导数压轴题题型全归纳
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。
方法:f'(x)为在x=x处的切线的斜率。
题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。
方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。
例题:已知函数f(x)=x-3x。
1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。
提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。
将问题转化为关于x,m的方程有三个不同实数根问题。
答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。
1)求过点(1,-3)与曲线y=x-3x相切的直线方程。
(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。
题型3:求两个曲线y=f(x)、y=g(x)的公切线。
方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例题:求曲线y=x与曲线y=2elnx的公切线方程。
(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。
(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。
【高考数学】22道压轴题:导数及其应用(练习及参考答案)

【高考数学】22道压轴题导数及其应用(练习及参考答案)1.已知函数xa x x f +=ln )(. (1)若函数)(x f 有零点,求实数a 的取值范围;(2)证明:当e a 2≥时,x e x f ->)(.2.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈).(1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=,试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由.3.已知函数32()f x x mx nx =++(,m n R ∈)(1)若()f x 在1x =处取得极大值,求实数m 的取值范围;(2)若'(1)0f =,且过点(0,1)P 有且只有两条直线与曲线()y f x =相切,求实数m 的值.4.已知函数2()x f x x e =,3()2g x x =.(1)求函数()f x 的单调区间;(2)求证:x R ∀∈,()()f x g x ≥5.已知函数f (x )= xx ln ﹣ax +b 在点(e ,f (e ))处的切线方程为y =﹣ax +2e . (Ⅰ)求实数b 的值;(Ⅱ)若存在x ∈[e ,e 2],满足f (x )≤41+e ,求实数a 的取值范围.6.已知函数21()ln 12f x x ax bx =-++的图像在1x =处的切线l 过点11(,)22. (1)若函数()()(1)(0)g x f x a x a =-->,求()g x 的最大值(用a 表示);(2)若4a =-,121212()()32f x f x x x x x ++++=,证明:1212x x +≥.7.已知函数()ln a f x x x x=+,32()3g x x x =--,a R ∈. (1)当1a =-时,求曲线()y f x =在1x =处的切线方程;(2)若对任意的121,[,2]2x x ∈,都有12()()f x g x ≥成立,求实数a 的取值范围.8.设函数2)(--=ax e x f x(1)求)(x f 的单调区间;(2)若k a ,1=为整数,且当0>x 时,1)(1<'+-x f x x k 恒成立,其中)(x f '为)(x f 的导函数,求k 的最大值.9.设函数2()ln(1)f x x b x =++.(1)若对定义域内的任意x ,都有()(1)f x f ≥成立,求实数b 的值;(2)若函数()f x 的定义域上是单调函数,求实数b 的取值范围;(3)若1b =-,证明对任意的正整数n ,33311111()123n k f k n=<++++∑.10.已知函数1()(1)ln x f x a e x a a=-+-(0a >且1a ≠),e 为自然对数的底数. (Ⅰ)当a e =时,求函数()y f x =在区间[]0,2x ∈上的最大值;(Ⅱ)若函数()f x 只有一个零点,求a 的值.11.已知函数1()f x x x=-,()2ln g x a x =. (1)当1a ≥-时,求()()()F x f x g x =-的单调递增区间;(2)设()()()h x f x g x =+,且()h x 有两个极值12,x x ,其中11(0,]3x ∈,求12()()h x h x -的最小值.12.已知函数f (x )=ln x +x 2﹣2ax +1(a 为常数).(1)讨论函数f (x )的单调性;(2)若存在x 0∈(0,1],使得对任意的a ∈(﹣2,0],不等式2me a (a +1)+f (x 0)>a 2+2a +4(其中e 为自然对数的底数)都成立,求实数m 的取值范围.13.已知函数f (x )=a x +x 2﹣x ln a (a >0,a ≠1).(1)求函数f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )单调增区间;(3)若存在x 1,x 2∈[﹣1,1],使得|f (x 1)﹣f (x 2)|≥e ﹣1(e 是自然对数的底数),求实数a 的取值范围.14.已知函数1()ln f x x x=-,()g x ax b =+. (1)若函数()()()h x f x g x =-在()0,+∞上单调递增,求实数a 的取值范围; (2)若直线()g x ax b =+是函数1()ln f x x x=-图像的切线,求a b +的最小值; (3)当0b =时,若()f x 与()g x 的图像有两个交点1122(,),(,)A x y B x y ,求证:2122x x e >15.某工艺品厂要设计一个如图1所示的工艺品,现有某种型号的长方形材料如图2所示,其周长为4m ,这种材料沿其对角线折叠后就出现图1的情况.如图,ABCD (AB >AD )为长方形的材料,沿AC 折叠后AB '交DC 于点P ,设△ADP 的面积为2S ,折叠后重合部分△ACP 的面积为1S .(Ⅰ)设AB x =m ,用x 表示图中DP 的长度,并写出x 的取值范围;(Ⅱ)求面积2S 最大时,应怎样设计材料的长和宽?(Ⅲ)求面积()122S S +最大时,应怎样设计材料的长和宽?16.已知()()2ln x f x e x a =++.(1)当1a =时,求()f x 在()0,1处的切线方程;(2)若存在[)00,x ∈+∞,使得()()20002ln f x x a x <++成立,求实数a 的取值范围.17.已知函数()()()2ln 1f x ax x xa R =--∈恰有两个极值点12,x x ,且12x x <.(1)求实数a 的取值范围; (2)若不等式12ln ln 1x x λλ+>+恒成立,求实数λ的取值范围.18.已知函数f (x )=(ln x ﹣k ﹣1)x (k ∈R )(1)当x >1时,求f (x )的单调区间和极值.(2)若对于任意x ∈[e ,e 2],都有f (x )<4ln x 成立,求k 的取值范围.(3)若x 1≠x 2,且f (x 1)=f (x 2),证明:x 1x 2<e 2k .19.已知函数()21e 2x f x a x x =--(a ∈R ). (Ⅰ)若曲线()y f x =在点()()0,0f 处的切线与y 轴垂直,求a 的值; (Ⅱ)若函数()f x 有两个极值点,求a 的取值范围;(Ⅲ)证明:当1x >时,1e ln x x x x>-.20.已知函数()()321233f x x x x b b R =-++?. (1)当0b =时,求()f x 在[]1,4上的值域;(2)若函数()f x 有三个不同的零点,求b 的取值范围.21.已知函数2ln 21)(2--=x ax x f . (1)当1=a 时,求曲线)(x f 在点))1(,1(f 处的切线方程;(2)讨论函数)(x f 的单调性.22.已知函数1()ln sin f x x x θ=+在[1,]+∞上为增函数,且(0,)θπ∈. (Ⅰ)求函数()f x 在其定义域内的极值;(Ⅱ)若在[1,]e 上至少存在一个0x ,使得0002()e kx f x x ->成立,求实数k 的取值范围.参考答案1.(1)函数x a x x f +=ln )(的定义域为),0(+∞. 由x a x x f +=ln )(,得221)(xa x x a x x f -=-='. ①当0≤a 时,0)(>'x f 恒成立,函数)(x f 在),0(+∞上单调递增, 又+∞→+∞→<=+=)(,,01ln )1(x f x a a f ,所以函数)(x f 在定义域),0(+∞上有1个零点.②当0>a 时,则),0(a x ∈时,),(;0)(+∞∈<'a x x f 时,0)(>'x f . 所以函数)(x f 在),0(a 上单调递减,在),(+∞a 上单调递增. 当1ln )]([min +==a x f a x .当01ln ≤+a ,即e a 10≤<时,又01ln )1(>=+=a a f , 所以函数)(x f 在定义域),0(+∞上有2个零点.综上所述实数a 的取值范围为]1,(e -∞. 另解:函数x a x x f +=ln )(的定义域为),0(+∞. 由xa x x f +=ln )(,得x x a ln -=. 令x x x g ln )(-=,则)1(ln )(+-='x x g . 当)1,0(e x ∈时,0)(>'x g ;当),1(+∞∈e x 时,0)(<'x g . 所以函数)(x g 在)1,0(e 上单调递增,在),1(+∞e 上单调递减. 故e x 1=时,函数)(x g 取得最大值ee e e g 11ln 1)1(=-=. 因+∞→+∞→)(,xf x ,两图像有交点得e a 1≤, 综上所述实数a 的取值范围为]1,(e -∞.(2)要证明当e a 2≥时,x e x f ->)(, 即证明当e a x 2,0≥>时,x e xa x ->+ln ,即x xe a x x ->+ln .令a x x x h +=ln )(,则1ln )(+='x x h . 当e x 10<<时,0)(<'x f ;当ex 1>时,0)(>'x f . 所以函数)(x h 在)1,0(e 上单调递减,在),1(+∞e 上单调递增. 当e x 1=时,a ex h +-=1)]([min . 于是,当e a 2≥时,ea e x h 11)(≥+-≥.① 令x xe x -=)(ϕ,则)1()(x e xe e x x x x -=-='---ϕ.当10<<x 时,0)(>'x f ;当1>x 时,0)(<'x f .所以函数)(x ϕ在)1,0(上单调递增,在),1(+∞上单调递减. 当1=x 时,ex 1)]([min =ϕ. 于是,当0>x 时,ex 1)(≤ϕ.② 显然,不等式①、②中的等号不能同时成立. 故当ea 2≥时,x e x f ->)(. 2.(Ⅰ)0,22)(2>-=-='x xa x x a x x f (1)当0≤a 时,0)(>'x f ,)(x f 在()上+∞,0单调递增,(2)当0>a 时,20)(a x x f =='得 有⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛>,22,0)(0a a x f a ,单调增区间是的单调减区间是时,所以 (Ⅱ) bx x x x g +-=ln 2)(2假设)(x g y =在0x 处的切线能平行于x 轴.∵()0,22)(>+-='x b xx x g 由假设及题意得:0ln 2)(11211=+-=bx x x x g0ln 2)(22222=+-=bx x x x g1202x x x +=022)(000=+-='b x x x g ④ 由-得,()()()0ln ln 221212221=-+---x x b x x x x即0212`12ln2x x x x x b --=由④⑤得,()1121212122222ln 1x x x x x x x x x x --==++ 令12x t x =,12,01x x t <∴<<.则上式可化为122ln +-=t t t , 设函数()()10122ln <<+--=t t t t t h ,则 ()()()()011141222>+-=+-='t t t t t t h , 所以函数()122ln +--=t t t t h 在(0,1)上单调递增. 于是,当01t <<时,有()()01=<h t h ,即22ln 01t t t --<+与⑥矛盾. 所以()y f x =在0x 处的切线不能平行于x 轴.3.(Ⅰ)n mx x x f ++='23)(2()02301=++='n m f 得由.01242>-=∆n m∴()3032-≠>+m m ,得到 ①∵()()()32313223)(2++-=+-+='m x x m mx x x f∴⎪⎭⎫ ⎝⎛+-==='32110)(m x x x f 或,得 由题3,1321-<>⎪⎭⎫⎝⎛+-m m 解得② 由①②得3-<m(Ⅱ)()02301=++='n m f 得由 所以()m mx x x f 2323)(2+-+='因为过点)1,0(且与曲线)(x f y =相切的直线有且仅有两条, 令切点是()00,y x P ,则切线方程为()()000x x x f y y -'=- 由切线过点)1,0(,所以有()()0001x x f y -'=-∴()()[]()0020020302323231x m mx x x m mx x -+-+=++--整理得0122030=++mx x.01220300有两个不同的实根的方程所以,关于=++mx x x ()()需有两个零点,则令x h mx x x h 1223++= ()mx x x h 262+='所以()3000mx x x h m -==='≠或得,且()03,00=⎪⎭⎫⎝⎛-=m h h 或由题,()03,10=⎪⎭⎫⎝⎛-=m h h 所以又因为0133223=+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-m m m 所以3-=m 解得,即为所求4.(Ⅰ)()x x e e x xe x f xxx22)(22+=+='∴()()()上单调递减;在时,0,2,002-<'<<-x f x f x()()()().,02,,002上单调递增和在时,或+∞-∞->'>-<x f x f x x()()()+∞-∞--,020,2)(,和,,单调递增区间是的单调递减区间是所以x f(Ⅱ)显然0≤x 时有)()(x g x f ≥,只需证0>x 时)()(x g x f ≥,由于02≥xx e x x 20≥>时,只需证()+∞∈-=,0,2)(x x e x h x 令 2)(-='x e x h2ln ,0)(=='x x h 得()()02ln ln 22ln 222ln 22ln )(2ln min >-=-=-==∴e e h x h ()恒成立0)(,,0>+∞∈∴x h x所以当0>x 时,)()(x g x f >. 综上R x ∈∀,()()f x g x ≥5.解:(Ⅰ)f (x )=﹣ax+b ,x ∈(0,1)∪(1,+∞), 求导,f′(x )=﹣a ,则函数f (x )在点(e ,f (e ))处切线方程y ﹣(e ﹣ex+b )=﹣a (x ﹣e ), 即y=﹣ax+e+b ,由函数f (x )在(e ,f (e ))处的切线方程为y=﹣ax+2e ,比较可得b=e , 实数b 的值e ;(Ⅱ)由f (x )≤+e ,即﹣ax+e≤+e ,则a≥﹣在[e ,e 2],上有解,设h (x )=﹣,x ∈[e ,e 2],求导h′(x )=﹣==,令p (x )=lnx ﹣2,()()()()0,,2ln ,0,2ln ,0>'+∞∈<'∈∴x h x x h x ()()()上单调递增上单调递减,在,在+∞∴,2ln 2ln 0x h∴x 在[e ,e 2]时,p′(x )=﹣=<0,则函数p (x )在[e ,e 2]上单调递减,∴p (x )<p (e )=lne ﹣2<0,则h′(x )<0,及h (x )在区间[e ,e 2]单调递减,h (x )≥h (e 2)=﹣=﹣,∴实数a 的取值范围[﹣,+∞].6.(1)由'1()f x ax b x=-+,得'(1)1f a b =-+, l 的方程为1(1)(1)(1)2y a b a b x --++=-+-,又l 过点11(,)22,∴111(1)(1)(1)222a b a b --++=-+-,解得0b =. ∵21()()(1)ln (1)12g x f x a x x ax a x =--=-+-+, ∴2'1()(1)1(1)1()1(0)a x x ax a x a g x ax a a x x x--+-+-+=-+-==>, 当1(0,)x a∈时,'()0g x >,()g x 单调递增; 当1(,)x a∈+∞时,'()0g x <,()g x 单调递减. 故2max 111111()()ln()(1)1ln 22g x g a a a a a a a a==-+-+=-. (2)证明:∵4a =-,∴2212121211221212()()3ln 21ln 213f x f x x x x x x x x x x x x x ++++=++++++++,212121212ln()2()22x x x x x x x x =++++-+=,∴2121212122()ln()x x x x x x x x +++=-令12(0)x x m m =>,()ln m m m ϕ=-,'1()m m mϕ-=,令'()0m ϕ<得01m <<;令'()0m ϕ>得1m >.∴()m ϕ在(0,1)上递减,在(1,)+∞上递增,∴()(1)1m ϕϕ≥=,∴212122()1x x x x +++≥,120x x +>,解得:1212x x +≥.7.(1)当1a =-时,1()ln f x x x x =-,(1)1f =-,'21()ln 1f x x x=++, '(1)2f =,从而曲线()y f x =在1x =处的切线为2(1)1y x =--,即23y x =-.(2)对任意的121,[,2]2x x ∈,都有12()()f x g x ≥成立,从而min max ()()f x g x ≥ 对32()3g x x x =--,'2()32(32)g x x x x x =-=-,从而()y g x =在12[,]23递减,2[,2]3递增,max 1()max{(),(2)}12g x g g ==. 又(1)f a =,则1a ≥. 下面证明当1a ≥时,ln 1a x x x +≥在1[,2]2x ∈恒成立. 1()ln ln a f x x x x x x x =+≥+,即证1ln 1x x x +≥. 令1()ln h x x x x =+,则'21()ln 1h x x x=+-,'(1)0h =. 当1[,1]2x ∈时,'()0h x ≤,当[1,2]x ∈时,'()0h x ≥,从而()y h x =在1[,1]2x ∈递减,[1,2]x ∈递增,min ()(1)1h x h ==,从而1a ≥时,ln 1a x x x +≥在1[,2]2x ∈恒成立.8.(1)函数f (x )=e x -ax -2的定义域是R ,f ′(x )=e x -a ,若a ≤0,则f ′(x )=e x -a ≥0,所以函数f (x )=e x -ax -2在(-∞,+∞)上单调递增 若a >0,则当x ∈(-∞,ln a )时,f ′(x )=e x -a <0; 当x ∈(ln a ,+∞)时,f ′(x )=e x -a >0;所以,f (x )在(-∞,ln a )单调递减,在(ln a ,+∞)上单调递增 (2)由于a=1,1)1)((1)(1'+<--⇔<+-x e x k x f x x k x x e x k e x xx +-+<∴>-∴>11.01,0 令x e x x g x +-+=11)(,min )(x g k <∴,22')1()2(1)1(1)(---=+---=x x x xx e x e e e xe x g 令01)(,2)('>-=--=xxe x h x e x h ,)(x h ∴在),0(+∞单调递增,且)(,0)2(,0)1(x h h h ∴><在),0(+∞上存在唯一零点,设此零点为0x ,则)2,1(0∈x 当),0(00x x ∈时,0)('<x g ,当),(00+∞∈x x 时,0)('>x g000min 11)()(0x e x x g x g x +-+==∴, 由)3,2(1)(,20)(0000'0∈+=∴+=⇒=x x g x ex g x ,又)(0x g k <所以k 的最大值为29.(1)由01>+x ,得1->x .∴()x f 的定义域为()+∞-,1.因为对x ∈()+∞-,1,都有()()1f x f ≥,∴()1f 是函数()x f 的最小值,故有()01='f .,022,12)(/=+∴++=bx b x x f 解得4-=b . 经检验,4-=b 时,)(x f 在)1,1(-上单调减,在),1(+∞上单调增.)1(f 为最小值.(2)∵,12212)(2/+++=++=x bx x x b x x f 又函数()x f 在定义域上是单调函数,∴()0≥'x f 或()0≤'x f 在()+∞-,1上恒成立. 若()0≥'x f ,则012≥++x bx 在()+∞-,1上恒成立, 即x x b 222--≥=21)21(22++-x 恒成立,由此得≥b 21; 若()0≤'x f ,则012≤++x bx 在()+∞-,1上恒成立, 即x x b 222--≤=21)21(22++-x 恒成立. 因21)21(22++-x 在()+∞-,1上没有最小值,∴不存在实数b 使()0≤'x f 恒成立. 综上所述,实数b 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21. (3)当1-=b 时,函数()()1ln 2+-=x x x f .令()()()1ln 233+-+-=-=x x x x x f x h ,则()()1131123232+-+-=+-+-='x x x x x x x h . 当()+∞∈,0x 时,()0<'x h ,所以函数()x h 在()+∞,0上单调递减.又()00=h ,∴当[)+∞∈,0x 时,恒有()()00=<h x h ,即()321ln x x x <+-恒成立.故当()+∞∈,0x 时,有()3x x f <.而*∈N k ,()+∞∈∴,01k .取k x 1=,则有311kk f <⎪⎭⎫ ⎝⎛. ∴33311312111n k f nk +⋅⋅⋅+++<⎪⎭⎫⎝⎛∑=.所以结论成立.10.解:(Ⅰ)当a e =时,1()(1)xf x e e x e=-+-,'()xf x e e =-,令'()0f x =,解得1x =,(0,1)x ∈时,'()0f x <;(1,2)x ∈时,'()0f x >,∴{}max ()max (0),(2)f x f f =,而1(0)1f e e =--,21(2)3f e e e=--, 即2max 1()(2)3f x f e e e==--. (Ⅱ)1()(1)ln xf x a e x a a=-+-,'()ln ln ln ()x xf x a a e a a a e =-=-, 令'()0f x =,得log a x e =,则 ①当1a >时,ln 0a >,所以当log a x e =时,()f x 有最小值min ()(log )ln a f x f e e a a==--, 因为函数()f x 只有一个零点,且当x →-∞和x →+∞时,都有()f x →+∞,则min 1()ln 0f x e a a =--=,即1ln 0e a a+=, 因为当1a >时,ln 0a >,所以此方程无解. ②当01a <<时,ln 0a <,所以当log a x e =时,()f x 有最小值min 1()(log )ln a f x f e e a a==--, 因为函数()f x 只有一个零点,且当x →-∞和x →+∞时,都有()f x →+∞, 所以min 1()ln 0f x e a a =--=,即1ln 0e a a+=(01a <<)(*) 设1()ln (01)g a e a a a =+<<,则2211'()e ae g a a a a -=-=, 令'()0g a =,得1a e=, 当10a e <<时,'()0g a <;当1a e>时,'()0g a >; 所以当1a e =时,min 11()()ln 0g a g e e e e ==+=,所以方程(*)有且只有一解1a e=. 综上,1a e=时函数()f x 只有一个零点.11.(1)由题意得F (x)= x --2a ln x . x 0,=,令m (x )=x 2-2ax+1,①当时F(x)在(0,+单调递增; ②当a 1时,令,得x 1=, x 2=x(0,) ()()+-+∴F (x)的单增区间为(0,),()综上所述,当时F (x)的单增区间为(0,+)当a 1时,F (x)的单增区间为(0,),()(2)h (x )= x -2a ln x , h /(x)=,(x >0),由题意知x 1,x 2是x 2+2ax+1=0的两根,∴x 1x 2=1, x 1+x 2=-2a,x 2=,2a=,-=-=2()令H (x )=2(), H /(x )=2()lnx=当时,H/(x)<0, H(x)在上单调递减,H(x)的最小值为H()=,即-的最小值为.12.解:(I)f(x)=lnx+x2﹣2ax+1,f'(x)=+2x﹣2a=,令g(x)=2x2﹣2ax+1,(i)当a≤0时,因为x>0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(ii)当0<a时,因为△≤0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(iii)当a>时,x在(,)时,g(x)<0,函数f(x)单调递减;在区间(0,)和(,+∞)时,g(x)>0,函数f(x)单调递增;(II)由(I)知当a∈(﹣2,0],时,函数f(x)在区间(0,1]上单调递增,所以当x∈(0,1]时,函数f(x)的最大值是f(1)=2﹣2a,对任意的a∈(﹣2,0],都存在x0∈(0,1],使得不等式a∈(﹣2,0],2me a(a+1)+f(x0)>a2+2a+4成立,等价于对任意的a∈(﹣2,0],不等式2me a(a+1)﹣a2+﹣4a﹣2>0都成立,记h(a)=2me a(a+1)﹣a2+﹣4a﹣2,由h(0)>0得m>1,且h(﹣2)≥0得m≤e2,h'(a)=2(a+2)(me a﹣1)=0,∴a=﹣2或a=﹣lnm,∵a∈(﹣2,0],∴2(a+2)>0,①当1<m<e2时,﹣lnm∈(﹣2,0),且a∈(﹣2,﹣lnm)时,h'(a)<0,a∈(﹣lnm,0)时,h'(a)>0,所以h(a)最小值为h(﹣lnm)=lnm﹣(2﹣lnm)>0,所以a∈(﹣2,﹣lnm)时,h(a)>0恒成立;②当m=e2时,h'(a)=2(a+2)(e a+2﹣1),因为a∈(﹣2,0],所以h'(a)>0,此时单调递增,且h(﹣2)=0,所以a∈(﹣2,0],时,h(a)>0恒成立;综上,m的取值范围是(1,e2].13.解:(1)∵f(x)=a x+x2﹣xlna,∴f′(x)=a x lna+2x﹣lna,∴f′(0)=0,f(0)=1即函数f(x)图象在点(0,1)处的切线斜率为0,∴图象在点(0,f(0))处的切线方程为y=1;(3分)(2)由于f'(x)=a x lna+2x﹣lna=2x+(a x﹣1)lna>0①当a>1,y=2x单调递增,lna>0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0 故函数f(x)在(0,+∞)上单调递增;②当0<a<1,y=2x单调递增,lna<0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0 故函数f(x)在(0,+∞)上单调递增;综上,函数f(x)单调增区间(0,+∞);(8分)(3)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max﹣(f(x))min|=(f(x))max﹣(f(x))min≥e﹣1,(12分)由(2)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而f(1)﹣f(﹣1)=(a+1﹣lna)﹣(+1+lna)=a﹣﹣2lna,记g(t)=t﹣﹣2lnt(t>0),因为g′(t)=1+﹣=(﹣1)2≥0所以g(t)=t﹣﹣2lnt在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1);当0<a<1时,f(1)<f(﹣1)(14分)①当a>1时,由f(1)﹣f(0)≥e﹣1⇒a﹣lna≥e﹣1⇒a≥e,②当0<a<1时,由f(﹣1)﹣f(0)≥e﹣1⇒+lna≥e﹣1⇒0<a≤,综上知,所求a的取值范围为a∈(0,]∪[e,+∞).(16分)14.(1)解:h (x )=f (x )﹣g (x )=1ln x ax b x ---,则211()h x a x x'=+-, ∵h (x )=f (x )﹣g (x )在(0,+∞)上单调递增, ∴对∀x >0,都有211()0h x a x x '=+-≥,即对∀x >0,都有211a x x≤+,.…………2分 ∵2110x x+>,∴0a ≤, 故实数a 的取值范围是(],0-∞;.…………3分 (2)解:设切点为0001,ln x x x ⎛⎫-⎪⎝⎭,则切线方程为()002000111ln y x x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭,即00220000011111ln y x x x x x x x x ⎛⎫⎛⎫⎛⎫=+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,亦即02000112ln 1y x x x x x ⎛⎫=++-- ⎪⎝⎭,令010t x =>,由题意得220011a t t x x =+=+,002ln 1ln 21b x t t x =--=--- , 令2()ln 1a b t t t t ϕ+==-+--,则()()2111()21t t t t ttϕ+-'=-+-=,.…………6分当()0,1t ∈时,()()0,t t ϕϕ'<在()0,1上单调递减;当()1,t ∈+∞时,()()0,t t ϕϕ'>在()1,+∞上单调递增,∴()()11a b t ϕϕ+=≥=-, 故a b +的最小值为﹣1;.…………7分 (3)证明:由题意知1111ln x ax x -=,2221ln x ax x -=, 两式相加得()12121212ln x x x x a x x x x +-=+ 两式相减得()21221112lnx x x a x x x x x --=-即212112ln 1x x a x x x x +=-∴()21211212122112ln1ln x x x x x x x x x x x x x x ⎛⎫ ⎪+ ⎪-=++- ⎪⎪⎝⎭,即1212212122112()ln ln x x x x x x x x x x x x ⎛⎫++-= ⎪-⎝⎭,. 9分不妨令120x x <<,记211x t x =>, 令()21()ln (1)1t F t t t t -=->+,则()221()0(1)t F t t t -'=>+,∴()21()ln 1t F t t t -=-+在()1,+∞上单调递增,则()21()ln (1)01t F t t F t -=->=+, ∴()21ln 1t t t ->+,则2211122()ln x x x x x x ->+,∴1212212122112()ln ln 2x x x x x x x x x x x x ⎛⎫++-=> ⎪-⎝⎭,又1212121212122()ln ln ln x x x x x x x x x x +-<==∴2>,即1>,.…………10分 令2()ln G x x x =-,则0x >时,212()0G x x x'=+>,∴()G x 在()0,+∞上单调递增.又1ln 210.8512=+≈<,∴1ln G =>>>,即2122x x e >..…………12分15.(Ⅰ)由题意,AB x =,2-BC x =,2,12x x x >-∴<<Q .…………1分 设=DP y ,则PC x y =-,由△ADP ≌△CB'P ,故PA=PC=x ﹣y ,由PA 2=AD 2+DP 2,得()()2222x y x y -=-+即:121,12y x x ⎛⎫=-<< ⎪⎝⎭..…………3分(Ⅱ)记△ADP 的面积为2S ,则()212=1-233S x x x x ⎛⎫⎛⎫-=-+≤- ⎪ ⎪⎝⎭⎝⎭.…………5分当且仅当()1,2x =时,2S 取得最大值.,宽为(2m 时,2S 最大.….…………7分 (Ⅲ)()()2121114+2=2123,1222S S x x x x x x x ⎛⎫⎛⎫-+--=-+<< ⎪ ⎪⎝⎭⎝⎭于是令()31222142+220,2x S S x x x x-+⎛⎫'=--==∴= ⎪⎝⎭分∴关于x 的函数12+2S S 在(上递增,在)上递减,∴当x =12+2S S 取得最大值.,宽为(m 时,12+2S S 最大..…………12分16.(1)1a =时,()()2ln 1xf x ex =++,()2121x f x e x '=++ ()01f =,()10231f '=+=,所以()f x 在()0,1处的切线方程为31y x =+ (2)存在[)00,x ∈+∞,()()20002ln f x x a x <++,即:()02200ln 0x ex a x -+-<在[)00,x ∈+∞时有解; 设()()22ln xu x ex a x =-+-,()2122x u x e x x a'=--+ 令()2122xm x ex x a =--+,()()21420x m x e x a '=+->+ 所以()u x '在[)0,+∞上单调递增,所以()()102u x u a''≥=- 1°当12a ≥时,()1020u a'=-≥,∴()u x 在[)0,+∞单调增, 所以()()max 01ln 0u x u a ==-<,所以a e > 2°当12a <时,()1ln ln 2x a x ⎛⎫+<+ ⎪⎝⎭设()11ln 22h x x x ⎛⎫=+-+ ⎪⎝⎭, ()11211122x h x x x -'=-=++ 令()102h x x '>⇒>,()1002h x x '<⇒<< 所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,2⎛⎫+∞ ⎪⎝⎭单调递增 所以()1102h x h ⎛⎫≥=> ⎪⎝⎭,所以11ln 22x x ⎛⎫+>+ ⎪⎝⎭所以()()222ln ln xx u x e x a x e =-+->-2221122x x x e x x ⎛⎫⎛⎫+->-+- ⎪ ⎪⎝⎭⎝⎭设()()22102xg x ex x x ⎛⎫=--+≥ ⎪⎝⎭,()2221x g x e x '=--,令()2221xx ex ϕ=--,()242420x x e ϕ'=-≥->所以()2221xx ex ϕ=--在[)0,+∞上单调递增,所以()()010g x g ''≥=>所以()g x 在()0,+∞单调递增,∴()()00g x g >>, 所以()()00g x g >>, 所以()()()22ln 0xu x e x a x g x =-+->>所以,当12a <时,()()22ln f x x a x >++恒成立,不合题意 综上,实数a 的取值范围为12a ≥.17.(1)因为()ln 2f x a x x '=-,依题意得12,x x 为方程ln 20a x x -=的两不等正实数根, ∴0a ≠,2ln x a x=,令()ln x g x x =,()21ln xg x x -'=, 当()0,x e ∈时,()0g x '>; 当(),x e ∈+∞时,()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,()10g =, 当x e >时,()0g x >, 所以()20g e a<< ∴()210g e a e<<= 解得2a e >,故实数a 的取值范围是()2,e +∞.(2)由(1)得,11ln 2a x x =,22ln 2a x x =,两式相加得()()1212ln ln 2a x x x x λ+=+,故()12122ln ln x x x x aλλ++=两式相减可得()()1212ln ln 2a x x x x -=-, 故12122ln ln x x a x x -=⋅-所以12ln ln 1x x λλ+>+等价于()1221x x aλλ+>+,所以()()1221x x a λλ+>+ 所以()()121212221ln ln x x x x x x λλ-+>+-,即()()121212ln ln 1x x x x x x λλ+->+-, 所以112212ln 11x x x x x x λλ⎛⎫+ ⎪⎝⎭>+-, 因为120x x <<,令()120,1x t x =∈,所以()ln 11t t t λλ+>+-即()()()ln 110t t t λλ+-+-<,令()()()()ln 11h t t t t λλ=+-+-, 则()0h t <在()0,1上恒成立,()ln h t t tλλ'=+-,令()ln I t t t λλ=+-,()()()2210,1t I t t t t tλλ-'=-=∈ ①当1λ≥时,()0I t '<所以()h t '在()0,1上单调递减,()()10h t h ''>=所以()h t 在()0,1上单调递增,所以()()10h t h <=符合题意②当0λ≤时,()0I t '>所以()h t '在()0,1上单调递增()()10h t h ''<=故()h t 在()0,1上单调递减,所以()()10h t h >=不符合题意; ③当01λ<<时,()01I t t λ'>⇔<< 所以()h t '在(),1λ上单调递增,所以()()10h t h ''<=所以()h t 在(),1λ上单调递减, 故()()10h t h >=不符合题意综上所述,实数λ的取值范围是[)1,+∞.18.解:(1)∵f (x )=(lnx ﹣k ﹣1)x (k ∈R ), ∴x >0,=lnx ﹣k ,①当k≤0时,∵x >1,∴f′(x )=lnx ﹣k >0,函数f (x )的单调增区间是(1,+∞),无单调减区间,无极值; ②当k >0时,令lnx ﹣k=0,解得x=e k ,当1<x <e k时,f′(x )<0;当x >e k,f′(x )>0,∴函数f (x )的单调减区间是(1,e k ),单调减区间是(e k ,+∞),在区间(1,+∞)上的极小值为f (e k )=(k ﹣k ﹣1)e k =﹣e k,无极大值. (2)∵对于任意x ∈[e ,e 2],都有f (x )<4lnx 成立,∴f (x )﹣4lnx <0,即问题转化为(x ﹣4)lnx ﹣(k+1)x <0对于x ∈[e ,e 2]恒成立,即k+1>对于x ∈[e ,e 2]恒成立,令g (x )=,则,令t (x )=4lnx+x ﹣4,x ∈[e ,e 2],则,∴t (x )在区间[e ,e 2]上单调递增,故t (x )min =t (e )=e ﹣4+4=e >0,故g′(x )>0, ∴g (x )在区间[e ,e 2]上单调递增,函数g (x )max =g (e 2)=2﹣,要使k+1>对于x ∈[e ,e 2]恒成立,只要k+1>g (x )max ,∴k+1>2﹣,即实数k 的取值范围是(1﹣,+∞).证明:(3)∵f (x 1)=f (x 2),由(1)知,函数f (x )在区间(0,e k)上单调递减, 在区间(e k,+∞)上单调递增,且f (e k+1)=0,不妨设x 1<x 2,则0<x 1<e k<x 2<e k+1,要证x 1x 2<e 2k,只要证x 2<,即证<,∵f (x )在区间(e k ,+∞)上单调递增,∴f (x 2)<f (),又f (x 1)=f (x 2),即证f (x 1)<,构造函数h (x )=f (x )﹣f ()=(lnx ﹣k ﹣1)x ﹣(ln﹣k ﹣1),即h (x )=xlnx ﹣(k+1)x+e 2k(),x ∈(0,e k)h′(x )=lnx+1﹣(k+1)+e 2k (+)=(lnx ﹣k ),∵x ∈(0,e k ),∴lnx ﹣k <0,x 2<e 2k ,即h′(x )>0,∴函数h (x )在区间(0,e k )上单调递增,故h′(x )<h (e k ), ∵,故h (x )<0,∴f (x 1)<f (),即f (x 2)=f (x 1)<f (),∴x 1x 2<e 2k成立.19.(Ⅰ)由()21e 2xf x a x x =--得()e 1x f x a x '=--.因为曲线()y f x =在点()()0,0f 处的切线与y 轴垂直, 所以()010f a '=-=,解得1a =.(Ⅱ)由(Ⅰ)知()e 1xf x a x '=--,若函数()f x 有两个极值点,则()e 10x f x a x '=--=,即 1e x x a +=有两个不同的根,且1e xx a +-的值在根的左、右两侧符号相反. 令()1e x x h x +=,则()()()2e 1e e e x x x x x x h x -+'==-, 所以当0x >时,()0h x '<,()h x 单调递减;当0x <时,()0h x '>,()h x 单调递增. 又当x →-∞时,()h x →-∞;0x =时,()01h =;0x >时,()0h x >;x →+∞时,()0h x →,所以01a <<.即所求实数a 的取值范围是01a <<. (Ⅲ)证明:令()1e ln xg x x x x=-+(1x >),则()10g =,()2e 1e ln 1x xg x x x x'=+--.令()()h x g x '=,则()e e ln x xh x x x '=+23e e 2x x x x x-++, 因为1x >,所以e ln 0xx >,e 0xx >,()2e 10x x x ->,320x>, 所以()0h x '>,即()()h x g x '=在1x >时单调递增,又()1e 20g '=->,所以1x >时,()0g x '>,即函数()g x 在1x >时单调递增. 所以1x >时,()0g x >,即1x >时,1e ln xx x x>-.20.(1)当0b =时,()321233f x x x x =-+,()()()2'4313f x x x x x =-+=--.当()1,3x Î时,()'0f x <,故函数()f x 在()1,3上单调递减; 当()3,4x Î时,()'0f x >,故函数()f x 在()3,4上单调递增. 由()30f =,()()4143f f ==.∴()f x 在[]1,4上的值域为40,3轾犏犏臌;(2)由(1)可知,()()()2'4313f x x x x x =-+=--, 由()'0f x <得13x <<,由()'0f x >得1x <或3x >. 所以()f x 在()1,3上单调递减,在(),1-?,()3,+?上单调递增;所以()()max 413f x f b ==+,()()min 3f x f b ==,所以当403b +>且0b <,即403b -<<时,()10,1x $?,()21,3x Î,()33,4x Î,使得()()()1230f x f x f x ===,由()f x 的单调性知,当且仅当4,03b 骣琪?琪桫时,()f x 有三个不同零点.21.(1)当1=a 时,函数2ln 21)(2--=x x x f ,xx x f 1)('-=, ∴0)1('=f ,23)1(-=f , ∴曲线)(x f 在点))1(,1(f 处的切线方程为23-=y . (2))0(1)('2>-=x xax x f . 当0≤a 时,0)('<x f ,)(x f 的单调递减区间为),0(+∞; 当0>a 时,)(x f 在),0(a a 递减,在),(+∞aa 递增.22.(Ⅰ)211()0sin f x x x θ'=-+≥∙在[1,)-+∞上恒成立,即2sin 10sin x x θθ∙-≥∙.∵(0,)θπ∈,∴sin 0θ>.故sin 10x θ∙-≥在[1,)-+∞上恒成立 只须sin 110θ∙-≥,即sin 1θ≥,又0sin 1θ<≤只有sin 1θ=,得2πθ=.由22111()0x f x x x x-'=-+==,解得1x =. ∴当01x <<时,()0f x '<;当1x >时,()0f x '>.故()f x 在1x =处取得极小值1,无极大值. (Ⅱ)构造1212()ln ln e e F x kx x kx x x x x+=---=--,则转化为;若在[1,]e 上存在0x ,使得0()0F x >,求实数k 的取值范围.当0k ≤时,[1,]x e ∈,()0F x <在[1,]e 恒成立,所以在[1,]e 上不存在0x ,使得0002()ekx f x x ->成立. ②当0k >时,2121()e F x k x x+'=+-2222121()kx e x kx e e e x x x ++-+++-==. 因为[1,]x e ∈,所以0e x ->,所以()0F x '>在[1,]x e ∈恒成立. 故()F x 在[1,]e 上单调递增,max 1()()3F x F e ke e ==--,只要130ke e-->, 解得231e k e +>. ∴综上,k 的取值范围是231(,)e e++∞.。
(完整版)高三导数压轴题题型归纳

导数压轴题题型1. 高考命题回顾例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷)(1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.(1)解 f (x )=e x -ln(x +m )⇒f ′(x )=e x -1x +m ⇒f ′(0)=e 0-10+m=0⇒m =1,定义域为{x |x >-1},f ′(x )=e x-1x +m=e x x +1-1x +1,显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1x +2(x >-2).h (x )=g ′(x )=e x -1x +2(x >-2)⇒h ′(x )=e x +1x +22>0,所以h (x )是增函数,h (x )=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (x )=g ′(x )=0的唯一实根在区间⎝⎛⎭⎫-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0⎝⎛⎭⎫-12<t <0, 所以,e t =1t +2⇒t +2=e -t ,当x ∈(-2,t )时,g ′(x )<g ′(t )=0,g (x )单调递减; 当x ∈(t ,+∞)时,g ′(x )>g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2t +2>0,当m ≤2时,有ln(x +m )≤ln(x +2),所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2121)0()1(')(x x f ef x f x +-=-(2012全国新课标) (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值。
高考导数压轴之题型归纳

专题01 导数起源于切线,曲线联系需熟练【题型综述】导数的几何意义:【注】曲线的切线的求法:若已知曲线过点P(x0,y0),求曲线过点P的切线,则需分点P(x0,y0)是切点和不是切点两种情况求解.(1)当点P(x0,y0)是切点时,切线方程为y−y0=f ′(x0)(x−x0);(2)当点P(x0,y0)不是切点时,可分以下几步完成:第一步:设出切点坐标P′(x1,f (x1));第二步:写出过P′(x1,f (x1))的切线方程为y−f (x1)=f ′ (x1)(x−x1);第三步:将点P的坐标(x0,y0)代入切线方程求出x1;第四步:将x1的值代入方程y−f (x1)=f ′(x1)(x−x1),可得过点P(x0,y0)的切线方程.求曲线y=f (x)的切线方程的类型及方法(1)已知切点P(x0, y0),求y=f (x)过点P的切线方程:求出切线的斜率f′(x0),由点斜式写出方程;(2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0, y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0, y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率,列方程(组)解得x0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k=f′(x0)求出切点坐标(x0, y0),最后写出切线方程.(5)①在点P处的切线即是以P为切点的切线,P一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.【典例指引】例1.(2013全国新课标Ⅰ卷节选)已知函数f(x)=x 2+ax +b ,g(x)=e x(cx +d),若曲线y =f(x)和曲线y =g (x)都过点P(0,2),且在点P 处有相同的切线y =4x+2. (Ⅰ)求a ,b ,c ,d 的值.(2)当时,曲线在点处的切线为,与轴交于点, 求证:.例3.已知函数在点处的切线方程为.⑴求函数的解析式;⑵若对于区间上任意两个自变量的值都有,求实数的最小值; ⑶若过点可作曲线的三条切线,求实数的取值范围. 为点不在曲线上,所以可设切点为. 则.因为,所以切线的斜率为所以方程有三个不同的实数解. 所以函数有三个不同的零点.则.令,则或.0>a )(x f y =)))((,(111a x x f x P >l l x )0,(2x A a x x >>21()()323,f x ax bx x a b R =+-∈()()1,1f 20y +=()f x []2,2-12,x x ()()12f x f x c -≤c ()()2,2M m m ≠()y f x =m ()()2,2M m m ≠()y f x =()00,x y 30003y x x =-()20033f x x '=-2033x -32002660x x m -++=()32266g x x x m =-++()2612g x x x '=-()0g x '=0x =2x =则 ,即,解得 则=,即.因为过点可作曲线的三条切线,【同步训练】1【思路引导】(1为切点,列出方程解出a ,b 的值;(Ⅱ)把a ,b 的值代入解析式,对函数求导判断单调性,根据单调区间写出函数的最值. 2.已知函数,其导函数的两个零点为-3和0.(1)求曲线在点处的切线方程;(2)求函数的单调区间; (3)求函数在区间上的最值. 【思路引导】对函数求导,由于导函数有两个零点,所以这两个零点值满足,解方程组求出m ,n ;利用导数的几何意义求切线方程,先求 f(1),求出切点,再求得出斜率,利用点斜式写出切线方程,求单调区间只需在定义域下解不等式和,求出增区间和减区间;求函数在闭区间上的最值,先研究函数在该区间的单调性、极值,求出区间两端点的函数值,比较后得出最值()0022g g >⎧⎪⎨<⎪⎩6020m m +>⎧⎨-+<⎩62m -<<2033x -300032x x mx ---32002660x x m -++=()()2,2M m m ≠()y f x =.3函数.已知图象为曲直线(1(2的最小值. 【思路引导】根据导数的几何意义,借助切点和斜率列方程求出,b c ,得出函数的解析式,利用导数解()0f x '<求出函数的单调减区间;对任意[]2,x m m ∈-,函数()()16f x g x m=为“storm ”函数,等价于在[]2,m m -上, ()()max min 16f x f x m -≤,根据函数()f x 的在[]2,m m -上的单调性,求出()f x 的最值,根据条件求出m 的范围,得出结论.4()4(1(2(3【思路引导】(1)求出原函数的导函数,得到导函数的零点,由零点对定义域分段,根据导函数在各区间段内的符号得到原函数的单调性;(2)设出点p 的坐标,利用导数求出切线方程3)由(2)知,(注:文档可能无法思考全面,请浏览后下载,供参考。
高考压轴题:导数题型及解题方法总结很全.

注意:“函数 f ( x) 在 m, n 上是减函数”与“函数 f ( x) 的单调减区间是 a, b ”的区别是前者是后者的子集。
例 已知函数 f (x) x2 a ln x + 2 在 1, x
(利用极值点的大小关系、及极值点与区间的关系分类)
1,2 的极小值。
二.单调性问题
题型 1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。分类的方法有:
ቤተ መጻሕፍቲ ባይዱ
( 1)在求极值点的过程中,未知数的系数与
0
的关系不定而引起的分类; (2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与
切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线 y x2 与曲线 y 2eln x 的公切线方程。 (答案 2 ex y e 0 )
三.极值、最值问题。
题型 1 求函数极值、最值。
基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。
例 已知函数 f (x) ex x (k 1) ex 1 x 2 kx 1 ,求在 x 2
3. 对 x1 m, n , x2 m, n , f ( x1 ) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) min 。
4. 对 x1 m, n , ,恒成立 4. 对 x1 m, n , x2 5. 对 x1 m, n , x2
f ( x1) g (x1) 。转化 f (x1) g(x1) 0 恒成立 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) min g (x2 )min 。 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) max
2023年导数压轴题题型解法归纳无答案

导数压轴题-----题型解法归纳一、导数在高考中旳地位:常作为压轴题来考察,尤其是解答题,至少占到14分;当然在选择题或者是填空题里也会出现1~2道,因此高考试卷中它占到了20分左右旳比重二、导数可以结合考察旳知识点:1、数列;2、不等式与方程;3、函数;4、解析几何其中最常见旳就是和函数、不等式旳结合,处理此类题目旳汉族到思想是构造新函数,运用导数求解单调性,进而证明不等式或者最值又或者是参数旳范围等等。
三、题型归纳:(新题、难题、考察知识点总结)(一)基础题目小试身手1.(不等式、函数旳性质)已知函数mxx x f ++=21ln )((Ⅰ)为定义域上旳单调函数,求实数旳取值范围;)(x f m (Ⅱ)当时,求函数旳最大值;1-=m )(x f (Ⅲ)当时,且,证明:1=m 10≤<≤a b 2)()(34<--<ba b f a f 2.(不等式恒成立问题)设函数.),10(3231)(223R b a b x a ax x x f ∈<<+-+-=(Ⅰ)求函数f (x )旳单调区间和极值;(Ⅱ)若对任意旳不等式恒成立,求旳取值范围],2,1[++∈a a x a x f ≤)('a 3.(导数旳简朴应用)已知函数xx f ln )(= (Ⅰ)若,求旳极大值;)()()(R a xa x f x F ∈+=)(x F (Ⅱ)若在定义域内单调递减,求满足此条件旳实数kx x f x G -=2)]([)(旳取值范围k 4.(不等式旳证明)已知函数.x x x f -+=)1ln()((1)求函数旳单调递减区间;(2)若,求证:≤≤)(x f 1->x 111+-x )1ln(+x x5、(不等式、存在性问题)已知,,)0,[),ln()(e x x ax x f -∈--=xx x g )ln()(--=其中是自然常数,e Ra ∈(1)讨论时, 旳单调性、极值;1-=a )(x f (2)求证:在(1)旳条件下,21)()(+>x g x f (3)与否存在实数,使旳最小值是3,若存在,求出旳值;若不a )(x f a 存在,阐明理由。
A050导数压轴大题归类 (学生版)

导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【技法指引】恒成立基本思维:①若k≥f(x)在[a,b]上恒成立,则k≥f(x)max;②若k≤f(x)在[a,b]上恒成立,则k≤f(x)min;③若k≥f(x)在[a,b]上有解,则k≥f(x)min;④若k≤f(x)在[a,b]上有解,则k≤f(x)max;【变式演练】1.已知函数f(x)=1+xe x,g(x)=1-ax2.(1)若函数f(x)和g(x)的图象在x=1处的切线平行,求a的值;(2)当x∈[0,1]时,不等式f(x)≤g(x)恒成立,求a的取值范围.题型二三角函数恒成立型求参【典例分析】1.已知函数f(x)=e x+cos x-2,f (x)为f(x)的导数.(1)当x≥0时,求f (x)的最小值;x+x cos x-ax2-2x≥0恒成立,求a的取值范围.(2)当x≥-π2时,xe【变式演练】1.已知函数f(x)=2x-sin x.(1)求f(x)的图象在点π2,fπ2处的切线方程;(2)对任意的x∈0,π2,f(x)≤ax,求实数a的取值范围.题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x,g x =ax2+1.(1)求函数f x 的最小值;(2)若不等式x+1恒成立,求m的取值范围;ln x-2x-1>m对任意的x∈1,+∞(3)若函数f x 的图象与g x 的图象有A x1,y1两个不同的交点,证明:x1x2>16.(参,B x2,y2考数据:ln2≈0.69,ln5≈1.61)【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;.(ii)证明:x22-x1<-a2+a+1a2题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x+axx,a∈R.(1)若a=0,求f x 的最大值;(2)若0<a<1,求证:f x 有且只有一个零点;(3)设0<m<n且m n=n m,求证:m+n>2e.【变式演练】1.已知函数f x =2ln x+x2+a-1x-a,(a∈R),当x≥1时,f(x)≥0恒成立.(1)求实数a的取值范围;(2)若正实数x1、x2(x1≠x2)满足f(x1)+f(x2)=0,证明:x1+x2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t =e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e -e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【变式演练】1.已知函数f x =e axx,g x =ln x+2x+1x,其中a∈R.(1)试讨论函数f x 的单调性;(2)若a=2,证明:xf(x)≥g(x).题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x+1x -1a∈R.(1)求函数f x 的单调区间;(2)当x∈0,1时,证明:x2+x-1x-1<e x ln x.【变式演练】1.已知函数f x =ae x-2-ln x+ln a.(1)若曲线y=f x 在点2,f2处的切线方程为y=32x-1,求a的值;(2)若a≥e,证明:f x ≥2.题型九放缩参数型消参证明不等式【典例分析】1.已知函数f x =12ax2+1-ax-ln x.(1)当a=-2时,求函数f x 的单调区间;(2)当a≥1时,证明:x>1时,当f x >1-ax+1x-1+12a恒成立.【变式演练】1.已知函数f x =ln ax-1+a ln x的图像在点1,f1处的切线方程为y=4x+b.(1)求a,b的值;(2)当k≥4时,证明:f x <k x-1对x∈1,+∞恒成立.题型十凸凹翻转型证明不等式【典例分析】1.已知函数f x =ax -ln x ,a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,e 时,求g x =e 2x -ln x 的最小值;(3)当x ∈0,e 时,证明:e 2x -ln x -ln x x>52.【变式演练】1.已知函数f (x )=ln x -x .(1)讨论函数g (x )=f (x )-a x(a ≠0,a ∈R )的单调性;(2)证明:f (x ) >ln x x +12.题型十一切线两边夹型证明不等式【典例分析】1.已知函数f(x)=6x-x6,x∈R.(1)求函数f(x)的极值;(2)设曲线y=f(x)与x轴正半轴的交点为P,求曲线在点P处的切线方程;(3)若方程f(x)=a(a为实数)有两个实数根x1,x2且x1<x2,求证:x2-x1≤615-a5.【变式演练】1.已知函数f(x)=x ln x-x.(1)设曲线y=f x 在x=e处的切线为y=g x ,求证:f(x)≥g x ;(2)若关于x的方程f(x)=a有两个实数根x1,x2,求证:x2-x1<2a+e+1 e .题型十二切线放缩型证明不等式【典例分析】1.已知函数f x =m x 22-k ln x +n e x +114e x +1-ax +a -1 ,其中e =2.718⋯是自然对数的底数,f x 是函数f x 的导数.(1)若m =1,n =0时 .(i )当k =1时,求曲线f x 在x =1处的切线方程.(ⅱ)当k >0时,判断函数f x 在区间1,e 零点的个数.(2)若m =0,n =1,当a =78时,求证:若x 1≠x 2,且x 1+x 2=-2,则f x 1 +f x 2 >2.【变式演练】1.已知函数f(x)=a(x-1)e x,a≠0.(1)讨论f(x)的单调性;(2)当a=1时,①求函数在x=1处的切线l,并证明0<x<1,函数f(x)图象恒在切线l上方;②若f(x)=m有两解x1,x2,且x1<x2,证明x2-x21<me-m.题型十三构造一元二次根与系数关系型证明不等式【典例分析】1.已知函数f x =x 2-x +k ln x ,k ∈R .(1)讨论函数f x 的单调性;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 -f x 2 <14-2k .【技法指引】利用一元二次型根与系数关系,可以构造:1.利用韦达定理代换:可以消去x1,x2留下参数2.一部分题依旧是极值点偏移【变式演练】1.已知函数f(x)=ln x+ax2-x.(1)若a=-1,求函数f(x)的极值;(2)设f′(x)为f(x)的导函数,若x1,x2是函数f′(x)的两个不相等的零点,求证:f(x1)+f(x2)<x1 +x2-5.题型十四【题型十四】两根差型证明不等式【典例分析】1.已知函数f x =e x-a ln aa>0,其中e=2.71828⋯是自然对数的底数.⋅x ln x(1)当a=e时,求函数f x 的导函数f x 的单调区间;(2)若函数f x 有两个不同极值点x1,x2且x1<x2;(i)求实数a的取值范围;(ii)证明:x2-x1≤e-a ln a.e-a ln a-4【变式演练】1.已知函数f x =ax2+1x.(1)当a=-4时,求f x 的极值点.(2)当a=2时,若f x 1≥ 3.,且x1x2<0,证明:x2-x1=f x2题型十五比值代换型证明不等式【典例分析】x(a为常数,a>0且a≠1).1.已知函数f x =x log a x-2+1ln a(1)求函数f x 的单调区间;(2)当a=e时,若g x =f x -12mx2+3x有两个极值点x1,x2,证明:ln x1+ln x2>0.【变式演练】1.已知函数f(x)=x2-1-a ln x恰有两个零点x1,x2x1>x2.(1)求实数a的取值范围;(2)证明:3x1+x2>6a.题型十六幂指对与三角函数型证明不等式【典例分析】1.已知函数f x =e x-ax-cos x,g x =f x -x,a∈R.(1)若f x 在0,+∞上单调递增,求a的最大值;(2)当a取(1)中所求的最大值时,讨论g x 在R上的零点个数,并证明g x >-2.【变式演练】1.已知函数f x =2sin x-x cos x-ax a∈R.(1)若曲线y=f x 在点0,f0处的切线与直线y=x+2平行.(i)求a的值;(ii)证明:函数f x 在区间0,π内有唯一极值点;(2)当a≤1时,证明:对任意x∈0,π,f x >0.题型十七不等式证明综合型【典例分析】1.已知函数f x =ae x-ln x+b,a,b∈R.(1)当a≥e,b=1时,证明f x >2;(2)当b=0时,令g x =f x -1①若g x 有两个零点,求a的取值范围;②已知1.098<ln3<1.099,e0.048<1.050,e-0.045<0.956,证明:1.14<lnπ<1.15.【变式演练】1.设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S 相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.(1)已知函数f(x)=x-2sin x.求证:y=x+2为曲线f(x)的“上夹线”;(2)观察下图:根据上图,试推测曲线S:y=mx-n sin x(n>0)的“上夹线”的方程,并给出证明.题型二好题演练好题演练1.(2023·江苏南通·高三校联考阶段练习)已知函数f(x)=e ax-1x-ln x x.(1)若a=0,关于x的不等式f(x)<m恰有两个整数解,求m的取值范围;(2)若f(x)的最小值为1,求a.2.(天一大联考皖豫名校联盟2023届高三第三次考试数学试题)已知函数f(x)=x(ln x-a)在区间x2-m,a,m∈R.[1,e]上的最小值为-1,函数g(x)=m2(1)求a的值;(2)设函数F(x)=f(x)-g(x),x 1,x2是F(x)的两个不同的极值点,且x1<x2,证明:2ln x1+3ln x2>5.3.(2023春·安徽马鞍山·高二马鞍山二中校考期中)已知函数f x =x3+ax+b,且满足f x 的导数y=f x 的最小值为-34.(1)求a值;(2)若函数y=f x 在区间-1,2上的最大值与最小值的和为7,求b值.4.(2023·吉林通化·梅河口市第五中学校考模拟预测)已知函数f x =ax l-ln x和g x =b ln x x有相同的最大值,并且ab=e.(1)求a,b;(2)证明:存在直线y=k,其与两条曲线y=f x 和y=g x 共有三个不同的交点,且从左到右的三个交点的横坐标成等比数列.5.(2023春·四川广安·高二广安二中校考期中)已知m>0,e是自然对数的底数,函数f x =e x+m -m ln mx-m.-4x+2-f x 的极值;(1)若m=2,求函数F x =e x+x22(2)是否存在实数m,∀x>1,都有f x ≥0?若存在,求m的取值范围;若不存在,请说明理由.6.(2023·广西南宁·统考二模)已知函数f x =e x-ax2+2ax-1,其中a为常数,e为自然对数底数,e=2.71828⋯,若函数f x 有两个极值点x1,x2.(1)求实数a的取值范围;(2)证明:x1-1+x2-1>2.7.(2023·山西·统考二模)已知函数f(x)=(mx-1)e x+n m,n∈R在点(1,f(1))处的切线方程为y=ex+2-e,g x =e xx+1(1)求f(x)的值域;(2)若f(a)=f(b)=g(c)=g(d),且a<b,c<d,证明:①c+d>0;②b+c>0.8.(2023春·湖南·高三校联考阶段练习)已知函数f x =e x-ln x-a-1 (1)若1,e+1为曲线y=f x 上一点,求曲线y=f x 在该点处的切线方程;(2)若a>0,证明:f x ≥1-aln a.9.(2023春·湖北武汉·高二华中师大一附中校考期中)已知f x =x ln x-12ax2有两个极值点x1,x2且x1>x2.(1)若f x 的极大值大于e22,求a的范围;(2)若x1>2x2,证明:x1+x2>3aln2.。
导数压轴题题型归纳

导数压轴题题型归纳1.高考命题回顾例1已知函数千3=6*—小&十巾).(2013全国新课标11卷)(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;⑵当mW2时,证明f(x)>0.例2已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2(2013全国新课标I卷)(I)求a,b,c,d的值(II)若x2—2时,f(x)-kg(x),求k的取值范围。
2. 在解题中常用的有关结论※⑴曲线产f (x )在X =X 0处的切线的斜率等于f (x 0),且切线方程为产f'(X 0)(x -X 0)+f (x 0)。
(2)若可导函数y =f(x)在X =X 0处取得极值,则f (x 0)=0。
反之,不成立。
(3)对于可导函数f (x ),不等式f ,(x )>0(<0)的解集决定函数f (x )的递增(减)区间。
(4)函数f (x )在区间I 上递增(减)的充要条件是:v x e I f (x )>0(<0)恒成立(f (x )不恒为0).(5)函数f(x )(非常量函数)在区间I 上不单调等价于f (x )在区间I 上有极值,则可等价转化为方程尸(x )=0在区间I 上有实根且为非二重根。
(若f (x )为二次函数且I=R ,则有A>0)。
(6) f(x )在区间I 上无极值等价于f (x )在区间在上是单调函数,进而得到f (x )>0或f (x )<0在I 上恒成立 ⑺若V x G I ,f (x )>0恒成立,则fx )min >0;若V x G I ,f (x )<0恒成立,则f (x )max<0 ⑻若三x 0G l ,使得f (x 0)>0,则^>0;若三x 0Gl ,使得f(x 0)<0,则)皿<0. (9)设f (x )与g (x )的定义域的交集为D ,若V x G D f (x )>g (x )恒成立,贝第[f (x )-g (x )]>0.min(10)若对V X|G I、匕e1,f(x J>g(x)恒成立,则f(x).>g(x).112212minmax若对V x e I3x e I,使得f(x)>g(x),则f(x)>g(x).112212minmin若对V x]e I,3x2G I2,使得f(x)<g(x),则f(x)<g(x).112212maxmax(11)已知f(x)在区间11上的值域为A,,g(x)在区间I2上值域为B,若对V x1e11,3x2e I2,使得f(x1)=g(x2)成立,则A之B。