迈达斯截面特性简介
midas截面几何性质计算

midas截⾯⼏何性质计算看⼤家对横向⼒分布系数计算疑惑颇多,特在这⾥做⼀期横向⼒分布系数计算教程(本教程讲的⽐较粗浅,适⽤于新⼿)。
总的来说,横向⼒分布系数计算归结为两⼤类(对于新⼿能够遇到的):1、预制梁(板梁、T梁、箱梁)这⼀类也可分为简⽀梁和简⽀转连续2、现浇梁(主要是箱梁)⾸先我们来讲⼀下现浇箱梁(上次lee_2007兄弟问了,所以先讲这个吧)在计算之前,请⼤家先看⼀下截⾯这是⼀个单箱三室跨径27+34+27⽶的连续梁,梁⾼1.55⽶,桥宽12.95⽶!!⽀点采⽤计算⽅法为为偏压法(刚性横梁法)mi=P/n±P×e×ai/(∑ai x ai)跨中采⽤计算⽅法为修正偏压法(⼤家注意两者的公式,只不过多了⼀个β)mi=P/n±P×e×ai×β/(∑ai x ai)β---抗扭修正系数β=1/(1+L^2×G×∑It/(12×E×∑ai^2 Ii)其中:∑It---全截⾯抗扭惯距Ii ---主梁抗弯惯距 Ii=K Ii` K 为抗弯刚度修正系数,见后L---计算跨径G---剪切模量 G= 旧规范为P---外荷载之合⼒e---P对桥轴线的偏⼼距ai--主梁I⾄桥轴线的距离在计算β值的时候,⽤到了上次课程我们讲到的计算截⾯⼏何性质中的抗弯惯矩和抗扭惯矩,可以采⽤midas计算抗弯和抗扭,也可以采⽤桥博计算抗弯,或者采⽤简化截⾯计算界⾯的抗扭,下⾯就介绍⼀下这种⼤箱梁是如何简化截⾯的:简化后箱梁⾼度按边肋中线处截⾯⾼度(1.55m)计算,悬臂⽐拟为等厚度板。
①矩形部分(不计中肋):计算公式:It1=4×b^2×h1^2/(2×h/t+b/t1+b/t2)其中:t,t1,t2为各板厚度h,b为板沿中⼼线长度h为上下板中⼼线距离It1= 4×(+/2)^2×^2/(2×++=5.454 m4②悬臂部分计算公式: It2=∑Cibiti3其中:ti,bi为单个矩形截⾯宽度、厚度Ci为矩形截⾯抗扭刚度系数,按下式计算:Ci=1/3××ti/bi + ×(ti/bi)^5)=1/3××+×^5)=It2=2×××^3=0.0239 m4③截⾯总的抗扭惯距It= It1+ It2=+=5.4779 m4⼤家可以⽤midas计算对⽐⼀下看看简化计算和实际能差多少?先计算⼀下全截⾯的抗弯和中性轴,下⾯拆分主梁需要⽤的到采⽤<<桥梁博⼠>>版中的截⾯设计模块计算全截⾯抗弯惯距,输出结果如下:<<桥梁博⼠>>---截⾯设计系统输出⽂档⽂件: D: \27+34+⽂档描述: 桥梁博⼠截⾯设计调试任务标识: 组合截⾯⼏何特征任务类型: 截⾯⼏何特征计算------------------------------------------------------------ 截⾯⾼度: 1.55 m------------------------------------------------------------ 计算结果:基准材料: JTJ023-85: 50号混凝⼟基准弹性模量: +04 MPa换算⾯积: 7.37 m2换算惯矩: 2.24 m4中性轴⾼度: 0.913 m沿截⾯⾼度⽅向 5 点换算静矩(⾃上⽽下):主截⾯:点号: ⾼度(m): 静矩(m××3):12345------------------------------------------------------------计算成功完成结果:I全= 2.24 m4 中性轴⾼度H=0.913m下⾯来讲⼀下主梁拆分的原则:将截⾯划分为τ梁和I梁,保持将两截⾯中性轴与全截⾯中性轴位置⼀致。
02-Midas Civil截面特性计算器SPC

01Midas Civil截面特性计算器SPC1、截面特性计算器①截面特性计算器的功能使用截面特性计算器的目的是为了导入在midas中无法直接建立的截面。
②截面特性计算器的使用标准流程1)首先在CAD中画好所要导入的截面,并另存为dxf格式的文件。
2)打开截面特性计算器,导入dxf文件。
3)使用”Model>Section>Generate”功能形成截面,在”Name”中输入截面的名称(方便后面导入时截面的识别),并勾选其中的”Calculate Properties Now”,同时完成截面特性的计算。
4)使用”Model>Section>Export”功能导出sec文件,勾选其中的”MIDAS Sectin File”,命名后即可导出需要的sec文件。
5)然后在”File>Save”中保存spc文件,以便以后查询,或直接退出,程序会提示是否保存。
③在midas中导入上面形成的截面。
打开midas的“模型-材料和截面特性-截面”,点击“添加”,点击PSC选项,在下拉框中选择“PSC-数值”,点击“从SPC中导入截面”,选择相应的sec文件即可。
(若sec中含有多个截面,会弹出对话框,选择所需要的截面即可。
)2、利用截面特性计算器绘制特殊截面双拼45a工字钢①在CAD绘制双拼45a工字钢截面图形,另存为dxf格式文件。
②打开截面特性计算器,导入双拼45a工字钢dxf文件。
File>Import>AutoCAD DXF>OK③使用”Model>Section>Generate ”功能形成截面,在”Name ”中输入截面的名称,Type:Plane,Angle:2,Apply 。
④计算截面特性及导出sec 文件,Property>Calculate Section Property,MeshSize:10mm,Pause after Each Calc(打开),Apply。
迈达斯截面特性简介

. sax对x轴的面积矩
say对y轴的面积矩
ixx,iyy,ixy分别是对x轴的惯性矩,y轴惯性矩,xy的截面惯性积,对应于材料力学
帮助文件说明如下:
Asy:单元局部坐标系y轴方向的有效抗剪面积(Effective Shear Area)。
Asz:单元局部坐标系z轴方向的有效抗剪面积(Effective Shear Area)。
Ixx:对单元局部坐标系x轴的扭转惯性距(Torsional Resistance)。
Iyy:对单元局部坐标系y轴的惯性距(Moment of Inertia)。
Izz:对单元局部坐标系z轴的惯性距(Moment of Inertia)。
Cyp:沿单元局部坐标系+y轴方向,单元截面中和轴到边缘纤维的距离。
Cym:沿单元局部坐标系-y轴方向,单元截面中和轴到边缘纤维的距离。
Czp:沿单元局部坐标系+z轴方向,单元截面中和轴到边缘纤维的距离。
Czm:沿单元局部坐标系-z轴方向,单元截面中和轴到边缘纤维的距离。
Qyb:沿单元局部坐标系z轴方向的剪切系数。
Qzb:沿单元局部坐标系y轴方向的剪切系数。
Peri:O :截面外轮廓周长。
Peri:I :箱型或管型截面的内轮廓周长。
Cent:y :从截面最左侧到形心轴的距离。
Cent:z :从截面最下端到形心轴的距离。
y1、z1:截面左上方最边缘点的y、z坐标。
y2、z2:截面右上方最边缘点的y、z坐标。
y3、z3:截面右下方最边缘点的y、z坐标。
y4、z4:截面左下方最边缘点的y、z坐标。
'.。
midas截面几何性质计算2

看大家对横向力分布系数计算疑惑颇多,特在这里做一期横向力分布系数计算教程(本教程讲的比较粗浅,适用于新手)。
总的来说,横向力分布系数计算归结为两大类(对于新手能够遇到的):1、预制梁(板梁、T梁、箱梁)这一类也可分为简支梁和简支转连续2、现浇梁(主要是箱梁)首先我们来讲一下现浇箱梁(上次lee_2007兄弟问了,所以先讲这个吧)在计算之前,请大家先看一下截面这是一个单箱三室跨径27+34+27米的连续梁,梁高1.55米,桥宽12.95米!!支点采用计算方法为为偏压法(刚性横梁法)mi=P/n±P×e×ai/(∑ai x ai)跨中采用计算方法为修正偏压法(大家注意两者的公式,只不过多了一个β)mi=P/n±P×e×ai×β/(∑ai x ai)β---抗扭修正系数β=1/(1+L^2×G×∑It/(12×E×∑ai^2 Ii)其中:∑It---全截面抗扭惯距Ii ---主梁抗弯惯距Ii=K Ii` K为抗弯刚度修正系数,见后L---计算跨径G---剪切模量G=0.4E 旧规范为0.43EP---外荷载之合力e---P对桥轴线的偏心距ai--主梁I至桥轴线的距离在计算β值的时候,用到了上次课程/thread-54712-1-1.html我们讲到的计算截面几何性质中的抗弯惯矩和抗扭惯矩,可以采用midas计算抗弯和抗扭,也可以采用桥博计算抗弯,或者采用简化截面计算界面的抗扭,下面就介绍一下这种大箱梁是如何简化截面的:简化后箱梁高度按边肋中线处截面高度(1.55m)计算,悬臂比拟为等厚度板。
①矩形部分(不计中肋):计算公式:It1=4×b^2×h1^2/(2×h/t+b/t1+b/t2)其中:t,t1,t2为各板厚度h,b为板沿中心线长度h为上下板中心线距离It1= 4×((8.096+7.281)/2)^2×1.34^2/(2×1.401/0.603+8.097/0.22+7.281/0.2)=5.454 m4②悬臂部分计算公式: It2=∑Cibiti3其中:ti,bi为单个矩形截面宽度、厚度Ci为矩形截面抗扭刚度系数,按下式计算:Ci=1/3×(1-0.63×ti/bi + 0.052×(ti/bi)^5)=1/3×(1-0.63×0.26/2.2+0.052×(0.26/2.2)^5)=0.309It2=2×0.309×2.2×0.26^3=0.0239 m4③截面总的抗扭惯距It= It1+ It2=5.454+0.0239=5.4779 m4大家可以用midas计算对比一下看看简化计算和实际能差多少??先计算一下全截面的抗弯和中性轴,下面拆分主梁需要用的到采用<<桥梁博士>>V2.9版中的截面设计模块计算全截面抗弯惯距,输出结果如下:<<桥梁博士>>---截面设计系统输出文档文件: D: \27+34+27.sds文档描述: 桥梁博士截面设计调试任务标识: 组合截面几何特征任务类型: 截面几何特征计算------------------------------------------------------------截面高度: 1.55 m------------------------------------------------------------计算结果:基准材料: JTJ023-85: 50号混凝土基准弹性模量: 3.5e+04 MPa换算面积: 7.37 m2换算惯矩: 2.24 m4中性轴高度: 0.913 m沿截面高度方向5 点换算静矩(自上而下):主截面:点号: 高度(m): 静矩(m××3):1 1.55 0.02 1.16 1.773 0.775 1.834 0.388 1.585 0.0 0.0------------------------------------------------------------计算成功完成结果:I全= 2.24 m4 中性轴高度H=0.913m下面来讲一下主梁拆分的原则:将截面划分为τ梁和I梁,保持将两截面中性轴与全截面中性轴位置一致。
迈达斯课件

桥梁工程系 范彩霞
查看分析结构
利用图形查看应力和构件内力
对于MIDAS/Civil施工阶段分析的结果, 可查看到某一施工阶段为止所累积的全部 构件的应力和位移,也可查看某一单元随 施工阶段应力和位移的变化。
例2.利用桥梁内力图查看各施工阶段所发生的 最大、最小应力
桥梁工程系 范彩霞
查看分析结构
利用图形查看应力和 构件内力
对于MIDAS/Civil施工阶段分 析的结果,可查看到某一施工 阶段为止所累积的全部构件的 应力和位移,也可查看某一单 元随施工阶段应力和位移的变 化。
例3.利用桥梁内力图查看徐变收 缩应力
桥梁工程系 范彩霞
定义荷载组合
输入荷载组合
输入荷载组合。既可以由用户输入荷载组合,也可以选择相应 规范,自动生成荷载组合。
桥梁工程系 范彩霞
模型/建立结构模型
建立结构模型
节点和单元构成结构模型。 本例通过建立节点和扩展单元的功能来建立模型
桥梁工程系 范彩霞
模型/修改单元的理论厚度
修改单元依存材料特性值
修改各单元的理论厚度值或者体积与面积比。当不同的单元使用了同 一种时间依存材料,或使用了变截面单元时,需要分别计算各截面的 理论厚度时,此功能特别方便。
•自动生成 •可以同时生成多个子步骤。在"步骤数"中输入将要划分的子步骤数点击 ,将按步 骤数以及均等对数间隔划分施工阶段的持续时间。
桥梁工程系 范彩霞
定义施工阶段
定义施工阶段
定义施工阶段2(CS2)
桥梁工程系 范彩霞
定义施工阶段
定义施工阶段
定义施工阶段3(CS3)
桥梁工程系 范彩霞
Midas Civil建模设计用数值截面-截面参数设置

midas Civil 技术资料----设计用数值截面-截面参数设置目录midas Civil 技术资料1 ----设计用数值截面-截面参数设置 1 1问题提出2 2设计截面定义及参数设置 2 2.1设计用数值截面定义 2 2.2设计用数值截面-参数设置 4 3箱形截面-受扭塑性抵抗矩W t 计算示例 7 参考文献8北京迈达斯技术有限公司 桥梁部2013/04/271问题提出设计用数值截面,矩形、T形、I形截面参数如何设置是非常重要的,关系到设计容许值的结果。
大家可结合如下所述,对照规范公式进行理解。
2设计截面定义及参数设置2.1设计用数值截面定义1.在CAD中绘制设计截面,如图2-1所示,并存为*.dxf文件,分别为矩形、箱形、T形、I形。
单位:m图2-1 截面参数设置-设计截面图2-2 创建截面2.Civil—工具—截面特性值计算器,计算各截面特性并存为midas section file文件,如图2-2、2-3、2-4所示。
图2-3 计算截面特性图2-4 导入sec类型文件在Civil中定义截面时,设计用数值截面可直接导入,具体操作略。
2.2设计用数值截面-参数设置1.矩形截面图2-5 矩形数值截面参数输入矩形可看做只有中腹板,无翼缘厚度的箱形截面来理解设计截面参数的输入。
(1)“设计参数”中:T1(上翼缘厚度),填入一个可忽略的较小值,;T2(下翼缘厚度),填写0;BT(箱形截面外腹板中心距离),填写0;矩形截面该值不起作用;HT(箱形截面上、下翼缘的中心距离),截面高度,对应D62-04式5.5.2-1中的h值。
(2)验算扭转用厚度(最小):实际截面宽度值,对应D62-04式5.5.2-1中的b值,用于计算Wt,可见,该值的准确输入直接关系到抗扭验算的结果。
剪切验算:验算截面对剪切较薄弱的部位的剪力。
(3)Z1, Z3:确定剪力计算位置,以截面底边为基准线沿截面Z轴方向的距离,注意,由材料力学切应力(τmax)计算公式可知,矩形截面,切应力最大值发生在截面形心处,故,一般情况下对于矩形截面Z1, Z3的位置可设置成与Z2重合。
midas变截面及变截面组的定义

midas变截面及变截面组的定义变截面是指在一种材料中,其截面形状会随着某种因素的变化而改变。
这种变化可以是材料的外力加载、温度变化或其他物理因素的影响所导致的。
而变截面组则由具有不同形状的变截面构件组成的一种结构,可以根据材料的不同应变和受力情况来实现不同的力传递和形变效果。
Midas变截面学说在结构工程领域具有重要的意义。
它的提出源于人们对结构材料变形特性的研究和对结构设计的需求。
传统上,结构工程师通常将结构中的截面形状设计为固定不变的,以便于计算和施工。
然而,在某些情况下,固定形状的截面可能无法满足结构的要求,或者在材料的受力和形变过程中,会产生一些不必要的损失和不良效果。
Midas变截面学说通过引入变截面的概念,有效地解决了这个问题。
变截面可以根据外部条件和材料响应的变化而改变其形状。
这样,结构在不同的受力和形变情况下,可以采用不同的截面形状来适应需求,并使结构在满足强度和稳定性要求的同时,尽可能减少材料的损失和良好效果。
变截面的设计需要考虑到结构材料的特性和受力情况。
根据不同的变形要求,可以设计出各种形状的变截面,如折叠截面、伸缩截面、螺旋截面等。
这些变截面可以通过定制的机械结构或材料特性实现。
变截面组是由多个具有不同形状的变截面构件组成的一种结构。
它可以根据结构需要和受力情况的变化,进行力传递和形变调节。
变截面组的设计需要考虑截面形状、材料特性和构件连接等因素。
通过灵活调整变截面的形状和构件的连接方式,可以实现结构的高效力学和减少材料的损失。
Midas变截面学说的应用领域非常广泛。
在建筑领域,通过采用变截面和变截面组的设计方法,可以实现更轻松、更节能的建筑结构。
在航空航天领域,变截面的设计可以提高飞机的空气动力性能和结构强度。
在交通运输领域,变截面的设计可以增加车辆的稳定性和乘坐舒适性。
总之,Midas变截面及变截面组的设计方法在结构工程领域具有重要的意义。
通过引入变截面的概念,可以灵活地调整结构的形状和材料的应变特性,使其适应不同的受力和形变需求。
Midas Civil建模设计用数值截面 截面参数设置

midas Civil 技术资料----设计用数值截面-截面参数设置目录midas Civil 技术资料1 ----设计用数值截面-截面参数设置 1 1问题提出2 2设计截面定义及参数设置 2 2.1设计用数值截面定义 2 2.2设计用数值截面-参数设置 4 3箱形截面-受扭塑性抵抗矩W t 计算示例 7 参考文献8北京迈达斯技术有限公司 桥梁部2013/04/271问题提出设计用数值截面,矩形、T形、I形截面参数如何设置是非常重要的,关系到设计容许值的结果。
大家可结合如下所述,对照规范公式进行理解。
2设计截面定义及参数设置2.1设计用数值截面定义1.在CAD中绘制设计截面,如图2-1所示,并存为*.dxf文件,分别为矩形、箱形、T形、I形。
单位:m图2-1 截面参数设置-设计截面图2-2 创建截面2.Civil—工具—截面特性值计算器,计算各截面特性并存为midas section file文件,如图2-2、2-3、2-4所示。
图2-3 计算截面特性图2-4 导入sec类型文件在Civil中定义截面时,设计用数值截面可直接导入,具体操作略。
2.2设计用数值截面-参数设置1.矩形截面图2-5 矩形数值截面参数输入矩形可看做只有中腹板,无翼缘厚度的箱形截面来理解设计截面参数的输入。
(1)“设计参数”中:T1(上翼缘厚度),填入一个可忽略的较小值,;T2(下翼缘厚度),填写0;BT(箱形截面外腹板中心距离),填写0;矩形截面该值不起作用;HT(箱形截面上、下翼缘的中心距离),截面高度,对应D62-04式5.5.2-1中的h值。
(2)验算扭转用厚度(最小):实际截面宽度值,对应D62-04式5.5.2-1中的b值,用于计算Wt,可见,该值的准确输入直接关系到抗扭验算的结果。
剪切验算:验算截面对剪切较薄弱的部位的剪力。
(3)Z1, Z3:确定剪力计算位置,以截面底边为基准线沿截面Z轴方向的距离,注意,由材料力学切应力(τmax)计算公式可知,矩形截面,切应力最大值发生在截面形心处,故,一般情况下对于矩形截面Z1, Z3的位置可设置成与Z2重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sax对x轴的面积矩
say对y轴的面积矩
ixx,iyy,ixy分别是对x轴的惯性矩,y轴惯性矩,xy的截面惯性积,对应于材料力学
帮助文件说明如下:
Asy:单元局部坐标系y轴方向的有效抗剪面积(Effective Shear Area)。
Asz:单元局部坐标系z轴方向的有效抗剪面积(Effective Shear Area)。
Ixx:对单元局部坐标系x轴的扭转惯性距(Torsional Resistance)。
Iyy:对单元局部坐标系y轴的惯性距(Moment of Inertia)。
Izz:对单元局部坐标系z轴的惯性距(Moment of Inertia)。
Cyp:沿单元局部坐标系+y轴方向,单元截面中和轴到边缘纤维的距离。
Cym:沿单元局部坐标系-y轴方向,单元截面中和轴到边缘纤维的距离。
Czp:沿单元局部坐标系+z轴方向,单元截面中和轴到边缘纤维的距离。
Czm:沿单元局部坐标系-z轴方向,单元截面中和轴到边缘纤维的距离。
Qyb:沿单元局部坐标系z轴方向的剪切系数。
Qzb:沿单元局部坐标系y轴方向的剪切系数。
Peri:O :截面外轮廓周长。
Peri:I :箱型或管型截面的内轮廓周长。
Cent:y :从截面最左侧到形心轴的距离。
Cent:z :从截面最下端到形心轴的距离。
y1、z1:截面左上方最边缘点的y、z坐标。
y2、z2:截面右上方最边缘点的y、z坐标。
y3、z3:截面右下方最边缘点的y、z坐标。
y4、z4:截面左下方最边缘点的y、z坐标。