八级上册数学全等三角形知识点与练习

合集下载

初二年级数学八上第十二章全等三角形知识点总结复习及常考题型练习

初二年级数学八上第十二章全等三角形知识点总结复习及常考题型练习

第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(3)全等三角形的周长相等、面积相等。

(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.证明两个三角形全等的基本思路:5.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)中线倍长法、截长补短法证三角形全等。

八上数学全等三角形章节复习及经典例题

八上数学全等三角形章节复习及经典例题

八上数学全等三角形章节复习及经典例题【知识梳理】一、全等三角形1.概念能够完全重合的两个三角形叫做全等三角形。

一个三角形经过平移、翻折、旋转可以得到它的全等形。

2.全等三角形的性质①全等三角形的对应边相等、对应角相等。

②全等三角形的周长相等、面积相等。

③全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4.证明两个三角形全等的基本思路:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSS HL AAS SAS ASA AAS ASA AAS找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边二、角的平分线:1.(性质)角的平分线上的点到角的两边的距离相等.2.(判定)角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题(1)要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”【例题精讲】例1.如图,在ABC ∆中, 90=∠C ,D 、E 分别为AC 、AB 上的点,且AD=BD,AE=BC,DE=DC.求证:DE ⊥AB 。

人教版八年级上册数学第12章全等三角形讲义知识点+典型例题

人教版八年级上册数学第12章全等三角形讲义知识点+典型例题

BPAa【变式1】如图,在t R ABC △中,AB AC =,90BAC ∠=︒,过点A 的任一直线AN ,BD AN ⊥于D ,BD AN ⊥于E求证:DE BD CE =-NEDCBA【变式2】如图,在ABC △中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E ,求证:DE AD BE =+.EDCBA专题 三角形的尺规作图知识点解析作三角形的三种类型:① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA ③ 已知三边作三角形: 作图依据------SSS典型例题【例1】作一条线段等于已知线段。

已知:如图,线段a . 求作:线段AB ,使AB = a .【例2】作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A’O’B’,使A’O’B’=∠AOB【例3】已知三边作三角形已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a.作法:【例4】已知两边及夹角作三角形已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.【例5】已知两角及夹边作三角形已知:如图,∠α,∠β,线段c .求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.随堂练习1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线专题利用三角形全等测距离知识点解析一、利用三角形全等测距离目的:变不可测距离为可测距离。

人教版八年级数学上册第12章全等三角形知识点复习总结及常考题型练习.doc

人教版八年级数学上册第12章全等三角形知识点复习总结及常考题型练习.doc

第十二章一、::二、::1.::⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解::①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.::⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.理解::①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(3)全等三角形的周长相等、面积相等。

(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定定理::⑴边边边( SSS):三边对应相等的两个三角形全等.⑵边角边( SAS ):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等..4.::5.::⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.::⑴明确命题中的已知和求证. (包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.::(1) 要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)中线倍长法、截长补短法证三角形全等。

(完整)人教版八年级数学上册知识整理与经典例题

(完整)人教版八年级数学上册知识整理与经典例题

八年级数学上册知识总结与相关练习第十一章全等三角形一、全等形能够完全重合的两个图形叫做全等形。

二、全等三角形1、概念:能够完全重合的两个三角形叫做全等三角形。

注意:(1)两个三角形全等,互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角。

(2)“能够完全重合”是指在一定的叠放下,能够完全重合。

2、全等三角形的符号表示、读法△ABC与△A′B′C′全等记作△ABC≌△A′B′C′,“≌”读作“全等于” 。

注意:(1)两个三角形全等时,通常把对应顶点的字母写在对应的位置上,这样对应的两个字母为端点的线段是对应边;对应的三个字母表示的角是对应角(若用一个字母表示一个角亦是如此)。

(2)对应角夹的边是对应边,对应边的夹角是对应角。

(3)对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系,对边是与角相对的边,对角是与边相对的角。

3、全等三角形的性质全等三角形的对应边相等,对应角相等。

4、三角形全等的识别方法(1)三边对应相等的两个三角形全等,简写成“边边边”和“SSS” 。

(2)两边和他们的夹角对应相等的两个三角形全等,简写成“边角边”和“SAS”。

(3)两角和他们的夹边对应相等的两个三角形全等,简写成“角边角”和“ASA”。

(4)两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”和“AAS”。

(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”和“HL”。

注意:SSA、AAA不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与,如果有两边和一角对应相等时,角必须是两边的夹角。

5、三角形全等的证明思路找夹角——SAS(1)已知两边都是直角三角形——HL找另一边——SSS找边的对角——AAS(2)已知一边一角找夹角的另一边——SAS找夹边的另一角——ASA(3)已知两角找夹边——ASA找其他任意一边——AAS6、全等变换一个图形与另一个图形的形状一样,大小相等,只是位置不同,我们称这个图形是另一个图形的全等变换,三种基本全等变换:(1)旋转;(2)翻折;(3)平移。

八年级上册数学三角形全等整章知识点和对应练习

八年级上册数学三角形全等整章知识点和对应练习

T——全等三角形课堂导入形状与大小都完全相同的两个图形就是全等形一、知识梳理:1、能够完全重合的两个三角形,叫全等三角形(1)“全等”用符号________来表示,读作“全等于”。

(2)记作:△ABC≌△DEF,读作 : _________________互相重合的顶点叫做___________互相重合的边叫做_________互相重合的角叫做_____________2、全等三角形的性质:(1).全等三角形的对应边_______;(2).全等三角形的对应角_________。

二、考点分类考点一:判断全等【例】1.下列图形中,和所给图形全等的图形是()A.B.C.D.2.下列说法正确的有()①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.A.1个B.2个 C.3个D.4个考点二:对应关系【例2】如图(1),△AOB ≌△COD ,∠AOB =∠COD ,∠A =∠C ,则∠D 的对应角是__________,图中相等的线段有__________图(1) 图(2)【变式训练】如图(2),△ABC ≌△AED ,∠C =40°,∠EAC =30°,∠B =30°,则∠EAD =___________.考点三:全等三角形性质【例5】如图(3),小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO ≌△NMO ,则只需测出其长度的线段是_____________.图(3) 图(6) 图(7)【变式训练】如图(6),△ABE ≌△ACD ,AE =5 cm ,∠A =60°,∠B =30°,则∠ADC =__________°,AD =__________cm .3、如图(7),已知,△ABC ≌△BAE ,∠ABE =60°,∠E =92°,则∠ABC 的度数为__________度.如图,ΔABC ≌ΔDEF ,∠A =25°,∠B =65°,BF =3 cm ,求∠DFE 的度数和EC 的长.强化练习C——边边边、边角边一、知识梳理:全等三角形的条件(1)、三角形全等的判定------三边对应相等的两个三角形全等(“边边边”或“”)(2)、三角形全等的判定-----两边和它们的夹角对应相等的两个三角形全等(“边角边”或“”)。

初中数学--八年级上册全等三角形知识点归纳及经典练习题

初中数学--八年级上册全等三角形知识点归纳及经典练习题

数学--八年级上册全等三角形一、全等三角形及其判定(一)知识总结(二)例题精讲知识点三:三角形全等的开方性探索知识点二:三角形全等的判定知识点一:全等三角形的性质知识点一:全等三角形的性质A、夯实基础例1:已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠OAD=_____度.【解析】此题可根据全等三角形的对应角相等得∵△OAD≌△OBC∴∠OAD=∠OBC=180°-70°-25°=85°.【解答】85°B、双基固化例2:如图,△ABC≌△DEF,则有下列判断正确的是( )。

A.AB=DFB.AC=DFC.∠A=∠FD.∠B=∠D【解析】本题根据全等三角形的对应边相等,对应角相等判断即可.【解答】B.C、能力提升例3:如图,△ABC≌△AED,B和E是对应顶点,写出图中相等的线段和相等的角.【解析】根据全等三角形的对应边相等,对应角相等判断即可.关键要做到不重不漏. 【解答】相等的线段有:AB=AE,AC=AD,BC=DE,BD=EC相等的角有:∠B=∠E,∠BAC=∠EAD,∠ACB=∠ADE。

知识点二:三角形全等的判定A、夯实基础例4:如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△ CEB全等吗?为什么?【解答】△AFD≌△ CEB理由:∵AE=CF∴AE-FE=CF-EF,即AF=CE在△AFD和△ CEB中AF=CE∠AFD=∠CEB,DF=BE∴△AFD≌△CEB(SAS)B、双基固化例5:(2010年福州)如图,点B、E、C、F在一条直线上,BC=EF,AB∥DE,∠A=∠D。

求证:△ABC≌△DEF。

【解答】证明:∵ AB∥DE,∴∠B=∠DEF在△ABC和△DEF中,B=∠DEF∠A=∠DBC=EF∴△ABC≌△DEF(AAS)C、能力提升例6:(2010年宁德市)如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:____________,并给予证明.【解答】解法一:添加条件:AE=AF证明:在△AED与△AFD中,∵AE=AF,∠EAD=∠FAD,AD=AD,∴△AED≌△AFD(SAS).解法二:添加条件:∠EDA=∠FDA证明:在△AED与△AFD中,∵∠EAD=∠FAD,AD=AD,∠EDA=∠FDA,∴△AED≌△AFD(ASA).知识点三:三角形全等的开方性探索A、夯实基础例7:如图,已知△ABC和△DCB中,AB=DC,请补充一个条件_____,使△ABC≌△DCB。

人教版初二八年级数学上第十二单元全等三角形知识点及单元测试

人教版初二八年级数学上第十二单元全等三角形知识点及单元测试

第十二章全等三角形一.知识框架二.知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。

除了边边角和角角角。

4.角平分线推论:角的内部到角的两边的距离相等的点在角的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。

通过直观的理解和比较发现全等三角形的奥妙之处。

在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

【同步练习(§12.1~12.2)】一、填空题(每题3分,共30分)32681.如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=,∠A=,AB=13cm,则∠F=______度,ADE =______cm .2.由同一张底片冲洗出来的两张五寸照片的图案 全等图形,而由同一张底片冲洗出来的五寸照片和七寸照片 全等图形(填“是”或“不是”).3.如图,△ABC 与△DBC 能够完全重合,则△ABC 与△DBC 是____________,表示为△ABC ____△DBC .4.如图,已知△ABC ≌△BAD ,BC =AD ,写出其他的对应边 和对应角 .5.如图所示,,的延长线交于,交于,,,,则的度数为 .6.如图,已知,垂足为,,垂足为,,,则=___________.7.如图,已知,,,经分析 .此时有 . 8.如图所示,AB ,CD 相交于O ,且AO =OB ,观察图形,图中已具备的另一相等的条件是________,联想到SAS ,只需补充条件________,则有△AOC ≌△________.9.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上________块,其理由是__________. 10.如图,把两根钢条,的中点连在一起,可以做成一个测的长量工件内槽宽的工具(工人把这种工具叫卡钳)只要量出度,就可以知道工件的内径是否符合标准,你能简要说出工人这ABC ADE △≌△BC DA F DE G 105ACB AED ∠=∠=15CAD ∠=30B D ∠=∠=1∠AB BD ⊥B ED BD ⊥D AB CD =BC DE =ACE ∠AF BE =A B ∠=∠AC BD =≌F ∠=AA 'BB 'O A B ''AB A BC OD (第4题)A F CB DG E 1 (第5题)AEC (第6题)CEF(第7题)ACODBB A1 2(第8题) (第9题)样测量的道理吗?.二、选择题(每题3分,共24分)11.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为()A.①②③④B.①③④C.①②④D.②③④12.如果是中边上一点,并且,则是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形13.一个正方形的侧面展开图有()个全等的正方形.A.2个 B.3个 C.4个 D.6个14.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有()A.1个 B.2个C.3个 D.4个15.如图,在和中,已知,,根据(SAS)判定,还需的条件是()A.B.C.D.以上三个均可以16.下面各条件中,能使△ABC≌△DEF的条件的是()A.AB=DE,∠A=∠D,BC=EFB.AB=BC,∠B=∠E,DE=EFC.AB=EF,∠A=∠D,AC=DFD.BC=EF,∠C=∠F,AC=DF17.如图,相交于点,,.下列结论正确的是()A.. B. C. D.18.如图,已知,,.下列结论不正确的有().A. B. C.AB=BC D.三、解答题(共46分)19.(7分)找出下列图形中的全等图形.D ABC△BC ADB ADC△≌△ABC△ABC△DEF△AB DE=BC EF=ABC DEF△≌△A D∠=∠B E∠=∠C F∠=∠AD BC,O OA OD=OB OC=AOB DOC△≌△ABO DOC△≌△A C∠=∠B D∠=∠AB AC=AD AE=BAC DAE∠=∠BAD CAE∠=∠ABD ACE△≌△BD CE=(第15题)(第17题)(第18题)(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)20.(7分)如图,AB=DC,AC=DB,求证AB∥CD.21.(8分)如图,已知AB∥DC,AD∥BC.证明:(1)AB=CD;(2)AD=BC.D CBA22.(8分)如图,点在一条直线上,△△你能得出哪些结论?(请写出三个以上的结论)23.(8分)如图,点分别在上,且,.求证:.24.(8分)如右图,已知DE⊥AC,BF⊥AC,垂足分别是E、F,AE=CF,DC∥AB,(1)试证明:DE=B F;(2)连接DF、BE,猜想DF与BE的关系?并证明你的猜想的正确性.【同步练习§12.1】一、填空题(每题3分,共30分)1.到一个角的两边距离相等的点都在_________.2.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,则M到OB的距离为_________.A B C D,,,ABF≌DCE,D E,AB AC,AD AE=BDC CEB∠=∠BD CE=DFCBAE④①② ③ (第14题)3.如图,∠AOB =60°,CD ⊥OA 于D ,CE ⊥OB 于E ,且CD =CE ,则∠DOC =_________.4.如图,在△ABC 中,∠C =90°,AD 是角平分线,DE ⊥AB 于E ,且DE =3 cm ,BD =5 cm ,则BC =_________ cm . 5.如图,已知AB 、CD 相交于点E ,过E 作∠AEC 及∠AED 的平分线PQ 与MN ,则直线MN 与PQ 的关系是_________. 6.三角形内一点到三角形的三边的距离相等,则这个点是三角形_________的交点. 7.△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,且BD :CD =3:2,BC =15cm ,则点D 到AB 的距离是__________. 8.角平分线的性质定理:角平分线上的点_____________________________. 9.(1)如图,已知∠1 =∠2,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则DE ____DF .(2)已知DE ⊥AB ,DF ⊥AC ,垂足分别 为E 、F ,且DE = DF ,则∠1_____∠2.10.直角三角形两锐角的平分线所夹的钝角为_______度.二、选择题(每题3分,共24分)11.如图,OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D .下列结论中错误的是( )A .PC = PDB .OC = OD C .∠CPO = ∠DPO D .OC = PC12.如图,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC 的平分线,DE ⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( )A .10cmB .8cmC .6cmD .9cm13.到三角形三条边的距离都相等的点是这个三角形的( )A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点 14. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处 D.4处 15.给出下列结论,正确的有( )①到角两边距离相等的点,在这个角的平分线上;②角的平分线与 三角形平分线都是射线;③任何一个命题都有逆命题;④假命题的 (第3题) (第4题) (第5题) 21A BCDEF(第9题)A BC DO P(第11题)ED CB A (第12题)逆命题一定是假命题A.1个B.2个C.3个D.4个16.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD∶CD=9∶7,则D到AB的距离为()A.18 B.16 C.14 D.1217.两个三角形有两个角对应相等,正确说法是()A.两个三角形全等B.两个三角形一定不全等C.如果还有一角相等,两三角形就全等D.如果一对等角的角平分线相等,两三角形全等18.如图,OB、OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式为()A.2α-βB.α-βC.α+βD.2α三、解答题(共46分)19.(7分)如图,已知OE、OD分别平分∠AOB和∠BOC,若∠AOB=90°,∠EOD=70°,求∠BOC的度数.20.(7分)已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留画图痕迹)(第18题)21.(8分)如图,点D 、B 分别在∠A 的两边上,C 是∠A 内一点,AB = AD ,BC = CD ,CE ⊥AD 于E ,CF ⊥AF 于F .求证:CE = CF22.(8分)已知:如图,在△ABC 中,∠A =90°,AB = AC ,BD 平分∠ABC .求证:BC = AB + AD23.(8分)如图,PB 和PC 是△ABC 的两条外角平分线. ①求证:∠BPC =90°-∠BAC . ②根据第①问的结论猜想:三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形?12F A B EC D D AC PC B AD E24.(8分)如图,BP是△ABC的外角平分线,点P在∠BAC的角平分线上.求证:CP是△ABC的外角平分线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二单元全等三角形
本单元的学习目标
①重点:全等三角形的性质;三角形全等的判定;角平分线的性质及应用
②难点:三角形全等的判断方法及应用;角平分线的性质及应用
在中考中的重要性:
①中考热点,初中数学中的重点内容
②考察内容多样化,有的独立考三角形全等,有的考全等三角形结合其他知识
点综合,有的探究三角形全等条件或结论的开放性题目
③题型以选择题、填空题、解答题为主
【知识归纳】
1.全等三角形的基本概念:
(1)全等图形的定义:能够完全重合的两个图形叫做全等图形。

(2)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

重合的顶点叫做对应顶点。

重合的边叫做对应边。

重合的角叫做对应角。

(3)全等三角形的表示方法:△ABC≌△A’B’C’(如图1)
2.全等三角形的性质:
(1)全等三角形的对应边相等
(2)全等三角形的对应角相等
3.全等三角形的判定方法
(1)三边相等(SSS);
(2)两边和它们的夹角相等(SAS);
(3)两角和其中一角的对应边相等(AAS);
(4)两角和它们的夹边相等(ASA);
(5)斜边和直角边相等的两直角三角形(HL).(该判定只适合直角三角形)
注意:没有“AAA”和“SSA”的判定方法,这是因为“三角对应相等的两个三角形”和“两边及其中一边的对角对应相等的两个三角形”未必全等。

如图2,△ABC和△ADE中,∠A=∠A,∠1=∠3,∠2=∠4,即三个角对应相等,但它们只是形状相同而大小并不相等,故它们不全等;如图3,△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,即两边及其中一边的对角对应相等,但它们并不全等。

4.角平分线
的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等。

5.角平分线推论:角的内部到角的两边距离相等的点在角的平分线上。

判定三角形全等常用思路
三角形形状题目中已给出的已知或
隐藏条件可选择的判定
方法
需在题目中寻找未给出的
条件
两边对应全等(SS) SS S或S A S 可证第三边对应相等或图2 图3
A′
(3) 角边角(ASA)
Θ∠B=∠B′ ____=_____ ∠C=∠C′
∴△ABC≌△A′B′C′
B ′ C′
(4) 角角边(AAS)
Θ∠A=∠A′∠C=∠C′ _______=_____
∴△ABC≌△A′B′C′
2、直角三角形全等的判定: A A′
斜边直角边定理(HL)
ΘAB=AB _____=_____
∴Rt△ABC≌Rt△A′B′C′
B C B′ C′
二、全等三角形的性质
1、全等三角形的对应角_____
2、全等三角形的对应边、对应中线、对应高、对应角平分线_______
注意:
1、斜边、直角边公理(HL)只能用于证明直角三角形的全等,对于其它三角形不适用。

2、SSS、SAS、ASA、AAS适用于任何三角形,包括直角三角形。

判断下列各组里的两个图形是否全等:
1、三角形一边上的中线把这个三角形分成的两个三角形()
①△ACE≌△DCB;②CM=CN;③AC=DN,其中正确结论的个数是()
A. 3个
B. 2个
C. 1个
D. 0个
6、如上图, ∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,
则点D到AB的距离为( )
A. 5cm
B. 3cm
C. 2cm
D. 不能确定
7、如上图,△ABC 中,∠C = 90°,AC = BC ,
AD 是∠BAC 的平分线,DE⊥AB 于E ,若AC = 10cm , 则△DBE 的周长等于( ) A .10cm B .8cm C .6cm D .9cm
8、如图所示,表示三条相互交叉的公路,现要建一个货物中转站, 要求它到三条公路的距离相等,则可供选择的地址有 A.1处??B.2处??C.3处??D.4处
二、填空题
1、在△ABC 和A B C '''△中,AB A B ''=,A A '=∠∠,要使ABC A B C '''△≌△,则需增加的条件为______.(写一个即可)
2、已知ABC DEF △≌△,5cm BC EF ==,△ABC 的面积是2
20cm ,那么△DEF 中EF 边上的高是______cm .
3、如图1,在△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE ⊥AB 于E,且AB=5cm,则△DEB 的周长为 ________
图1 图2 4、如图2,在ΔABC 中,∠C=90°∠ABC 的平分线BD 交AC 于点D,若BD=10厘米,BC=8厘米,DC=6厘米,
则点D 到直线AB 的距离是__________厘米。

5、已知:如图3,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则∠AEB =________度. 三、解答题
1、如图,已知△ABD ≌△ACE ,AB=AC ,写出这对全等三角形的对应边和对应角。

2.如图,已知AB=AC ,AD=AE ,求证:BD=CE
3.已知:如图,OP 是AOC ∠和BOD ∠的平分线,OA OC OB OD ==,。

求证:(1)△OAB ≌△OCD ;(2)AB CD =。

4、如图,在ABC △中,40AB AC BAC =∠=,°,分别以AB AC ,为边作两个等腰直角三角形和ACE ,使90BAD CAE ∠=∠=°. (1)求DBC ∠的度数;(2)求证:BD CE =.
全等三角形的判定综合练习
1、已知:如图,AB ∥CD ,DF 交AC 于E ,交AB 于F ,DE=EF.求证:
AE=EC.
2、如图5,AC=AE ,∠C=∠E ,∠1=∠2,求证△ABC ≌△ADE .
3、如图,AC ⊥CB,DB ⊥CB,AB=DC,求证∠ABD=∠ACD.
4、如图,C 是AB 的中点,AD=CE,CD=BE,求证△ACD ≌△CBE.
第六题图
E
D
C
B
A
第七题图
O
A B C D E
图3
④ ①② ③
第八题
A
5、已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE ② DF⊥BC
C E。

相关文档
最新文档