(完整版)职高数学基础模块上册1-3章测试题

合集下载

最新职高数学基础模块上册1-3章测试题(1)

最新职高数学基础模块上册1-3章测试题(1)

集合测试题一选择题:1.给出四个结论:①{1,2,3,1}是由4个元素组成的集合②集合{1}表示仅由一个“1”组成的集合③{2,4,6}与{6,4,2}是两个不同的集合④集合{大于3的无理数}是一个有限集其中正确的是( ); A.只有③④B.只有②③④C.只有①D.只有②2.下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M={0,1,2,3},N={0,3,4},M)C(NIA.{2,4}B.{1,2}C.{0,1}D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I)(A.{b }B.{a,d }C.{a,b,d }D.{b,c,e }5.A ={0,3} ,B={0,3,4},C={1,2,3}则A CB )(();A.{0,1,2,3,4}B.C.{0,3}D.{0}6.设集合M ={-2,0,2},N ={0},则( ); A. N B.M N C.M N D.N M7.设集合 0),( xy y x A , ,00),( y x y x B 且则正确的是( ); A.B B A B. B AC.B AD.BA 8.设集合 ,52,41 x x N x x M 则B AA. 51 x xB. 42 x xC. 42 x xD. 4,3,29.设集合 ,6,4 x x N x x M 则 N M ; A.R B. 64 x x C. D.64 x x10.下列命题中的真命题共有( ); ① x =2是022x x 的充分条件 ② x≠2是022x x的必要条件③y x 是x=y 的必要条件④ x =1且y =2是0)2(12 y x 的充要条件 A.1个 B.2个 C.3个 D.4个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 1.用列举法表示集合42x Z x ;2.{m,n }的真子集共3个,它们是 ;3.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;4,13),(,3),( y x y x B y x y x A 那么B A ;5.042x是x +2=0的 条件.三 解答题:已知集合A= B A B A x x B x x ,,71,40求 .2.已知全集I=R ,集合 A C x x A I 求,31 .3.设全集I=,2,3,1,3,4,322a aM C M a I求a 值.《不等式》测试题 一.填空题: (32%)1. 设2x -3 <7,则 x < ;2. 5->0且+1≥0 解集的区间表示为___ ______ ;3. | x3 |>1解集的区间表示为________________;4.已知集合A = [2,4],集合B = (-3,3] ,则A ∩ B = ,A ∪B = .5.不等式x 2>2 x 的解集为_______ _____;不等式2x 2-3x -2<0的解集为________________. 6.若代数式122 x x 有意义,则x 的取值集合是________________ 二.选择题:(20%)7.设、、均为实数,且<,下列结论正确的是( )。

职高数学基础模块(第1、2章)复习资料

职高数学基础模块(第1、2章)复习资料

职高一年级《数学》(基础模块)上册第一章:集合一、填空题(每空2分)1、元素-3与集合N之间的关系可以表示为。

2、自然数集N与整数集Z之间的关系可以表示为。

3、用列举法表示小于5的自然数组成的集合:。

4、用列举法表示方程3x-4=2的解集为。

5、用描述法表示不等式2x-6<0的解集为。

6、集合N={a,b}的子集有个,真子集有。

7、已知集合A={1,2,3,4},集合B={1,3,5,7},则,。

8、已知集合A={1,3,5},集合B={2,4,6},则,。

9、已知集合A={x|-2<x<2},集合{x|0<x<4},则,。

10、已知集合U={1,2,3,4,5,6},集合A={1,2,5},则= 。

11、已知集合A={(x,y)|x+y=2},B={(x,y)|x-y=0},则。

二、选择题(每题3分)1、设M={a},则下列写法正确的是()A.a=MB.C.D.2、设全集为R,集合A=,则=()3、已知A=[-1,4),集合B=(0,5],则()4、已知A={x|x<2},则下列写法正确的是()5、设全集U={0,1,2,3,4,5,6},集合A={3,4,5,6},则()A.{0,1,2,6}B.C.{3,4,5}D.{0,1,2}6、已知集合A={1,2,3},集合B={1,3,5,7},则()A.{1,3,5}B.{1,2,3}C.{1,3}D.7、已知集合A={x|0<x<2},集合B={x|1<x<3},则A.{x|0<x<3}B.{x|0<x≤3}C.{x|1<x<2}D.{x|1<x≤2}8、已知集合A={1,2,3},集合B={4,5,6,7},则A.{2,3}B.{1,2,3}C.{1,2,3,4,5,6,7}D.三、解答题(每题5分)1、已知集合A={1,2,3,4,5},集合B={4,5,6,7,8,9},求A B和A B。

(完整版)职高数学基础模块上册1-3章测试题

(完整版)职高数学基础模块上册1-3章测试题

集合测试题一 选择题:本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。

1.给出 四个结论:①{1,2,3,1}是由4个元素组成的集合 ② 集合{1}表示仅由一个“1”组成的集合 ③{2,4,6}与{6,4,2}是两个不同的集合 ④ 集合{大于3的无理数}是一个有限集 其中正确的是 ( );A.只有③④B.只有②③④C.只有①D.只有② 2.下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( ); A.{b } B.{a,d } C.{a,b,d } D.{b,c,e }5.A ={0,3} ,B={0,3,4},C={1,2,3}则=A C B )(( ); A.{0,1,2,3,4} B.φ C.{0,3} D.{0} 6.设集合M ={-2,0,2},N ={0},则( ); A.φ=N B.M N ∈ C.M N ⊂ D.N M ⊂7.设集合{}0),(>=xy y x A ,{},00),(>>=y x y x B 且则正确的是( );A.B B A =B.φ=B AC.B A ⊃D.B A ⊂ 8.设集合{}{},52,41<≤=≤<=x x N x x M 则=B A ( );A.{}51<<x xB.{}42≤≤x xC.{}42<<x xD.{}4,3,2 9.设集合{}{},6,4<=-≥=x x N x x M 则=N M ( ); A.R B.{}64<≤-x x C.φ D.{}64<<-x x 10.设集合{}{}==--=≥=B A x x x B x x A 则,02,22( ); A.φ B.A C.{}1- A D.B11.下列命题中的真命题共有( ); ① x =2是022=--x x 的充分条件 ② x≠2是022≠--x x 的必要条件 ③y x =是x=y 的必要条件④ x =1且y =2是0)2(12=-+-y x 的充要条件A.1个B.2个C.3个D.4个 12.设{}{}共有则满足条件的集合M M ,4,3,2,12,1⊆⊂( ).A.1个B.2个C.3个D.4个 二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上.1.用列举法表示集合{}=<<-∈42x Z x ;2.用描述法表示集合{}=10,8,6,4,2 ;3.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A ;6.042=-x 是x +2=0的 条件.三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤.1.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.2.已知全集I=R ,集合{}A C x x A I 求,31<≤-=.3.设全集I={}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.4.设集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且求实数a 组成的集合M.《不等式》测试题一.填空题: (32%)1. 设2x -3 <7,则 x < ;2. 5->0且+1≥0 解集的区间表示为___ ______ ;3. | x3 |>1解集的区间表示为________________;4.已知集合A = [2,4],集合B = (-3,3] ,则A ∩ B = ,A ∪B = .5.不等式x 2>2 x 的解集为_______ _____;不等式2x 2 -3x -2<0的解集为________________.6.若代数式122--x x 有意义,则x 的取值集合是________________ 二.选择题:(20%) 7.设、、均为实数,且<,下列结论正确的是( )。

中职数学基础模块上册第三章函数单元练习卷含参考答案

中职数学基础模块上册第三章函数单元练习卷含参考答案

中职数学基础模块上册第三章函数单元练习卷含参考答案一、单项选择题1.函数21-=x y 的定义域是( ) A .{2<x x } B .{2>x x } C .}2{-≠x x D. }2{≠x x2.已知函数23)(-=x x f ,则=)0(f ( )A .-2B .-1C . 1 D. 23.函数1)(2-=x x f 的单调递减区间是( )A . [-1,+∞)B .[0,十∞) C.(一∞,0] D .(一∞,-1] 4.已知函数)(x f y =的图象如下图所示,则函数的单调递减区间 为( )A .[-3,-1]B .[-1,2]C . [-3,1] D.[2,3]5.已知函数)(x f y =是[-2,3]上的增函数,则下列关系正确的是( )A .)1(1f f =-)( B .)1(1f f -=-)( C .)1(1f f >-)( D. )1(1f f <-)( 6.点P(3,5)关于y 轴的对称点坐标是( )A .(-3,5) B.(5,3) C .( -3, -5) D .(-3,2)7.下列函数中,图象关于y 轴对称的是( )A .xy 1= B .x y = C .2x y = D. 3x y =8.若函数)(x f y =在R 上是奇函数,且)3(f =2,则)3(-f =( ).A. 2 B .-2 C .0 D .39.设点(1,2)为偶函数)(x f y =图象上的点,则下列各点必在函数图象上的是( ).A .(-1,-2)B .(1,-2)C .(-1,2) D. (-2,-1)10.分段函数32,12,2{)(3<≤-+-<=x x x x x f 的定义域是( ) A .),(∞+∞- B .),(2-∞- C .)3,2[- D. ),(3∞-11.分段函数0,530,2{)(≥-<+=x x x x x f ,则)2(-f =( ) A .-5 B .-11 C .0 D. 212.下列函数中在定义区间上既是奇函数又是增函数的是( )A .x y 2=B .x y 1=C .2x y = D. x y 31-=二、填空题13.函数3)(-=x x f 的定义域是14.点(2,-1)关于坐标原点的对称点是15.已知一次函数b x x f +=)(的图象过点A(l ,2),则b = 。

中职数学基础模块(上册)基础练习-第三章函数

中职数学基础模块(上册)基础练习-第三章函数

第三章 函数第三章 第一课时 函数的概念【基础知识·一定要看】1.函数的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有__________的数 f x 和它对应,那么就称:f A B 为从集合A 到集合B 的一个函数.记作: y f x ,x A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合 {|}f x x A 叫做函数的值域. 2.求函数定义域的常用方法: (1)分母不为零;(2)偶次根式,则被开方数大于或等于零; (3)0的0次没有意义;(4)对数的真数大于零;(还没学)3.相同函数:个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.4.分段函数:如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数. 一、选择题1.在下面四个图中,可表示函数 y f x 的图象的可能是( )A. B. C. D.2.函数1()f x x的定义域是( ) A.[2,0)(0,)B.[2,) C.RD.(,0)(0,)3.下列每组中的两个函数是同一函数的是( )A.1y 与0y x ; B.y y x ;C.y x 与2y;D.y x 与y4. 23,12,1x x f x x x ,则(2)f 等于( )A.-2 B.0C.1D.65.函数 2112f x x x, 0,4x 的值域( )A. 0,4 B. 1,5 C. 1,4D.1,526.已知 2146f x x ,则 5f 的值为( ) A.26B.20C.18D.167.已知函数 2,32,3x x f x x x .则 3f f ( )A.1 B.4 C.9 D.16二、填空题8.函数()1f x 的定义域为 . 9.若 234f x x Bx ,且 112f ,则B = . 10.已知函数()y f x 的表达式4()1f x x,若()2f a ,则实数 a . 11.二次函数 22f x x x , 1,1x ,则函数 f x 在此区间上的值域为 . 三、解答题12.已知函数 1f x ax x过点(1,5),求a 的值.第三章 第二课时 函数的表示方法【基础知识·一定要看】1.函数的三种表示方法:①待定系数法:若已知f (x )的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.②换元法:设t =g (x ),解出x ,代入f (g (x )),求f (t )的解析式即可. 3.常见的几种基本初等函数①正比例函数(0)y kx k ②一次函数(0)y kx b k ③反比例函数(0)ky k x④二次函数2(0)y ax bx c a 一、选择题1.已知(21)44f x x ,则(1)f 的值为( ) A.2B.4C.6D.82.函数 y f x 的图象如图所示,则 9f ( ) A.5 B.4C.3D.23.已知 212f x x x ,则 f x ( ) A.2xB.21xC.21xD.22x4.已知 f x 是反比例函数,且(3)1f ,则 f x 的解析式为( ) A. 3f x xB. 3f x xC. 3f x xD. 3f x x5.若函数 f x 和 g x 分别由下表给出: 则 1g f ( ) A.4 B.3C.2D.16.已知 32f x x ,则 21f x 等于( ) A.32xB.61x C.21xD.65x7.已知()f x 是一次函数,且(1)35f x x ,则()f x 的解析式为( ) A.()32f x xB.()32f x xC.()23f x xD.()23f x x二、填空题8.已知 22143f x x ,则 f x .9.已知函数 f x 对于任意的x 都有 212f x x f x ,则 f x . 10.已知等腰三角形的周长为18,底边长为x ,腰长为y ,则y 关于x 的函数关系式为 . 三、解答题11.已知函数 224f x x x . (1)求 0f ; (2)求 f x 的解析式.第三章 第三课时 函数的性质【基础知识·一定要看】1.函数的单调性 ①单调函数的定义 自左向右看图象是上升的自左向右看图象是下降的②证明函数单调性的步骤第一步:取值.设12x x ,是()f x 定义域内一个区间上的任意两个自变量,且12x x ; 第二步:变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形; 第三步:定号.判断差的正负或商与1的大小关系; 第四步:得出结论. 2.函数的奇偶性 ①函数奇偶性的概念偶函数:若对于定义域内的任意一个x ,都有 f x f x ,那么 f x 称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有 f x f x ,那么 f x 称为奇函数. ②奇偶函数的图象与性质偶函数:函数()f x 是偶函数 函数()f x 的图象关于y 轴对称; 奇函数:函数()f x 是奇函数 函数()f x 的图象关于原点中心对称;若奇函数()y f x 在0x 处有意义,则有(0)0f .③用定义判断函数奇偶性的步骤第一步:求函数()f x 的定义域,判断函数的定义域是否_______________,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步;第二步:求()f x ,若 f x f x ,则()f x 是奇函数;若()f x =()f x ,则()f x 是偶函数;若()()f x f x ,则()f x 既不是奇函数,也不是偶函数;若()()f x f x 且 f x f x ,则()f x 既是奇函数,又是偶函数.1.若函数 1y a x b ,x R 在其定义域上是增函数,则( ) A.1aB.1aC.0bD.0b2.函数 f x 在R 上是减函数,则有( ) A. 25f fB. 25f fC. 25f fD. 25f f3.下列函数中,既是偶函数又在 0, 上单调递增的函数是( ) A.y xB.1y xC.21y xD.1y x4.若偶函数 f x 在 ,1 上是减函数,则( ) A. 2.513f f f B. 1 2.53f f f C. 3 2.51f f fD. 31 2.5f f f5.函数 f x 是定义在 0, 上的增函数,则满足 1213f x f的x 的取值范围是( ) A.12,33B.12,33C.12,23D.12,236.函数22y x x 单调减区间是( ) A.1,2B. 1,C.1,2D. ,【填空】7.已知 f x 是偶函数, 12f ,则 11f f .8.函数()y f x 是定义在R 上的增函数,且 29f m f m ,则实数m 的取值范围是 .9.函数()y f x 是定义在R 上的奇函数,当0x 时,3()f x x x ,则(2)f .10.已知 y f x 在定义域 0,1上是减函数,且 121f a f a ,则实数a 的取值范围 .11.已知函数2()()2f x x m .(1)若函数()f x 的图象过点(2,2),求函数y ()f x 的单调递增区间; (2)若函数()f x 是偶函数,求m 值.12.已知函数 1f x x x(1)判断 f x 的奇偶性并说明理由; (2)判断 f x 在 0,1上的单调性并加以证明.第三章 第四课时 函数的应用一、选择题1.据调查,某存车处(只存放自行车和电动车)在某天的存车量为400辆次,其中电动车存车费是每辆一次2元,自行车存车费是每辆一次1元.若该天自行车存车量为x 辆次,存车总收入为y 元,则y 关于x 的函数关系式是( ) A. 4000400y x x B. 8000400y x x C. 4000400y x xD. 8000400y x x2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (千帕)是气球体积V (立方米)的反比例函数,其图像如图所示,则这个函数的解析式为( )A.69P VB.96P VC.69P VD.96P V3.某物体一天中的温度T 是时间t 的函数:3()360T t t t ,时间的单位是小时,温度的单位是C ,0 t 表示中午12时,其后取值为正,其前取值为负,则上午8时的温度为( ) A.18CB.8CC.0CD.4C二、填空题4.若某一品种的练习册每本2.5元,则购买x 本的费用y 与x 的函数关系是 . 5.某社区超市的某种商品的日利润y (单位:元)与该商品的当日售价x (单位:元)之间的关系为21221025x y x ,那么该商品的日利润最大时,当日售价为 元.三、解答题6.某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:(1)经过对上表中数据的探究,发现这种读物的投入成本 (元)是印数 (册)的一次函数,求这个一次函数的解析式(不要求写出的取值范围); (2)如果出版社投入成本48000元,那么能印该读物多少册?x x7.制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃),从加热开始计算的时间为 min x .据了解,设该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5min 后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?。

(完整word版)中等职业学校基础模块数学单元测试卷

(完整word版)中等职业学校基础模块数学单元测试卷

中等职业学校基础模块数学单元测试卷第一章单元测试一、选择题:(7*5分=35分)1.下列元素中属于集合{x|x=2k,k∈N}的是( )。

A.—2 B.3 C.D.102.下列正确的是().A.∈{0} B.{0}C.0D.{0}=3。

集合A={x|1〈x〈9},B={2,3,4},那么A与B的关系是().A.B A B.B=A C.A B D.A B4.设全集U={a,b,c,d,e,f},A={a,c,e},那么C A=().UA.{a,c,e} B.{b,d,f}C.∅D.{a,b,c,d,e,f}5.设A={x|x〉1},B={ x x≥5},那么A∪B=( ).A.{x|x〉5} B.{x| x>1}C.{ x|x≥5} D.{x| x≥1} 6.设p是q的充分不必要条件,q是r的充要条件,则p是r的( )。

A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7下列对象不能组成集合的是().A.不等式x+2〉0的解的全体B.本班数学成绩较好的同学C.直线y=2x-1上所有的点D.不小于0的所有偶数二、填空题:(7*5分=35分)7。

p:a是整数;q:a是自然数。

则p是q的。

8.已知U=R,A={x x>1} ,则C A= 。

U9。

{x|x〉1}{x|x〉2};{0}.(,,,,=)10。

{3,5} {5};2{x| x<1}。

(,,,,=)11。

小于5的自然数组成的集合用列举法表示为.1Q;(8)3。

14 Q.12。

313。

方程x+1=0的解集用列举法表示为.三、解答题:(3*10分=30分)14。

用列举法表示下列集合:(1)绝对值小于3的所有整数组成的集合;(2){x | x 2-2x —3=0}.15. 写出集合{1,2,-1}的所有子集,并指出其中哪些是它的真子集.16。

已知U ={0,1,2,3,4,5,6},A ={1,3,5},B ={3,4,5,6},求A ∩B ,A ∪B ,U C A ,U C (A ∩B ).第二章单元测试一、选择题:(6*5分=30分)1。

中职数学基础模块上、下册各章节单元练习题

中职数学基础模块上、下册各章节单元练习题

中职数学基础模块上、下册各章节单元练习题1.下列元素中属于集合{x|x=2k,k∈N}的是()。

A。

2.B。

3.C。

π。

D。

102.下列正确的是().A。

-2.B。

3.C。

π。

D。

10答案:B3.集合A={x|1<x<9},B={2,3,4},那么A与B的关系是().A。

A∪B。

B。

B⊆A。

C。

A∩B。

D。

A⊆B答案:B4.设全集U={a,b,c,d,e,f},A={a,c,e},那么C_U(A)=().A。

{a,c,e}。

B。

{b,d,f}。

C。

∅。

D。

{a,b,c,d,e,f}答案:B5.设A={x|x>1},B={x|x²≥5},那么A∪B=().A。

{x|x>5}。

B。

{x|x>1}。

C。

{x|x≥5}。

D。

{x|x≥1}答案:C6.设p是q的充分不必要条件,q是r的充要条件,则p 是r的()。

A。

充分不必要条件。

B。

必要不充分条件。

C。

充要条件。

D。

既不充分也不必要条件答案:B7.下列对象不能组成集合的是().A。

不等式x+2>0的解的全体。

B。

本班数学成绩较好的同学。

C。

直线y=2x-1上所有的点。

D。

不小于的所有偶数答案:D二、填空题:(7*5分=35分)9.已知U=R,A={x|x>1},则C_U(A)=(-∞。

1]。

10.{x|x>1}∪{x|x>2}={x|x>1},{x|x>1}∩{x|x>2}=∅,{0}∈{x|x>1}。

11.{3.5}∪{5}={3.5},2∈{x|x<1},{3.5}∩{5}={5},{x|x<1}∩{3.5}=∅。

12.{1.2.3.4}。

13.1/24.14.{-1}。

三、解答题:(3*10分=30分)15.1) {-2.-1.0.1.2}2) {-1.3}16.真子集有:{1},{2},{-1},{1.2},{1.-1},{2.-1}。

17.A∩B={3.5},A∪B={1.3.4.5.6},C_U(A)={0.2.4.6},C_U(A∩B)={0.1.2.4.6}。

(完整版)职高(中职)数学(基础模块)上册题库

(完整版)职高(中职)数学(基础模块)上册题库

数学期末试题一 选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个 选项中只有一项是符合题目要求,把正确选项写在表格中。

题号 1 2 3 4 5 6 答案 题号 7 8 9 10 11 12 答案1.给出 四个结论:①{1,2,3,1}是由4个元素组成的集合 ② 集合{1}表示仅由一个“1”组成的集合 ③{2,4,6}与{6,4,2}是两个不同的集合 ④ 集合{大于3的无理数}是一个有限集 其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有② 2.,M ={0,1,2,3} ,N ={0,3,4},N M =( );A.{0}B.{0,3}C.{0,1,3}D.{0,1,2,3} 3.I ={a,b,c,d,e } ,N={b,f },则N I =( );A.{a,b,c,d,e }B.{a,b,c,d }C.{a,b,c,e }D.{a,b,c,d,e,f } 4.A ={0,3} ,B={0,3,4},C={1,2,3}则=A C B )(( ); A.{0,1,2,3,4} B.φ C.{0,3} D.{0} 5.设集合M ={-2,0,2},N ={0},则( );A.φ=NB.M N ∈C.M N ⊂D.N M ⊂ 6.设、、均为实数,且<,下列结论正确的是( )。

A.<B.<C.-<-D.<7.设、、均为实数,且<,下列结论正确的是( )。

A.<B.<C.-<-D.<8.下列不等式中,解集是空集的是( )。

A.x 2- 3 x –4 >0 B. x 2- 3 x + 4≥ 0 C. x 2- 3 x + 4<0 D. x 2- 4x + 4≥0 9.一元二次方程x 2– mx + 4 = 0 有实数解的条件是m ∈( )A.(-4,4)B. [-4,4]C.(-∞,-4)∪(4, +∞)D. (-∞,-4]∪[4, +∞)10.设a >>0且>>0,则下列结论不正确的是( )A.+>+B.->-C.->-D. >11.函数11y x x=+的定义域为( ) A.[]1,+∞ B.()1,-+∞ C.[1,)-+∞ D.[1,0)(0,)-+∞12.下列各函数中,既是偶函数,又是区间(0, +∞)内的增函数的是( ) A.y x = B.3y x = C.22y x x =+ D.2y x =-二 填空题:本大题共6小题,每空5分,共30分. 把答案填在题中横线上.1.{m,n }的真子集共3个,它们是 ;2.集合{}2x x ≥-用区间表示为 .3. 如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e } 那么集合A =4.042=-x 是x +2=0的 条件. 5.设2x -3 <7,则 x <6.已知函数()22f x x x =+,则1(2)()2f f ⋅=三 解答题:(60分)1.已知集合A={}4,3,2,B={}5,4,3,2,1,求A ∩B ,A ∪B2.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.3.设全集I={}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.4.()1427+≤-x x5.比较大小:2x 2-7x + 2与x 2-5x6.解不等式组 2 x - 1 ≥3 x - 4≤ 77.设函数()227,f x x =-求()()()()1,5,,f f f a f x h -+的值8.求函数2()43f x x x =-+的最大或最小值8.设集合{}{},52,41<≤=≤<=x x N x x M 则=B A ( );A.{}51<<x xB.{}42≤≤x xC.{}42<<x x D.{}4,3,2 9.设集合{}{},6,4<=-≥=x x N x x M 则=N M ( );A.RB.{}64<≤-x xC.φD.{}64<<-x x 10.设集合{}{}==--=≥=B A x x x B x x A 则,02,22( ); A.φ B.A C.{}1- A D.B11.下列命题中的真命题共有( ); ① x =2是022=--x x 的充分条件 ② x≠2是022≠--x x 的必要条件 ③y x =是x=y 的必要条件④ x =1且y =2是0)2(12=-+-y x 的充要条件A.1个B.2个C.3个D.4个12.设{}{}共有则满足条件的集合M M ,4,3,2,12,1⊆⊂( ). A.1个 B.2个 C.3个 D.4个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 1.用列举法表示集合{}=<<-∈42x Z x ; 2.用描述法表示集合{}=10,8,6,4,2 ; 3.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A ; 6.042=-x 是x +2=0的 条件.三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤.1.已知集合A={}4,3,2,B={}5,4,3,2,1,求A ∩B ,A ∪B2.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.3.已知全集I=R ,集合{}A C x x A I 求,31<≤-=.3.设全集I={}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.4.设集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且求实数a 组成的集合M.高职班数学 《不等式》测试题班级 座号 姓名 分数一.填空题: (32%)1. 设2x -3 <7,则 x < ;2. 5->0且+1≥0 解集的区间表示为___ ______ ;3. | x3|>1解集的区间表示为________________;4.已知集合A = [2,4],集合B = (-3,3] ,则A ∩ B = ,A ∪B = .5.不等式x 2>2 x 的解集为_______ _____;不等式2x 2-3x -2<0的解集为________________.6. 当X 时,代数式 错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合测试题
一 选择题:本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。

1.给出 四个结论:
①{1,2,3,1}是由4个元素组成的集合 ② 集合{1}表示仅由一个“1”组成的集合 ③{2,4,6}与{6,4,2}是两个不同的集合 ④ 集合{大于3的无理数}是一个有限集 其中正确的是 ( );
A.只有③④
B.只有②③④
C.只有①
D.只有② 2.下列对象能组成集合的是( );
A.最大的正数
B.最小的整数
C. 平方等于1的数
D.最接近1的数
3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}
4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( ); A.{b } B.{a,d } C.{a,b,d } D.{b,c,e }
5.A ={0,3} ,B={0,3,4},C={1,2,3}则=A C B )(( ); A.{0,1,2,3,4} B.φ C.{0,3} D.{0} 6.设集合M ={-2,0,2},N ={0},则( ); A.φ=N B.M N ∈ C.M N ⊂ D.N M ⊂
7.设集合{}0),(>=xy y x A ,{},00),(>>=y x y x B 且则正确的是( );
A.B B A =
B.φ=B A
C.B A ⊃
D.B A ⊂ 8.设集合{}{},52,41<≤=≤<=x x N x x M 则=B A ( );
A.{}51<<x x
B.{}42≤≤x x
C.{}42<<x x
D.{}4,3,2 9.设集合{}{},6,4<=-≥=x x N x x M 则=N M ( ); A.R B.{}64<≤-x x C.φ D.{}64<<-x x 10.设集合{}{}
==--=≥=B A x x x B x x A 则,02,22( ); A.φ B.A C.{}1- A D.B
11.下列命题中的真命题共有( ); ① x =2是022=--x x 的充分条件 ② x≠2是022≠--x x 的必要条件 ③y x =是x=y 的必要条件
④ x =1且y =2是0)2(12=-+-y x 的充要条件
A.1个
B.2个
C.3个
D.4个 12.设
{}{}共有
则满足条件的集合M M ,4,3,2,12,1⊆⊂( ).
A.1个
B.2个
C.3个
D.4个 二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上.
1.用列举法表示集合{}=<<-∈42x Z x ;
2.用描述法表示集合{}=10,8,6,4,2 ;
3.{m,n }的真子集共3个,它们是 ;
4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;
5
{}{},
13),(,3),(=+==-=y x y x B y x y x A 那么
=B A ;
6.042=-x 是x +2=0的 条件.
三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤.
1.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.
2.已知全集I=R ,集合{}A C x x A I 求,31<≤-=.
3.设全集I={
}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.
4.设集合{}
{},,02,0232A B A ax x B x x x A ==-==+-= 且求实数a 组成的集合M.
《不等式》测试题
一.填空题: (32%)
1. 设2x -3 <7,则 x < ;
2. 5-
>0且
+1≥0 解集的区间表示为___ ______ ;
3. | x
3 |>1解集的区间表示为________________;
4.已知集合A = [2,4],集合B = (-3,3] ,则A ∩ B = ,A ∪B = .
5.不等式x 2>2 x 的解集为_______ _____;不等式2x 2 -3x -2<0的解集为________________.
6.若代数式
122--x x 有意义,则x 的取值集合是
________________ 二.选择题:(20%) 7.设

、均为实数,且<
,下列结论正确的是( )。

(A)< (B)< (C)-<-
(D)

8.设a >>0且>>0,则下列结论不正确的是( )。

(A)+>+ (B)->-
(C)->- (D)>
9.下列不等式中,解集是空集的是( )。

(A)x 2 - 3 x–4 >0 (B) x 2 - 3 x + 4≥ 0
(C) x 2 - 3 x + 4<0 (D) x 2 - 4x + 4≥0
10.一元二次方程x2–mx + 4 = 0 有实数解的条件是m ∈()(A)(-4,4)(B)[-4,4]
(C)(-∞,-4)∪(4, +∞)
(D)(-∞,-4]∪[4, +∞)
三.解答题(48%) 11.比较大小:2x2 -7x + 2与x2-5x (8%)
12 .解不等式组(8%) 2 x - 1 ≥3
x - 4≤ 7
12.解下列不等式,并将结果用集合和区间两种形式表示:(20%)
(1) | 2 x – 3 |≥5 (2) - x 2 + 2 x –3 >0
13.某商品商品售价为10元时,销售量为1000件,每件价格每提高0.2元,会少卖出10件,如果要使销售收入不低于10000元,求这种图书的最高定价.(12%)
函数测试题
一、选择题(本大题共8小题,每题5分,共40分)
1.下列各组中的两个函数,表示的是同一个函数的是( )
A.y=x x 2与y=x
B. y=2x x 与y=x
1 C.y=|x|与y=x
D.y=2)(x 与y=x
2.函数y=x
x 1
1-
+的定义域为( ) A. (-1,0) (0, ∞+) B.(-1, ∞+) C. [-1, ∞+) D.[-1,0) (0, ∞+)
3.函数22--=x x y 的减区间是( )
A.(2, ∞+)
B.(∞-,-1)
C.( ∞-,
21) D.( 2
1
,∞+) 4.下列函数中,在(∞-,0)内为减函数的是( )
A.y=7x+2
B. y=x
2
-
C. 22+-=x y
D. 122-=x y 5.下列函数中为奇函数的是( ) A. 22+=x y B.x y = C.y=x x
1
- D.y=x+2 6.下列函数中为偶函数的是( )
A.y=x
B.y=x x +3
C.y=62+x
D.2x y -=(x ≥0)
7.函数f(x)=⎩⎨
⎧<≥+1
1
12
x x x ,则f(3),f(0)函数值分别为( )
A.1,1
B.5,1
C.5,2
D.1, 2
8.设f(x)=a ax x +-2,且f(2)=7,则常数a=( )
A.-3
B.3
C.7
D.9
二、填空题(本大题共6小题,每题5分,共30分)
1.设函数f(x)在(0,6)上单调递增,则f(1) f(2)(填”>”或”<”).。

2.点P(2,-3)关于原点的对称点1P 坐标为 ,关于y 轴的对称点2P 坐标为 。

3.设函数y=3x+6的定义域为[-10,10],则函数值域为 。

4.


f(x)=
x
x 232+-,则
f(x-1)= 。

5.设函数
y=
x x x --+-2211,则函数值域
为 。

6.已知函数f(x)是奇函数,而且f(-1)=6,则f(1)= 。

三、简答题(本大题共三小题,每小题10分,共30分)
1.设函数⎩⎨⎧≤->=010
)(2x x x x x f ,讨论以下问题:
(1)求f(1),f(-1),f(0)的值; (2)作出函数图像
2.设函数f(x)=232+-x ,讨论以下问题:
(1)求f(2)、f(0)、f(-2)的值; (2)判断此函数的奇偶性;
(3)证明函数在(0,∞+)内为减函数
3.某城市当供电不足时,供电部门规定,每月用户用电不超过200KW ·h 时,收费标准为0.5元/(KW ·h ),当用电超过200KW ·h 时,但不超过400KW ·h 时,超过部分按0.8元/(KW ·h )收费,当用电量超过400KW ·h 时,就停止供电。

写出每月电费y(元)和用电量x (KW ·h )(4000≤≤x )之间的函数解析式并求出f(150),f(300)。

.。

相关文档
最新文档