高三导数压轴题题型归纳

合集下载

高考数学导数压轴题7大题型的总结

高考数学导数压轴题7大题型的总结

高考数学导数压轴题7大题型总结
北京八中
高考数学导数压轴题7大题型总结
高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。

导数解答题是高考数学必考题目,今天就总结导数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题
01导数单调性、极值、最值的直接应用
02交点与根的分布
03不等式证明(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
04不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
05函数与导数性质的综合运用
06导数应用题
07导数结合三角函数
实用标准
文案大全。

(完整版)高三导数压轴题题型归纳

(完整版)高三导数压轴题题型归纳

导数压轴题题型1. 高考命题回顾例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷)(1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.(1)解 f (x )=e x -ln(x +m )⇒f ′(x )=e x -1x +m ⇒f ′(0)=e 0-10+m=0⇒m =1,定义域为{x |x >-1},f ′(x )=e x-1x +m=e x x +1-1x +1,显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1x +2(x >-2).h (x )=g ′(x )=e x -1x +2(x >-2)⇒h ′(x )=e x +1x +22>0,所以h (x )是增函数,h (x )=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (x )=g ′(x )=0的唯一实根在区间⎝⎛⎭⎫-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0⎝⎛⎭⎫-12<t <0, 所以,e t =1t +2⇒t +2=e -t ,当x ∈(-2,t )时,g ′(x )<g ′(t )=0,g (x )单调递减; 当x ∈(t ,+∞)时,g ′(x )>g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2t +2>0,当m ≤2时,有ln(x +m )≤ln(x +2),所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2121)0()1(')(x x f ef x f x +-=-(2012全国新课标) (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值。

高考导数压轴之题型归纳

高考导数压轴之题型归纳

专题01 导数起源于切线,曲线联系需熟练【题型综述】导数的几何意义:【注】曲线的切线的求法:若已知曲线过点P(x0,y0),求曲线过点P的切线,则需分点P(x0,y0)是切点和不是切点两种情况求解.(1)当点P(x0,y0)是切点时,切线方程为y−y0=f ′(x0)(x−x0);(2)当点P(x0,y0)不是切点时,可分以下几步完成:第一步:设出切点坐标P′(x1,f (x1));第二步:写出过P′(x1,f (x1))的切线方程为y−f (x1)=f ′ (x1)(x−x1);第三步:将点P的坐标(x0,y0)代入切线方程求出x1;第四步:将x1的值代入方程y−f (x1)=f ′(x1)(x−x1),可得过点P(x0,y0)的切线方程.求曲线y=f (x)的切线方程的类型及方法(1)已知切点P(x0, y0),求y=f (x)过点P的切线方程:求出切线的斜率f′(x0),由点斜式写出方程;(2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0, y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0, y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率,列方程(组)解得x0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k=f′(x0)求出切点坐标(x0, y0),最后写出切线方程.(5)①在点P处的切线即是以P为切点的切线,P一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.【典例指引】例1.(2013全国新课标Ⅰ卷节选)已知函数f(x)=x 2+ax +b ,g(x)=e x(cx +d),若曲线y =f(x)和曲线y =g (x)都过点P(0,2),且在点P 处有相同的切线y =4x+2. (Ⅰ)求a ,b ,c ,d 的值.(2)当时,曲线在点处的切线为,与轴交于点, 求证:.例3.已知函数在点处的切线方程为.⑴求函数的解析式;⑵若对于区间上任意两个自变量的值都有,求实数的最小值; ⑶若过点可作曲线的三条切线,求实数的取值范围. 为点不在曲线上,所以可设切点为. 则.因为,所以切线的斜率为所以方程有三个不同的实数解. 所以函数有三个不同的零点.则.令,则或.0>a )(x f y =)))((,(111a x x f x P >l l x )0,(2x A a x x >>21()()323,f x ax bx x a b R =+-∈()()1,1f 20y +=()f x []2,2-12,x x ()()12f x f x c -≤c ()()2,2M m m ≠()y f x =m ()()2,2M m m ≠()y f x =()00,x y 30003y x x =-()20033f x x '=-2033x -32002660x x m -++=()32266g x x x m =-++()2612g x x x '=-()0g x '=0x =2x =则 ,即,解得 则=,即.因为过点可作曲线的三条切线,【同步训练】1【思路引导】(1为切点,列出方程解出a ,b 的值;(Ⅱ)把a ,b 的值代入解析式,对函数求导判断单调性,根据单调区间写出函数的最值. 2.已知函数,其导函数的两个零点为-3和0.(1)求曲线在点处的切线方程;(2)求函数的单调区间; (3)求函数在区间上的最值. 【思路引导】对函数求导,由于导函数有两个零点,所以这两个零点值满足,解方程组求出m ,n ;利用导数的几何意义求切线方程,先求 f(1),求出切点,再求得出斜率,利用点斜式写出切线方程,求单调区间只需在定义域下解不等式和,求出增区间和减区间;求函数在闭区间上的最值,先研究函数在该区间的单调性、极值,求出区间两端点的函数值,比较后得出最值()0022g g >⎧⎪⎨<⎪⎩6020m m +>⎧⎨-+<⎩62m -<<2033x -300032x x mx ---32002660x x m -++=()()2,2M m m ≠()y f x =.3函数.已知图象为曲直线(1(2的最小值. 【思路引导】根据导数的几何意义,借助切点和斜率列方程求出,b c ,得出函数的解析式,利用导数解()0f x '<求出函数的单调减区间;对任意[]2,x m m ∈-,函数()()16f x g x m=为“storm ”函数,等价于在[]2,m m -上, ()()max min 16f x f x m -≤,根据函数()f x 的在[]2,m m -上的单调性,求出()f x 的最值,根据条件求出m 的范围,得出结论.4()4(1(2(3【思路引导】(1)求出原函数的导函数,得到导函数的零点,由零点对定义域分段,根据导函数在各区间段内的符号得到原函数的单调性;(2)设出点p 的坐标,利用导数求出切线方程3)由(2)知,(注:文档可能无法思考全面,请浏览后下载,供参考。

导数压轴题题型归纳

导数压轴题题型归纳

导数压轴题题型归纳1.高考命题回顾例1已知函数千3=6*—小&十巾).(2013全国新课标11卷)(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;⑵当mW2时,证明f(x)>0.例2已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2(2013全国新课标I卷)(I)求a,b,c,d的值(II)若x2—2时,f(x)-kg(x),求k的取值范围。

2. 在解题中常用的有关结论※⑴曲线产f (x )在X =X 0处的切线的斜率等于f (x 0),且切线方程为产f'(X 0)(x -X 0)+f (x 0)。

(2)若可导函数y =f(x)在X =X 0处取得极值,则f (x 0)=0。

反之,不成立。

(3)对于可导函数f (x ),不等式f ,(x )>0(<0)的解集决定函数f (x )的递增(减)区间。

(4)函数f (x )在区间I 上递增(减)的充要条件是:v x e I f (x )>0(<0)恒成立(f (x )不恒为0).(5)函数f(x )(非常量函数)在区间I 上不单调等价于f (x )在区间I 上有极值,则可等价转化为方程尸(x )=0在区间I 上有实根且为非二重根。

(若f (x )为二次函数且I=R ,则有A>0)。

(6) f(x )在区间I 上无极值等价于f (x )在区间在上是单调函数,进而得到f (x )>0或f (x )<0在I 上恒成立 ⑺若V x G I ,f (x )>0恒成立,则fx )min >0;若V x G I ,f (x )<0恒成立,则f (x )max<0 ⑻若三x 0G l ,使得f (x 0)>0,则^>0;若三x 0Gl ,使得f(x 0)<0,则)皿<0. (9)设f (x )与g (x )的定义域的交集为D ,若V x G D f (x )>g (x )恒成立,贝第[f (x )-g (x )]>0.min(10)若对V X|G I、匕e1,f(x J>g(x)恒成立,则f(x).>g(x).112212minmax若对V x e I3x e I,使得f(x)>g(x),则f(x)>g(x).112212minmin若对V x]e I,3x2G I2,使得f(x)<g(x),则f(x)<g(x).112212maxmax(11)已知f(x)在区间11上的值域为A,,g(x)在区间I2上值域为B,若对V x1e11,3x2e I2,使得f(x1)=g(x2)成立,则A之B。

高考导数压轴题型归类总结

高考导数压轴题型归类总结

导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母范围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .)(x g '(2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--.令0=y ,得12122x ax x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值.解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

导数压轴题12类常考题型

导数压轴题12类常考题型

导数压轴题12类常考题型导数是微积分中的重要概念,常常在各种数学问题中应用。

下面我将列举12类常考的导数题型,并从多角度进行解析。

1. 基本函数的导数:常数函数的导数,常数的导数为0。

幂函数的导数,幂函数的导数可以使用幂函数的导数公式进行求解。

指数函数的导数,指数函数的导数等于函数本身乘以底数的自然对数。

对数函数的导数,对数函数的导数可以使用对数函数的导数公式进行求解。

三角函数的导数,三角函数的导数可以使用三角函数的导数公式进行求解。

2. 反函数的导数:如果函数f(x)和g(x)互为反函数,则f'(x)和g'(x)互为相反数。

3. 复合函数的导数(链式法则):如果y=f(u)和u=g(x)是可导函数,则复合函数y=f(g(x))的导数可以使用链式法则进行求解。

4. 隐函数的导数:如果有一个方程F(x, y) = 0定义了y作为x的函数,则可以使用隐函数定理和求导法则求解隐函数的导数。

5. 参数方程的导数:如果有一个参数方程x=f(t)和y=g(t),则可以使用导数的定义求解参数方程的导数。

6. 反常导数:如果函数在某些点上不可导,但在其他点上可导,则称这个函数具有反常导数。

7. 高阶导数:如果一个函数的导数仍然可导,则可以计算其高阶导数。

8. 导数在几何中的应用:导数可以用来求函数的切线和法线方程,以及判定函数的极值和拐点。

9. 导数在物理中的应用:导数可以用来描述物体的速度、加速度等物理量。

10. 导数在经济学中的应用:导数可以用来分析经济学模型中的边际效应和弹性。

11. 导数在生物学中的应用:导数可以用来描述生物学模型中的生长速率和变化率。

12. 导数在工程中的应用:导数可以用来优化工程问题,如最小化成本、最大化效益等。

以上是导数常考题型的一些分类和解析,希望能帮助到你。

如果你有具体的导数问题,欢迎继续提问。

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。

下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。

其中描述正确的个数有(。

)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。

当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。

当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。

当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。

因此,答案为$\boxed{\textbf{(C) }2}$。

高考导数压轴题型归类总结

高考导数压轴题型归类总结

导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母X 围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母X 围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x . )(x g '所以当33=x 时,)(x g 有最小值932)33(-=g .(2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222 所以a x x >>21.2. (2009XX 理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力与分类讨论的思想方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三导数压轴题题型归纳This model paper was revised by LINDA on December 15, 2012.导数压轴题题型1. 高考命题回顾例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷)(1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.(1)解 f (x )=e x-ln(x +m )f ′(x )=e x-1x +m f ′(0)=e 0-10+m=0m =1,定义域为{x |x >-1},f ′(x )=e x-1x +m =e x x +1-1x +1,显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x-1x +2(x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)h ′(x )=e x +1x +2?2>0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (x )=g ′(x )=0的唯一实根在区间⎝ ⎛⎭⎪⎫-12,0内,设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0⎝ ⎛⎭⎪⎫-12<t <0,所以,e t=1t +2t +2=e -t ,当x ∈(-2,t )时,g ′(x )<g ′(t )=0,g (x )单调递减; 当x ∈(t ,+∞)时,g ′(x )>g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t-ln(t +2)=1t +2+t =1+t 2t +2>0,当m ≤2时,有ln(x +m )≤ln(x +2),所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-(2012全国新课标) (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值。

(1)1211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+令1x =得:(0)1f =得:21()()()12x x f x e x x g x f x e x '=-+⇒==-+()10()x g x e y g x '=+>⇒=在x R ∈上单调递增得:()f x 的解析式为21()2x f x e x x =-+且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞(2)21()()(1)02x f x x ax b h x e a x b ≥++⇔=-+-≥得()(1)x h x e a '=-+ ①当10a +≤时,()0()h x y h x '>⇒=在x R ∈上单调递增x →-∞时,()h x →-∞与()0h x ≥矛盾②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>⇔>+<⇔<+得:当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥令22()ln (0)F x x x x x =->;则()(12ln )F x x x '=-当x =max ()2e F x =当1,a b ==时,(1)a b +的最大值为2e 例3已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。

(2011全国新课标) (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围。

解(Ⅰ)221(ln )'()(1)x x b x f x x xα+-=-+ 由于直线230x y +-=的斜率为12-, 且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。

(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--。

考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x x h x x -++=。

(i)设0k ≤,由222(1)(1)'()k x x h x x+--=知,当1x ≠时,'()0h x <,h(x)递减。

而(1)0h = 故当(0,1)x ∈时, ()0h x >,可得21()01h x x >-; 当x ∈(1,+∞)时,h (x )<0,可得211x - h (x )>0 从而当x>0,且x ≠1时,f (x )-(1ln -x x +x k )>0,即f (x )>1ln -x x +xk. (ii )设0<k<1.由于2(1)(1)2k x x -++=2(1)21k x x k -++-的图像开口向下,且244(1)0k ∆=-->,对称轴x=111k >-.当x ∈(1,k -11)时,(k-1)(x 2 +1)+2x>0,故'h (x )>0,而h (1)=0,故当x ∈(1,k -11)时,h (x )>0,可得211x -h(x )<0,与题设矛盾。

(iii )设k ≥1.此时212x x +≥,2(1)(1)20k x x -++>⇒'h (x )>0,而h (1)=0,故当x ∈ (1,+∞)时,h (x )>0,可得211x - h (x )<0,与题设矛盾。

综合得,k 的取值范围为(-∞,0]例4已知函数f(x)=(x 3+3x 2+ax+b)e -x . (2009宁夏、海南)(1)若a =b =-3,求f(x)的单调区间;(2)若f(x)在(-∞,α),(2,β)单调增加,在(α,2),(β,+∞)单调减少,证明β-α>6.解: (1)当a =b =-3时,f(x)=(x 3+3x 2-3x -3)e -x ,故f′(x)=-(x 3+3x 2-3x -3)e -x +(3x 2+6x -3)e -x=-e -x(x 3-9x)=-x(x -3)(x+3)e -x.当x <-3或0<x <3时,f′(x)>0;当-3<x <0或x >3时,f′(x)<0. 从而f(x)在(-∞,-3),(0,3)单调增加,在(-3,0),(3,+∞)单调减少. (2)f′(x)=-(x 3+3x 2+ax+b)e -x+(3x 2+6x+a)e -x=-e -x[x 3+(a -6)x+b -a ]. 由条件得f′(2)=0,即23+2(a -6)+b -a =0,故b =4-a.从而f′(x)=-e -x [x 3+(a -6)x+4-2a ].因为f′(α)=f′(β)=0,所以x 3+(a -6)x+4-2a =(x -2)(x -α)(x-β)=(x -2)[x 2-(α+β)x+αβ]. 将右边展开,与左边比较系数,得α+β=-2,αβ=a -2. 故a 4124)(2-=-+=-αβαβαβ.又(β-2)(α-2)<0,即αβ-2(α+β)+4<0.由此可得a <-6. 于是β-α>6. 2. 在解题中常用的有关结论※3. 题型归纳①导数切线、定义、单调性、极值、最值、的直接应用(构造函数,最值定位)(分类讨论,区间划分)(极值比较)(零点存在性定理应用)(二阶导转换)例1(切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.例2(最值问题,两边分求)已知函数1()ln 1af x x ax x-=-+-()a ∈R . ⑴当12a ≤时,讨论()f x 的单调性;⑵设2()2 4.g x x bx =-+当14a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使12()()f x g x ≥,求实数b 取值范围.②交点与根的分布例3(切线交点)已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=.⑴求函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;⑶若过点()()2,2M m m ≠可作曲线()y f x =的三条切线,求实数m 的取值范围.例4(综合应用)已知函数.23)32ln()(2x x x f -+=⑴求f (x )在[0,1]上的极值;⑵若对任意0]3)(ln[|ln |],31,61[>+'+-∈x x f x a x 不等式成立,求实数a 的取值范围;⑶若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的取值范围. ③不等式证明例5 (变形构造法)已知函数1)(+=x ax ϕ,a 为正常数.⑴若)(ln )(x x x f ϕ+=,且a29=,求函数)(x f 的单调增区间;⑵在⑴中当0=a 时,函数)(x f y =的图象上任意不同的两点()11,y x A ,()22,y x B ,线段AB 的中点为),(00y x C ,记直线AB 的斜率为k ,试证明:)(0x f k '>.⑶若)(ln )(x x x g ϕ+=,且对任意的(]2,0,21∈x x ,21x x ≠,都有1)()(1212-<--x x x g x g ,求a的取值范围.例6 (高次处理证明不等式、取对数技巧)已知函数)0)(ln()(2>=a ax x x f .(1)若2)('x x f ≤对任意的0>x 恒成立,求实数a 的取值范围;(2)当1=a 时,设函数x x f x g )()(=,若1),1,1(,2121<+∈x x e x x ,求证42121)(x x x x +<例7(绝对值处理)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值.(I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .例8(等价变形)已知函数x ax x f ln 1)(--=()a ∈R .(Ⅰ)讨论函数)(x f 在定义域内的极值点的个数;(Ⅱ)若函数)(x f 在1=x 处取得极值,对x ∀∈),0(+∞,2)(-≥bx x f 恒成立,求实数b 的取值范围;(Ⅲ)当20e y x <<<且e x ≠时,试比较xyx y ln 1ln 1--与的大小.例9(前后问联系法证明不等式)已知217()ln ,()(0)22f x x g x x mx m ==++<,直线l 与函数(),()f x g x 的图像都相切,且与函数()f x 的图像的切点的横坐标为1。

相关文档
最新文档