),在110℃烘1~2 h,(于300℃马弗炉中焙烧2 h)后研磨,用一定浓度的硫酸或过硫酸铵溶液浸渍一定时间(用量15 mL/g),抽滤并干燥后,于550℃马弗炉中焙烧4 h,研磨,即可制得固体超强酸催化剂,置于干燥器中备用。

⑵S2O2-8/ZrO2-Ti O2型固体超强酸(方法同上相似)

①按不同的n(Ti)∶n(Zr)比(下同),分别称取定量氯化钛、氧氯化锆溶于水中,分别用氨水作沉淀剂,不断搅拌,控制二者pH值在9~10,静止3 h。然后将这2种沉淀物在母液中充分混合,并在70℃左右的水浴中陈化1 h,过滤,洗涤至无Cl-存在(用0。1 mol/L的AgNO3溶液检验),在110℃下烘1~2 h,研磨,用一定浓度的硫酸或过硫酸铵溶液浸渍一定时间(用量15 mL/g),抽滤,干燥,于550℃马福炉中焙烧4 h,研磨,即可制得固体超强酸催化剂S2O2-8(SO2-4)/TiO2-ZrO2。置于干燥器中备用。

②取一定量的TiC14于烧杯中,迅速加25%的氨水,调节PH值至8一9,使之沉淀完全,陈化2h,抽滤,并用蒸馏水不断洗涤沉淀抽滤至无NH+、C1-滤饼置于烘箱中于110℃下烘干,研细。将TiO2与ZiO2按物质量比4: 1搅拌均匀,在0。 5mol/L的过硫酸铵溶液中浸泡1h,抽滤,烘干。

③取一定量的氧化错按错钦质量为1:4的比例和Ti02粉末混合均匀,用0。5 mol/L的硫酸溶液浸泡16h,抽滤、红外烘干,放人马福炉中在550℃活化4h,置干燥器中备用。

条件:

①乙二酸乙二酯(乙二酸为0。2mo1,酸醉的物质的量比为1:4,反应温度为130一135℃,反应时间为90min,催化剂用量为2。0g的优化条件下)→TiO2与ZiO2按物质量比4: 1→催化剂焙烧温度为500℃→→→→→→→→→→→→→→→→

②马来酸二辛酯()→→→→→→→→→→→→→→

⑶S2O2-8/ZrO2-Al2O3型固体超强酸

2、制备条件:

于微波炉(辐射功率296 W)中进行干燥,研磨后过100目筛。

二、微波辐射酯化反应

微波是一种电磁能,可以极大促进有机反应,是一种环保技术。采用微波辐射结合固体超强酸催化该反应具有速度快、产率高、操作简便、节能环保等优点。

仪器:微波炉,最大输出功率700 W ; 2W A-J型阿贝折射仪(上海光学仪器厂);Nicolet FT-IR SDX型红外光谱仪;秒表。

酯化反应:

①在150 mL锥形瓶中加入0。12 mol的乙酸醉、0。1 mol的异戊醇和0。5g的催化剂

SO24-/Ti02-Zr02,混合均匀,放人微波炉中,350 W间歇辐射6 min(每至溶液微沸停止加热,30 s后再开始加热至微沸,重复此操作至辐射时间累计达到6 min )。冷却至室温,转入分液漏斗,用25 mL饱和碳酸氢钠溶液分两次洗涤,然后用10 mL饱和食盐水洗涤。分出水层,酯层用1。5 g无水硫酸钠干燥3。0 h,蒸馏收集138—142℃馏分,得无色透明有香味的液体。样品测试,红外光谱中分别有对应特征吸收峰,与标准谱图一致,证实产品是乙酸异戊醋。

聚甲氧基二甲醚(DMM)

聚甲氧基二甲醚及DMM概述 聚甲氧基二甲醚DMM3-8是国际上公认的降低油耗和减少烟气排放的新型环保型燃油含氧组分。它最先由美国开始研究,欧洲的几家公司也进行了探索,但都存在收率低、产物分布不理想等问题。国内报道最多的是中科院兰州化物所采用甲醇、甲醛这两种大宗煤化工产品,采用环境友好的离子液体新催化材料,使单程DMMn收率达到50%,其中n=3-8的产物可达45%-50%,但是还在实验室研发阶段。西安尚华科技有限责任公司与江苏永大化工设备有限公司共同开发了一套以离子固体为催化剂,甲醇直接到聚甲氧基二甲醚 DMM3-8循环工艺,使单程DMMn收率达到78%,其中n=3-8的产物可达75%-90%,优点为:催化剂不需要回收,直接循环利用,在生成过程中脱出的稀甲醛,不需要加压与降压精馏,回到前一工序循环使用,减少大量的蒸汽,与电耗。以通过实验室小试,模拟试验,2000吨/年的中试装置在安装调试中,5万吨/年的可研报告在编写中。在不久的将来就可以工业化生产。 DMMn的十六烷值76以上,含氧为47~50%,闪点为65.5℃,沸点为156-350℃。由于DMMn十六烷值高,物性与柴油相近。按比例调和到柴油中,可增加油品含氧量,提高柴油质量,增加含氧量7%以上。DMM3-8环保性能好,减排50%以上的尾气污染,大幅度减少NOx和CO的排放。 在柴油中可添加10%至20%。我国目前交通用柴油每年超过1.5亿吨左右,如果按照15%至20%的比例添加,对DMM3-8的年需求量

超过1800至2400万吨,市场潜力极大,具有十分显著的经济价值。技术成果实现产业化后,能消化甲醇,解决产能过剩问题,开辟了我国发展优势煤资源替代石油资源的清洁能源技术的新途径。社会效益显著。

11、肉桂酸的制备

有机化学实验报告 实验名称:肉桂酸的制备 学院:化学工程学院 专业:化学工程与工艺 班级: 姓名:学号: 指导教师: 日期:

1、了解肉桂酸制备的原理和方法; 2、掌握回流、抽滤等基本操作; 3、熟悉水蒸气蒸馏的原理和操作方法; 二、实验原理 1、肉桂酸又名β-苯丙烯酸,肉桂酸的合成方法有多种,实验室以苯甲醛和醋酐为原料,在无水碳酸钾的存在下,发生缩合反应,即得肉桂酸。 2、PerKin反应:芳醛与酸酐的缩合反应。催化剂一般为酸酐对应的羧酸钠盐或钾盐,用无水碳酸钾代替醋酸钾,可缩短反应时间,产率也有所提高。 三、主要试剂及物理性质 1、主要试剂:苯甲醛、乙酸酐、无水碳酸钾、氢氧化钠水溶液、盐酸(1:1)、活性炭、试剂水 2、试剂的物理性质 名称分子量性状熔点(℃)沸点(℃)溶解度 肉桂酸148白色单斜棱晶135-1363000.0418 苯甲醛106无色液体-26178.10.3 碳酸钾102白色结晶粉末-73.1138.6253(20℃) 乙酸酐102无色透明液体-73.1140.012(冷) 四、试剂用量规格 试剂用量 苯甲醛 5.0ml(0.05mol) 乙酸酐14.0ml(0.145mol) 碳酸钾7.00g 10%NaOH水溶液40ml 盐酸(1:1)25ml 水110ml 活性炭3小勺

主要仪器:150ml三颈烧瓶、量筒(10ml) 、量筒(100ml)、球形冷凝管、直形冷凝管、水蒸气发生器、玻璃棒、250ml锥形瓶、布氏漏斗、吸滤瓶、表面皿、电炉等 5-1 肉桂酸制备的回流装置 5-2 水蒸汽蒸馏法装置图 六、实验步骤及现象 时间步骤现象 1、取5ml苯甲醛,14ml乙 酸酐和7g碳酸钾放入 150ml三颈烧瓶。 无色透明液体。 14:00-14:06 14:07-14:502、将此混合物进行加热回 流45ml,并观察颜色。 起初冒白烟,出现大量泡沫。 泡沫完全消失(14:06),液体 变成乳黄色混浊状。 液体渐渐澄清,微沸,橙红色 慢慢加深,最后为红褐色溶液。 温度172℃。

化学论文 固体超强酸概述

固体超强酸概述 摘要:当下环保呼声日益高涨、可持续发展日益被重视,环境污染问题已是非解决不可。固体超强酸被认为是具有广泛的工业应用前景的环境友好的催化剂之一,因而,对其进行综合论述和研究具有十分重要的意义。本文从固体超强酸的性质和定义、分类、合成方法(各方法的原理、影响因素及如何影响)、表征(酸中心模型、酸性、酸强度、酸结构)及固体超强酸催化剂在烷基化反应、异构化反应、脱水反应、缩醛反应、酯化反应的应用这五方面对其进行了综述。 关键词:固体超强酸;催化剂;应用 在化学工业生产中,很多有机化学反应的进行需要酸催化,包括酯化反应、烷基化、酰基化、聚合反应、异构化、氧化反应、醇的脱水反应,还有些如硝化、氢化、羟基化、重排反应、氢交换、降解、卤化、氯化苯以及氯化烷烃的还原等,工业生产上大量使用液体酸进行催化。这些液体常规酸包括硫酸、氢氟酸、磷酸等,它们在反应中表现出很好的催化性能,但缺点也很明显。液体酸容易腐蚀仪器、难于和产物分离、造成大量污水排放,对环境带来了很大的危害。固体酸催化剂的研究历史由来己久,随着人们环保意识的增强以及各国政府相继制定越来越严格的环保法规,相比较传统的液体酸催化剂,固体酸催化剂自身的优势也逐渐引起科学家们的兴趣和重视,对它们的研究热潮一浪高过一浪。当我们喊出建设和谐社会和可持续发展的社会口号时,环保催化剂的研发也应引起人们的重视。羧酸酯在工业上的用途非常广泛,工业上合成羧酸酯一直采用浓硫酸为催化剂,由于浓硫酸存在一些人所共知的缺点,国内外学者一直在研究新的催化剂来取代浓硫酸。目前文献报道的酯化反应催化剂有很多,但绝大部分仅限于实验室研究,几乎未见工业化报道,其中固体超强酸就是一种新型酯化反应催化剂。自1979年Hino等合成ZrO2/SO42-和TiO2/SO42-以来,这种催化剂由于具有不腐蚀设备、不污染环境、催化反应温度低、稳定性能好、制备方法简便、处理条件易行、便于工业化、有很好的应用前景,而得到了广泛的研究和应用。 1 固体超强酸的性质和定义 超强酸是指比100%硫酸的酸强度还强的酸。其酸强度用Hammett指示剂的酸度函数H0表示。已知100%硫酸的H0=-11.93,凡是H0值小于-11.93的酸均称为超强酸,H0值越小,该超强酸的酸强度越强。 超强酸和通常的酸一样,有Bronsted型(B酸)和Lewis型(L酸)。把质子给予碱B:的HA是B酸,而从碱B:接受电子对的A是L酸。 B: +HA→ B: H+A+ (1)

最新实验十一肉桂酸的制备

实验十一肉桂酸的制 备

实验十一肉桂酸的制备 一、实验目的: 1.了解肉桂酸的制备原理和方法 2.掌握回流、热过滤及水蒸汽蒸馏等操作 二、实验原理: 芳香醛与含有α-氢的脂肪族酸酐在碱性催化剂的作用下加热,发生缩合反应,生成芳基取代的α,β不饱和酸。这种缩合反应称为Perkin 反应。本实验将芳醛与酸酐混合后在相应的无水羧酸盐存在下加热,可以制得α,β不饱和酸。 CHO(CH3CO)2CH3COOK CH CHCOOH CH3COOH + + 按照Kalnin所提出的方法,用碳酸钾代替Perkin反应中的醋酸钾,反应时间短,产率高。 三、实验药品: 苯甲醛3mL(3.15g,0.03mol),碳酸钾4.2g(0.03mol),乙酐8mL(8.64g, 0.084mol),饱和碳酸钠溶液,活性碳,浓盐酸。 四、实验仪器: 三口瓶,温度计,空气冷凝管,瓶塞,滴管,水蒸汽蒸馏装置,直形冷凝管,蒸馏头,接引管,锥形瓶,烧杯,玻璃棒,pH试纸,布氏漏斗,抽滤瓶。五、实验步骤: 在250mL三口瓶中放入3mL(3.15g,0.03mol)新蒸馏过的苯甲醛[1]、 8mL(8.64g,0.084mol)新蒸馏过的醋酐[2]以及研细的4.2g无水碳酸钾[3]。三口瓶,一口装温度计,一口装回流冷凝管,一口用塞子塞上,上加热[4]回流 30min。由于有二氧化碳放出,初期有泡沫产生。

反应结束后,待反应液稍冷向反应液中加入20mL冷水,振荡下慢慢加入饱和碳酸钠溶液[5](注意有大量的CO2气体产生,不要冲料),调节反应液呈弱碱性pH=9~10。用二口瓶作为水蒸汽发生器,如图安装水蒸汽蒸馏装置,进行水蒸汽蒸馏,蒸出未反应的苯甲醛,直至馏出液无油珠澄清为止。 待三口烧瓶内的剩余液稍冷,加入半匙活性碳,在石棉网上煮沸2~3分钟,趁热进行抽滤,滤液转移到烧杯中。将滤液用浓盐酸酸化(不易过快,否则晶型过细),使呈明显酸性(pH=3)[6],用冷水浴充分冷却,待结晶完全析出后进行抽滤,用少量冷水洗涤晶体,挤压除去水份。 产品在水中或30%乙醇中重结晶[7]。产品包在方形滤纸中,自然晾干,下次实验称重,计算产率。 肉桂酸为无色晶体,有顺反异构体,通常以反式异构体形式存在,熔点135~136℃,沸点300℃,d 1.245 。 附注 [1] 苯甲醛久置会氧化为苯甲酸,这不但影响反应的进行,而且苯甲酸混在产品中不易除干净,将影响产品的质量。故实验前要重新蒸馏,收集170~180℃馏分供使用。

固体超强酸制备

探究思路:两个要求:“保证活性高作为前提,以使用次数作为重要比较指标” 其实,一个固定酯化反应采用不同的固体超强酸(均以该酯化反应作为探究优化制备条件)作为催化剂,所得到的酯化效率差别不会大,只要肯花功夫、时间探究便可达到,所以探究重点摆在对比固体超强酸的稳定性上即提高其使用寿命,而使用寿命以催化活性高作为前提(不同催化剂间催化效用相差不大下,尽管催化效率较差点,但使用次数好,这也算是好催化剂),但在催化效用有一定情况下,探究使用寿命才有意义,随意首先需要探究出优化的固体超强酸的制备条件和酯化条件。 借助微波酯化反应探究最佳活性的催化剂制备条件,然后以活性最佳的催化剂探究微波酯化反应条件。 微波辐射酯化反应——“微波辐射催化合成乙酸正丁酯”: 用微波辐射技术以乙酸和正丁醇为原料,S2O2-8/M X O Y型固体超强酸为催化剂的酯化反应,最佳的微波合成条件为:催化剂用量2。0 g,酸醇物质的量的比为1。0∶2。0,微波功率为595 W,微波辐射时间为30 min,产率84。1%。 主要试剂和仪器:冰醋酸(CP),正丁醇(AR),微波炉,阿贝折光仪(或红外光谱波峰测试)实验过程: 在100 mL圆底烧瓶中加入5。7 mL(0。1 mol·L-1)的冰醋酸和9。1 mL(0。1 mol·L-1)的正丁醇(最适宜的酸醇比为1。0∶2。0),加入2。0 g催化剂,然后将圆底烧瓶装好回流冷凝管和搅拌装置,置于微波炉内。在搅拌下先以65 W的功率加热1 min,再以最适宜的微波功率是595 W,一定反应时间加热回流时间30 min。反应完毕取出圆底烧瓶,待反应物稍冷,过滤出催化剂,粗产品经提纯、干燥、蒸馏,收集124~126℃的馏分。称重,计算产率。 在合成反应中,有些反应是可逆反应生成水,为了提高转化率,常用带水剂把水从反应体系中分离出来。可作带水剂的物质必须要与水水作用产生共沸物使得水更易被蒸出,且在水中的溶解度很小.它可以是反应物或者产物,例如如:环已烯合成是利用产物与水形成共沸物;乙酸异戊酯合成中,反应初期利用原料异戊醇与水形成二元共沸物或原料,产物和水形成三元共沸物,并用分水器分水,同时将原料送回反应体系,随着反应的进行,原料减少,则利用产物乙酸异戊酯与水形成 二元共沸物. 带水剂也可以是外加的。反应物及产物沸点比水高但反应又产生水的,外加第三组分,但第三组分必需是对反应物和产物不起反应的物质,通常加入的第三组分有石油醚,苯甲苯,环已烷,氯仿,四氯化碳等。 在250mL单口平底烧瓶中加入10mL正丁醇、6mL乙酸,再加入适量的三氯化铁作催化剂,放入微波炉内,装上回流冷凝管及分水器,在一定功率微波连续辐射后停止反应。冷却至室温,用饱和食盐水洗涤,分出有机层,水洗至中性,用无水硫酸镁干燥,蒸馏,收集124℃~126℃的馏分,

肉桂酸的制备完整版

肉桂酸的制备完整版 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

实验六:肉桂酸的制备 一:实验目的 1、掌握用Perkin反应制备肉桂酸的原理和方法; 2、巩固回流、简易水蒸气蒸馏等装置。 二:实验基本原理 芳香醛和酸酐在碱性催化剂的作用下,可以发生类似羟醛缩合的反应,生成α,β-不饱和芳香醛,这个反应称为Perkin反应。催化剂通常是相应酸酐的羧酸的钾或钠盐,也可以用碳酸钾或叔胺。 三:主要试剂及主副产物的物理常数 其他性质 苯甲醛:分子式C7H6O,相对蒸气密度(空气=1),饱和蒸气压 kPa (26℃)折射 率,闪点 64℃,引燃温度192℃。是最简单的,同时也是工业上最常为使用的芳醛。在 室温下其为无色液体,具有特殊的杏仁气味。 乙酸酐:分子式C4H6O3,无色透明液体,有强烈的乙酸气味,相对蒸气密度(空气=1),饱和蒸气压 kPa (36℃),闪点49℃,引燃温度316℃。相对密度。折光率。低

毒,半数致死量(大鼠,经口)1780mG/kG。有腐蚀性。勿接触皮肤或眼睛,以防引起损伤。有催泪性。易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与强氧化剂接触可发生化学反应。 肉桂酸:分子式C9H8O2,又名β-苯丙烯酸,有顺式和反式两种异构体。通常以反式形式存在,为白色单斜晶体,微有桂皮气味。肉桂酸是香料、化妆品、医药、塑料和感光树脂等的重要原料。 四:主要试剂规格及用量 五:实验装置图 主要仪器: 100mL圆底烧瓶,球形冷凝管,直形冷凝管,温度计,简易水蒸气蒸馏装置,抽滤装置,250mL烧杯,表面皿。 六:实验简单操作步骤及实验现象记录

2009级应化—《绿色催化过程与工艺》-朱莉娜

《绿色催化过程与工艺》教学大纲 一、课程概述 《绿色催化过程与工艺》是应用化工技术专业的专业课程之一。它的主要任务包括:催化作用的基本概念,绿色催化技术在绿色化学品合成,精细化学品合成,环境保护等领域的应用,了解绿色催化技术的发展趋势等。 该课程的先修课程有无机及分析化学、有机化学、物理化学,仪器分析等,后续课程有化工工艺学,毕业论文等课程。 二、课程目标: 1、知道该学科的性质、地位、独立价值、研究范围、基本框架、研究方法、学科进展和未来方向等。 2、通过对本课程的学习,让学生能够基本掌握催化作用的基本概念,绿色催化技术在绿色化学品合成,精细化学品合成,环境保护等领域的应用,了解绿色催化技术的发展趋势等。 3、了解和掌握绿色催化的基本知识和研究方法,从而在催化领域较好地从事教学、研究、生产方面的工作。 三、课程的内容和要求 这门学科的知识与技能要求分为知道、理解、掌握、学会四个层次。这四个层次的一般涵义表述如下:知道———是指对这门学科认知。 理解———是指能懂得对这门学科涉及到的概念、原理与技术的说明和解释。 掌握———是指运用已理解的绿色催化理论说明、解释并运用到实践中。 学会———是指能模仿或在教师指导下独立地完成绿色催化的具体操作。教学内容和要求表中的“√”号表示教学知识和技能的教学要求层次。

四、课程实施 (一)课时安排与教学建议 本课程属于应用化工技术(专科)专业必修课:理论课学时数72,学分4个。具体课时安排如下: (二)教学组织形式与教学方法要求 1、教学班是主要的教学组织,班级授课制是目前教学的主要组织形式。

2、注意教学方法的灵活性,组织学生自我经验叙述、讨论、问题教学、阅读指导等,尤其适当地采用多媒体的声像呈示,提供给学生原始的课堂实录,或者是问题情境,组织学生讨论,培养学生发现问题、分析问题、解决问题的能力和探究意识。 五、教材编写与选用 《绿色催化过程与工艺》教材要在课程标准的统一要求下,实行多样化。教材可选用王延吉等主编的《绿色催化过程与工艺》(化学工业出版社出版)。 六、课程评价 1、考核由平时成绩30%(作业、论文,学生课堂出勤和表现),期末考试70%(主要题型有名词解释、填空、简答题、论述。考试时间2小时)三部分组成。 2. 集中考试说明 1) 考试时间:120分钟。 2) 考试方式、分制与分数解释 采用闭卷、笔试的方式,以百分制评分,60分为及格,满分为100分。有可能的话,把形成性评价与终结性评价结合起来。 3) 题型比例 名词解释25%;填空题15%;简答题40%;论述题20%。 4) 样题与目标定位示例 A.名词解释:(着重考查学生对知识的识别程度) 例:载体 B.填空题:(着重考查学生对知识的理解程度) 例:绿色化学的主要特点。 C.简答题:(着重考查学生对知识的理解与掌握程度) 例:简述催化作用的基本特征。 D.论述题:(着重考查学生对知识的掌握与学会程度) 例:以某种化工产品的工业生产工艺为例、试比较其传统合成方法与经过绿色催化技术改进后的合成方法之间的优缺点。

固体超强酸系列催化剂制备

1. 稀土固体超强酸S2O82- / Sb2O3 / La3+催化剂制备: 将8g SbC13溶于40mL乙醇和20mL苯的混合液中,搅拌充分溶解后得透明锑醇液,再向溶液中加入10mL异丙醇,使醇化反应进行得更彻底,然后加入少量阴离子表面活性剂,并滴加氨水,使之发生水解反应,得到胶状沉淀,低温化12h左右,多次洗涤至无Cl-检出。滤饼于110℃烘干后,研磨过100目筛。搅拌下将Sb2O3浸渍在一定浓度的(NH4)2S2O8溶液中lh,用量为每克Sb2O3用15mL(NH4)2S2O8溶液,抽滤,烘干,置于马弗炉中焙烧,得S2O82-/ Sb203催化剂。将Sb2O3浸渍在一定浓度的(NH4)2S2O8和一定浓度的La(NO3)3的混合液1h,抽滤、烘干置于马弗炉在不同的温度和时间下焙烧,得一系列S2O82-/ Sb2O3 / La3+固体超强酸催化剂,置于干燥器中备用。以代号表示不同制备条件下所得催化剂。 参考文献:稀土固体超强酸S2O82- / Sb2O3 / La3+的制备及催化性能研究 舒华1,连亨池2,闫鹏2,文胜2,郭海福2 (1.学院生化系,554300;2.学院化学化工学院,526061) 稀土,2008.12(29卷第6期) 2. 稀土固体超强酸SO42-/TiO2-La2O3制备: 将一定量La203溶于浓度为3.0 mol·L-1的稀盐酸中,配成La3+溶液,再按一定量比量取TiC14与La3+溶液混合,用NH4·H 0[ w(NH3)=12%]水解至溶液呈碱性,控制pH值在8~9,沉淀完全,静置24 h后进行抽滤,并用蒸馏水不断洗涤至沉淀无Cl-存在(用0.1 mol·L-1的AgNO3检验),于105℃烘干后研细.再将该粉末浸泡于浓度为0.8 mol·L-1的稀H2SO4中24 h,然后抽滤,放入干燥箱中在110℃烘干,于一定的温度下焙烧活化3 h,冷却后置于干燥器中备用。 参考文献:稀土改性固体超强酸催化剂SO42-/TiO2-La2 O3的制备及其催化性能 水金,黄永葵,白爱民,赘,聚堂

实验八相转移催化法制备dl-扁桃酸

实验八相转移催化法制备dl-扁桃酸 实验八相转移催化法制备dl扁桃酸dl扁桃酸Mandelic acid 又名苦杏仁酸、苯乙醇酸、α羟基苯乙酸等。它是重要的化工原料在医药工业中主要用于合成血管扩张药环扁桃酸酯、滴眼药羟苄唑等。以往多由苯甲醛与氰化钠加成得腈醇扁桃腈再水解制得。该法路线长操作不便劳动保护要求高。采用相转移二氯卡宾法一步反应即可制得既避免了使用剧毒的腈化物又简化了操作收率亦较高。一、目的与要求 1、了解相转移催化反应的原理以及在药物合成中的应用。 2、掌握相转移催化剂的制备及后处理技术。 3、熟悉相转移二氯卡宾法制备扁桃酸的实验操作技术。二、实验原理在药物合成中常遇到水相和有机相参与的非均相反应这些反应速度慢、收率低、条件苛刻、有些甚至不发生反应、回收和后处理麻烦而且不能适合所有的反应。1965年MaKasza 首先发现鎓类化合物具有使水相中的反应物转入有机相中的性质从而加快了反应速率提高了收率简化了操作并使一些难以进行的反应顺利完成从而开辟了相转移催化这一新的合成方法。近20年来相转移催化技术在药物合成中的应用日趋广泛。常用的相转移催化剂主要有两类即季铵盐类和冠醚类。本实验采用季铵盐TEBA为相转移催化剂。其原理是在50的水溶液中加入少量的相转移催化剂和氯仿季铵盐在碱液中形成季铵碱而转入氯仿层继而季铵碱夺去氯仿中的一个质子而形成离子对R4N·CCl3然后发生α消除和

成二氯卡宾CCl2二氯卡宾是非常活泼的中间体能与多种官能团发生反应生成各类化合物其中与苯甲醛加成生成环氧 中间体再经重排、水解得到dl扁桃酸。反应式如下R4NCl NaOH?6?4 R4NOH NaCl 水相水相油相水相R4NOH CHCl3 ?6?4 R4NCCl3 ?6?4 CCl2 R4NCl 油相油相油相油相水相本品为白色斜方片状结晶熔点为119℃相对密度 1.30易溶于水、乙醇、乙醚、异丙醇等长期露光则分解变色。 三、实验主要药品类别名称规格用量相转移催化剂的制备三乙胺化学纯41g0.4mol 氯化苄化学纯51g0.4mol 丙酮化学纯40mL dl扁桃酸的制备氯仿化学纯32mL 苯甲醛新蒸21.2mL 乙醚化学纯80mL 氢氧化钠50自配50mL 硫酸50自配少量四、实验步骤及方法1、相转移催化剂——三乙基苄基铵盐TEBA的制备①在带有搅拌器、温度计、球形回流冷凝器、250mL三颈瓶中依次加入40mL 的丙酮溶剂、41g0.4mol的三乙胺、51g0.4mol的氯苄加热至回流反应1.5h反应液逐渐由无色透明变为浅黄色黏稠液停 止反应。以上产物液自然冷却至室温有部分针状晶体析出同时黏度增加。将其倒入干净的250mL的烧瓶中放入冰箱保持10℃以下②过夜抽滤。滤饼用甲苯洗涤两次抽干干燥得白色粉末。称重测熔点合格产品熔点180191℃。2、dl扁桃酸的制备在装带有搅拌器、温度计、球形回流冷凝器、滴液漏斗的250mL三颈瓶中如图2所示加入21.2g苯甲醛③2.4g

肉桂酸的制备实验.PPT

肉桂酸的制备
一、实验目的 实验目的 1、掌握由 Perkin 反应制备 α, β-不饱和酸的原理和方法。 2、进一步巩固回流、水蒸汽蒸馏、重结晶等基本操作。 二、实验原理 实验原理 肉桂酸是生产冠心病药物“心可安”的重要中间体。其酯类衍生物是配制香精和食品香料的重要原料。它在农用塑料和感光树脂等精 细化工产品的生产中也有着广泛的应用。
系统命名:3-苯基丙烯酸 属 α, β-不饱和酸 Perkin 反应:芳香醛和酸酐在碱性催化剂作用下,发生类似羟醛缩合的作用,生成 α, β-不饱和芳香酸的反应。 主反应:
碱催化剂一般为酸酐相应羧酸的钾盐或钠盐,本实验采用醋酸钾作为碱催化剂。
反应机理:
三、操作步骤

四、数据记录和处理 略 五、实验注意事项
.所用仪器必须是干燥的。因乙酐遇水能水解成乙酸,无水 CH3COOK,遇水失去催化作用,影响反应进行。无水碳酸钾也应烘干至恒重,

否则将会使乙酸酐水解而导致实验产率降低。 2.放久了的醋酐易潮解吸水成乙酸,故在实验前必须将乙酐重新蒸馏,否则会影响产率。
.久置后的苯甲醛易自动氧化成苯甲酸,这不但影响产率而且苯甲酸混在产物中不易除净,影响产物的纯度,故苯甲醛使用前必须蒸馏。 4.无水醋酸钾的吸水性很强,操作要快。它的干燥程度对反应能否进行和产量的提高都有明显的影响。 制反应呈微沸状态,如果反应液激烈沸腾易使乙酸酐蒸气冷凝管送出影响产率。 6.在反应温度下长时间加热,肉桂酸脱成苯乙烯,进而生成苯乙烯低聚物。 7.反应物必须趁热倒出,否则易凝成块状。 的质量。 实验中视具体情况,反应时间可以延长,并用 TLC 技术进行反应过程跟踪。 明确水蒸气蒸馏应用于分离和纯化时其分离对象的适用范围,保证水蒸气蒸馏顺利完成。 浓硫酸的滴加要缓慢,要分批滴加。 多。 六、思考题 1.苯甲醛和丙酸酐在无水的 丙酸钾存在下相互作用得到什么产物?写出反应式?
.缩合反应宜缓慢升温,以防苯甲醛氧化。反应开始后,由于逸出二氧化碳,有泡沫出现,随着反应的进行,会自动消失。加热回流,控
.中和时必须使溶液呈碱性,控制 pH=8较合适,不能用 NaOH 中和,否则会发生坎尼查罗反应。生成的苯甲酸难于分离出去,影响产物
铬酸氧化醇是一个放热反应,实验中必须严格控制反应温度以防反应过于剧烈。反应中控制好温度,温度过低反应困难,过高则副反应增
答: 2.反应中,如果使用与酸酐不同的羧酸盐,会得到两种不同的芳香丙烯酸,为什么? 答:酸性条件下,羧酸盐自身也能形成碳负离子,因而反应体系中存在两种不同的碳负离子。 主要试剂及产品的物理常数: 文献值) (文献值 主要试剂及产品的物理常数: 文献值) ( 名 称 分 子 量 10 6.1 2 性 状 无 色 液 体 无 乙 酸 酐 色 10 2.0 8 刺 激 液 体 肉 桂 酸 无 14 8.1 6 色 结 晶 1.2 48 133 -13 4 300 1.3 900 1.0 82 138 -73 -14 0 ∞ ∞ ∞ 1.5 450 1.0 44 178 -26 -17 9 折 光 率 比 重 熔 点 ℃ 沸 点 ℃ 水 溶解度:克/100ml 溶剂 醇 醚
苯 甲 醛

固体超强酸

固体超强酸 百科名片 固体酸克服了液体酸的缺点,具有容易与液相反应体系分离、不腐蚀设备、后处理简单、很少污染环境、选择性高等特点,可在较高温度范围内使用,扩大了热力学上可能进行的酸催化反应的应用范围。 目录 介绍 物质资料 载体的改性 引入稀土元素 失活机理 表征技术 物质特性 优势 介绍 物质资料 载体的改性 引入稀土元素 失活机理 表征技术 物质特性 优势 研究意义 展开 介绍 因为环境污染问题,在环保呼声日益高涨、强调可持续发展 固体超强酸 的今天,已是到了非解决不可的地步。自20世纪40年代以来,人们就在不断地寻找可以代替液体酸的固体酸,固体超强酸更是成为热门研究对象。固体酸克服了液体酸的缺点,具有容易与液相反应体系分离、不腐蚀设备、后处理简单、很少污染环境、选择性高等特点,可在较高温度范围内使用,扩大了热力学上可能进行的酸催化反应的应用范围。 物质资料 固体超强酸 酸催化反应涉及到烃类裂解、重整、异构等石油炼制过程,还涉及到烯烃水合、烯烃聚合、芳烃烷基

化、芳烃酰基化、醇酸酯化等石油化工和精细化工过程,可以说酸催化剂是这一 固体超强酸 系列重要工业的基础。在这些生产过程当中应用的酸催化剂主要还是液体酸,虽然其工艺已很成熟,但在发展中却给人类环境带来了危害,同时也存在着均相催化本身不可避免且无法克服的缺点,如易腐蚀设备,难以连续生产,选择性差,产物与催化剂难分离等原因。 从而从液体含卤素超强酸发展为无卤素固体超强酸、单组分固体超强酸、多组分复合固体超强酸。无论是催化剂的制备、理论探索、结构表征,还是工业应用研究都有了新的发现,固体超强酸由于其特有的优点和广阔的工业应用前景,已受到国内外学者广泛关注,成为固体酸催化剂研究中的热点。人们在不断开发新的固体酸催化剂和固体酸催化工艺的同时,也在不断地探讨固体酸的酸性形成的机理,探讨固体酸催化反应的机理。本文重点对固体超强酸改性、理论研究、表征技术、失活机理及应用领域进行综述,并指出了固体超强酸催化剂今后研究和开发的主要方向。 载体的改性 催化剂 固体超强酸催化剂 在单组分固体超强酸催化剂的应用中,人们发现主要活性组分s一在反应中较易流 分子式 失,特别是在较高温度条件下容易失活,这类单组分固体催化剂虽然有较好的起始催化活性,但单程寿命较短。通过对催化剂载体的改性,使催化剂能提供合适的比表面积、增加酸中心密度、酸种类型、增加抗毒物随着人们对固体超强酸不断深入研究,催化剂能力、提高机械强度等作用。目前改性研究的方向主要有:以金属氧化物zK)2、Ti02和Fe2Ch为母体,加入其他金属或氧化物,形成多组元固体超强酸;引入稀土元素改性;引入特定的分子筛及纳米级金属氧化物等。 引入其他金属或金属氧化物 固体超强酸催化剂的制备对金属氧化物有特殊要求。有些氧化物如MgO、 固体超强酸

苯乙醇酸(扁桃酸)的合成

苯乙醇酸(扁桃酸)的合成 摘要: 本实验使用5.2g新鲜蒸馏的苯甲醛、8mL氯仿作为原料,使用1.3g氯化苄基三乙铵为相转移催化剂,在50%的NaOH溶液中,发生卡宾反应生成(±)苯乙醇酸,得到略带淡黄色的白色片状晶体,产物重1.30g,产率为17%。 关键词:(±)苯乙醇酸相转移催化剂卡宾反应 一、实验目的: 1. 了解并掌握二氯卡宾的生成 2. 训练相转移催化反应 3. 复习巩固控制反应温度、混合溶剂重结晶等基本操作 二、反应方程式: CHO CHCl3 TEBAC H OH 卡宾或称碳烯是一类具有6个价电子的两价碳活性中间体,通式:CR2,其中碳原子与两个原子或基团相连,另外还有一对没有参与成键的非键电子。最简单的卡宾是亚甲基:CH2,最常见的取代卡宾是二卤卡宾:CX2。由于碳周围只有六个电子,它是缺电子的,因此卡宾具有很强的亲电性,容易发生插入反应。 三、相转移催化反应原理: 相转移催化反应时20世纪70年代以来在有机合成中应用日趋广泛的一种新的合成方法。在有机合成中,均相反应通常容易进行,而水溶液的无机负离子和不溶于水的有机化合物之间的非均相反应,速率慢,产率低,甚至难以进行。但如果用水溶解无机盐,用极性小的有机溶剂溶解有机物,并加入少量的(通常是0.05mol以下)季铵盐或季磷盐,这反应很容易

进行。这些能促进反应并加快在两相之间转移负离子的化合物,称之为相转移催化剂。 常用的相转移催化剂有盐类、冠醚类和非环多醚类三种。 以季铵盐为代表的鎓盐如: C6H5CH2N(CH2CH3)3Cl (CH3CH2CH2CH2)4NBr [CH3(CH2)6CH2]3NH2CH3Cl 三乙基苄基氯化铵四丁基溴化铵三辛基甲基氯化铵(TEBA)(TBAB)(TOMA)这些化合物具有同时在水相和有机相溶解的能力。其中烃基是油溶性基团,碳原子数一般不少于13,以保证具有足够的有用性,带正电的氮是水溶性基团。 季铵盐中的正离子与水溶液中具有反应活性的无机负离子形成离子对,可以将负离子从水相转移到有机相中。而在有机相中,负离子无溶剂化作用。由于正离子体积大,正负离子之间的间距也大,彼此间的作用弱,负离子可以看成是裸露的。因此反应活性大大增加。 本实验中用TEBAC作为相转移催化剂,加快卡宾的生成和反应,机理如下: C6H5CH2N(C2H5)3Cl NaOH C 6 H5CH 2 H5)3 OH NaCl C6H5CH2N(C2H5)3Cl CHCl3 Cl2C C6H5CH22H5)3OH C6H5CH2N(C2H5)3(CCl3)H2O 有机相反应 水相反应 四、实验步骤及实验现象: 将250mL三口瓶安装在磁力搅拌器上,三口分别装置回流冷凝管、滴液漏斗和温度计。在瓶中一次加入5mL(5.4g,0.049mol)新鲜蒸馏的苯甲醛、8mL(23.98g,0.10mol)氯仿和0.65g氯化苄基三乙铵。启动搅拌,用水浴加热至55℃,移去热源,自滴液漏斗慢慢滴加25mL50%的NaOH溶液,反应放出大量热量,反应液变淡黄色浑浊液。在滴加碱液的过程中,通过控制滴加速度,维持反应温度在60 ~ 65℃,约20min滴完。滴加完后,继续在水浴中维持反应温度在65 ~ 70℃继续搅拌40min。 反应完后,溶液分层,上层为淡黄色乳白色溶液,下层为蛋黄油状物。加入100mL水将反应物稀释,上层变澄清透明,下层仍为蛋黄油状物,然后用乙醚萃取两次,每次30mL,除去未反应的氯仿等有机物,将乙醚萃取液倒入回收瓶。水层用50%H2SO4溶液酸化至pH=1~2,再用乙酸乙酯萃取两次,每次40mL。萃取后乙酸乙酯层溶液略带淡黄色。乙酸乙

固体超强酸的酸度定义

固体超强酸的酸度定义 固体超强酸的酸强度是指其酸性中心给出质子或接受电子对的能力,可以采用Hammett酸度函数H0表达。在所测量的样品中加入少量指示剂B(一种极弱的碱),B与质子结合后生成的共轭酸BH+具有不同性质(如颜色等),根据酸碱反应达到平衡时的[B]/[BH+]值,则可求得H0: H0=P k BH+-lg([BH+]/[B]) P k BH +=-lg(K BH+) 式中,K BH +是化学反应BH +→B+H+的平衡常数。 H0越小,则表明酸的强度越强,100%H2SO4的H0=-11.94,H0<-11.94的酸就称为超强酸[5] 2.3.3 催化剂失活机理 一般认为,固体超强酸的失活有以下几个方面原因:表面上的促进剂的流失,如酯化、脱水、醚化等反应过程中,水或水蒸气的存在会造成超强酸表面上的促进剂流失;使催化剂表面的酸性中心数减少,导致酸强度减弱,催化活性下降;在有机反应中,由于反应物、产物在催化剂表面上进行吸附、脱附及表面反应或积炭现象的发生,造成超强酸催化剂的活性下降或失活;反应体系中由于毒物的存在,使固体超强酸中毒,使负电性显著下降,配位方式发生变化,导致酸强度减小而失活[17]。以上几种失活是暂时的失活,可通过重新洗涤、干燥、酸化、焙烧和补充催化剂所失去的酸性位,烧去积炭,恢复催化剂的活性3。这也就是固体超强酸与液体超强酸相比,具有可重复使用性的原因。 2.4实验内容2.5 对比实验 1. 使用先前制备的SO 42-/ZrO 2的 催化剂进行对比实验,用电子天平准确称 取5g冰醋酸、6.8g正丁醇和0.4g该催化剂,再取出1g反应混合物用标准氢氧化钠溶液进行滴定测其酸值,剩余混合物加入白钢罐中,在恒温油浴120℃加热

肉桂酸的制备实验

肉桂酸的制备实验

————————————————————————————————作者: ————————————————————————————————日期: ?

肉桂酸的制备实验 一、实验原理 利用柏琴(Perkin)反应制备肉桂酸。一般认为脂肪酸钾盐或钠盐为催化剂,提供CH 3COO-负离子,从而使脂肪酸酐生成负碳离子,然后负碳离子和醛或羧酸衍生物(酐和酯)分子中的羰基发生亲核加成,形成中间体。 在珀金反应中,是碳酸钾夺取乙酐分子中的α-H,形成乙酸酐负碳离子。实验所用的仪器必须是干燥的。 主反应: 副反应: 在本实验中,由于乙酸酐易水解,无水碳酸钾易吸潮,反应器必须干燥。提高反应温度可以加快反应速度,但反应温度太高,易引起脱羧和聚合等副反应,所以反应温度控制在150~170℃左右。未反应的苯甲醛通过水蒸气蒸馏法分离。 机理: 【此机理中的碱为无水乙酸钾】 二、反应试剂、产物、副产物的物理常数

三、药品 四、实验流程图 五、实验装置图

(4)干燥装置 六、实验内容 在250ml三口烧瓶中放入3ml( 3.15g,0.03mol)新蒸馏过的苯甲醛、8ml(8.64g,0.084mol)新蒸馏过的乙酸酐,以及研细的4.2g无水碳酸钾。三口烧瓶的侧口插入一根200℃温度计,温度计要求插入液面以下,采用空气冷凝管缓缓回流加热45min。由于反应中二氧化碳逸出,可观察到反应初期有大量泡沫出现。 反应完毕,在搅拌下向反应液中分批加入20ml水,再慢慢加入碳酸钠中和反应液至pH等于8。然后进行水蒸汽蒸馏,蒸出未反应完的苯甲醛。待三口烧瓶中的剩余液体冷却后,加入活性炭煮沸10-15min,进行趁热过滤,将滤液冷却至室温,在搅拌下用浓盐酸酸化至刚果红试纸变蓝(或溶液pH=3)。冷却,待晶体析出后进行抽滤,用少量冷水洗涤沉淀。抽干,让粗产品在空气中晾干。产量:约3.0g(产率约65%)。 粗产品可用热水或3:1的水-乙醇重结晶。肉桂酸有顺反异构体,通常以反式存在。 纯肉桂酸为微有桂皮香气的无色针状晶体。熔点mp=133℃。 (一)制备阶段:

香豆素衍生物的合成 文献综述资料

中药学专业毕业环节 文献综述 论文题目香豆素衍生物的合成 姓名 学号 班级 指导教师

二O一五年三月

1 香豆素概述 香豆素母核为苯骈α-吡喃酮,环上常有取代基,根据取代基的类型和位置可分为简单香豆素、呋喃香豆素、吡喃香豆素和其他香豆素等。 1.1 简单香豆素 简单香豆素是指仅在苯环上有取代,而且7位羟基与其6位或者8位没有形成呋喃或吡喃环的香豆素。取代基可以是羟基、甲氧基等。如伞形花内酯、当归内酯、七叶内酯都属于简单香豆素。 1.2 呋喃香豆素 呋喃香豆素是指香豆素母核的7位羟基与6位或8位异戊烯基缩合形成呋喃环的一类香豆素化合物。若7位羟基与6位异戊烯基形成呋喃环时,结构中的呋喃环、苯环和α-吡喃酮环处于一条直线上,则称为线型呋喃香豆素。若7位羟基与8位异戊烯基形成呋喃环时时,结构中的呋喃环、苯环和α-吡喃酮环处于一条折线上,则称为角型呋喃香豆素。 1.3 吡喃香豆素 吡喃香豆素是指香豆素母核的7位羟基与6位或8位异戊烯基缩合形成吡喃环的一类香豆素化合物。若7位羟基与6位异戊烯基形成吡喃环时,结构中的吡喃环、苯环和α-吡喃酮环处于一条直线上,则称为线型吡喃香豆素。若7位羟基与8位异戊烯基形成吡喃环时时,结构中的吡喃环、苯环和α-吡喃酮环处于一条折线上,则称为角型呋喃香豆素。 1.4 其他香豆素 不属于以上三类的香豆素皆属于此类。主要是指α-吡喃酮环上有取代的香豆素化合物和香豆素的二聚体、三聚体等。 2 香豆素的性质及应用 香豆素广泛存在于各种植物、动物、微生物中,于19世纪20年代第一次从零陵香豆中分离获得[1]。随着分离、分析技术、合成方式和研究手段的进步,人类对香豆素的了解逐渐加深,提取与合成也趋于方便、高效、快捷。至今,人们已可从自然界分离或人工合成香豆素其衍生物共计1200余种[2]。由于其结构简单、易合成、具有多种良好的生物活性等优点,被广泛用于香料、医药、农药等

固体超强酸

摘要 论述了固体超强酸的研究及运用进展情况。采用寻找最佳配比制备ZrO2包覆的SO42-/ SnO2固体超强酸,讨论了ZrO2与硫酸铵的最佳物质的量比,硫酸铵与SnC l4 最佳摩尔比,煅烧温度,固体超强酸的最佳使用量对其催化性能的影响。实验结果表明,以ZrO2:(NH4)SO4摩尔比为100:6,(NH4)2SO4:SnCl4=1:2时所制备的ZrO2包覆的SO42-/ SnO2固体超强酸,在400摄氏度煅烧 取固体超强酸0.8g原料无水乙醇(20ml)与冰乙酸(10g)进行酯化反应(反应温度为65°c),为较优工艺条件,在此条件制得的乙酸乙酯的酯化率为61.75%。 [关键词]包覆固体超强酸制备催化合成乙酸乙酯 Abstract

Discussed the research and application advanced of solid superacid catalyst in details.By looking for the best ratio of ZrO2-coated SO42-preparation/SnO2 solid superacids, discusses ZrO2 and ammonium sulfate best amount of substance than, ammonium sulphate and SnC l4 best molar ratio, burning temperature, solid superacids best usage on its catalytic performance impact. Experimental results show that to ZrO2: (NH4) SO4 molar ratio of 100: 6, (NH4) SO4: SnCl4 = 1: 2, the preparation of ZrO2-SO42-/SnO2 solid superacids, calcination of the 400 degrees Celsius ,Take solid superacids 0.8g raw ethanol (20ml) and glacial acetic acid (10g) esterification reaction temperature of 65 (°C), for greater technological conditions, conditions in the final of ethyl acetate ester rate of 61.75%. Key words:coating solid superacid catalyst synthesis acetic ether

实验八相转移催化法制备dl-扁桃酸

实验八相转移催化法制备dl-扁桃酸 dl-扁桃酸(Mandelic acid) 又名苦杏仁酸、苯乙醇酸、α-羟基苯乙酸等。它是重要的化工原料,在医药工业中主要用于合成血管扩张药环扁桃酸酯、滴眼药羟苄唑等。以往多由苯甲醛与氰化钠加成得腈醇(扁桃腈)再水解制得。该法路线长,操作不便,劳动保护要求高。采用相转移二氯卡宾法一步反应即可制得,既避免了使用剧毒的腈化物,又简化了操作,收率亦较高。 一、目的与要求 1、了解相转移催化反应的原理以及在药物合成中的应用。 2、掌握相转移催化剂的制备及后处理技术。 3、熟悉相转移二氯卡宾法制备扁桃酸的实验操作技术。 二、实验原理 在药物合成中常遇到水相和有机相参与的非均相反应,这些反应速度慢、收率低、条件苛刻、有些甚至不发生反应、回收和后处理麻烦,而且不能适合所有的反应。1965年,MaKasza 首先发现鎓类化合物具有使水相中的反应物转入有机相中的性质,从而加快了反应速率,提高了收率,简化了操作,并使一些难以进行的反应顺利完成,从而开辟了相转移催化这一新的合成方法。近20年来,相转移催化技术在药物合成中的应用日趋广泛。 常用的相转移催化剂主要有两类,即季铵盐类和冠醚类。 本实验采用季铵盐(TEBA)为相转移催化剂。其原理是,在50%的水溶液中加入少量的相转移催化剂和氯仿,季铵盐在碱液中形成季铵碱而转入氯仿层,继而季铵碱夺去氯仿中 的一个质子而形成离子对(R 4N+·CCl- 3 ),然后发生α-消除和成二氯卡宾:CCl 2 ,二氯 卡宾是非常活泼的中间体,能与多种官能团发生反应生成各类化合物,其中与苯甲醛加成生成环氧中间体,再经重排、水解得到dl-扁桃酸。 反应式如下 R 4N+Cl-+ NaOH?R 4 N+OH-+ NaCl 水相水相油相水相 R 4N+OH-+ CHCl 3 ?R 4 N+CCl- 3 ?:CCl 2 + R 4 N+Cl- 油相油相油相油相水相本品为白色斜方片状结晶,熔点为119℃,相对密度1.30,易溶于水、乙醇、乙醚、异丙醇等,长期露光则分解变色。 三、实验主要药品

肉桂酸的制备

CH COOH CH n CH 2 CH CH CH []n 2 肉桂酸的制备 一、实验目的 1、学习肉桂酸的制备原理和方法。 2、巩固水蒸气蒸馏的装置及操作方法。 二、实验原理 芳香醛与具有α-H 原子的脂肪酸酐在相应的无水脂肪酸钾盐或钠盐的催化下共热发生缩合反应,生成芳基取代的α ,β-不饱和酸,此反应称为Perkin 反应。反应式如下: H 3C O CH 3 O O K 2CO 3CHO + 150~170℃ CH CHCOOH +CH 3COOH 副反应: Perkin 反应的催化剂通常是相应酸酐的羧酸钾或钠盐,有时也可用碳酸钾或叔胺代替。反应时,可能是酸酐受碳酸钾的作用,生成一个酸酐的负离子,负离子和醛发生亲核加成,生成中间物 -羟基酸酐,然后再发生失水和水解作用而得到不饱和酸。反应机理如下: H 3C O CH 3 O O K 2CO 3 H 3C O O O H 3C O O O C 6H 5 O _H 3C O O O C 6H 5 OH H 2O 2_ 水解 C 6H 5 CH 3 O + CH 3COOH H 3C O O O C 6H 5 三、仪器及试剂 药品:苯甲醛,乙酸酐,无水醋酸钾,饱和碳酸钠溶液,浓盐酸,活性炭 仪器:150 mL 三口烧瓶,空气冷凝管,水蒸气蒸馏装置,锥形瓶,量筒,烧杯,布氏漏斗,抽滤瓶,表面皿,红外干燥箱 四、实验步骤

在150mL三颈烧瓶中加入4.1g(0.03mol)无水碳酸钾,3mL苯甲醛(3.2g,0.03mol)和5.5mL醋酸酐(6.0g,0.06mol),其一装上温度计,另一个用塞子塞上。反应液始终保持在150~170℃加热回流45min。 反应混合物稍冷后,加入20mL热水,进行水蒸气蒸馏,直至无油状物蒸出为止。待烧瓶冷却后,加入20mL10%氢氧化钠水溶液,使生成的肉桂酸形成钠盐而溶解。加热煮沸后加入少量活性炭脱色,趁热过滤。待滤液冷至室温后,在搅拌下慢慢滴加浓盐酸至刚果红试纸变蓝。冷却结晶,抽滤析出的晶体,并用少量冷水洗涤,干燥后称重。可用3:1的稀乙醇重结晶。纯净的肉桂酸为白色晶体,可以通过测熔点、做红外光谱图来表征其结构,熔点为132~134℃。 4.1g无水碳酸钾 3mL苯甲醛 5.5mL醋酸酐150-170℃反应液 冷却 <100℃ 加入20mL热水 捣碎固体 水蒸气蒸馏 滤液 浓HCl 混合液 冷却结晶 洗涤 干燥 粗产物肉桂酸 五、实验注意事项 1.久置的苯甲醛含苯甲酸,故需蒸馏提纯。苯甲酸含量较多时可用下法除去:先用10%碳酸钠溶液洗至无CO2放出,然后用水洗涤,再用无水硫酸镁干燥,干燥时加入1%对苯二酚以防氧化,减压蒸馏,收集79℃/25mmHg或69℃/15mmHg,或62℃/10mmHg的馏分,沸程2℃,贮存时可加入0.5%的对苯二酚。 2、无水碳酸钾必须无水,反应之前做烘干处理。 3、加热回流反应系统必须无水,玻璃仪器预先烘干。 4、冷凝管的上方要加干燥管,防止空气中的水汽进入反应体系。 5、反应过程中体系的颜色会逐渐加深,有时会有棕红色树脂状物质出现。 六、思考题 1.在肉桂酸的制备实验中,水蒸气蒸馏除去什么? 答:水蒸气蒸馏主要蒸出未反应的苯甲醛。 2.加入10%氢氧化钠溶液的目的是什么? 答:中和反应中产生的副产品乙酸,使肉桂酸以盐的形式溶于水中。

相关文档
最新文档