免疫球蛋白分子的结构与功能
人免疫球蛋白结构和功能

人免疫球蛋白结构和功能免疫球蛋白(Immunoglobulin,简称Ig)是一种由B细胞产生的大分子蛋白,是人和其他脊椎动物体内最重要的一种抗体。
免疫球蛋白的主要功能是识别和结合抗原,从而触发免疫反应,帮助机体抵御感染。
免疫球蛋白的结构和功能非常复杂,本文将详细介绍免疫球蛋白的结构特点和功能机制。
免疫球蛋白的结构免疫球蛋白分子由两种不同的结构域组成,即可变区(variable region,简称V区)和常量区(constant region,简称C区)。
V区负责结合抗原,因此其结构非常多样化,每个免疫球蛋白分子的V区结构都不同,可以识别和结合不同的抗原。
C区则决定了免疫球蛋白的种类和功能,包括抗体的类型(如IgA、IgG、IgM等)和是否能够参与免疫识别。
免疫球蛋白分子是由两条轻链和两条重链组成的二聚体。
轻链和重链上分别有一个V区和一个C区。
V区和C区通过一个柔性的连接序列相连,使得V区可以与抗原结合,并通过C区进行信号转导。
不同种类的免疫球蛋白的C区结构不同,决定了免疫球蛋白的功能和活性。
免疫球蛋白的功能免疫球蛋白的主要功能是识别和结合抗原,触发免疫反应。
当抗原进入机体后,免疫球蛋白可以通过其V区结构与抗原特异性结合,形成抗原-抗体复合物。
这一过程激活了机体的免疫系统,触发了一系列的免疫反应,包括细胞毒性作用、吞噬作用、溶菌作用等,以消灭外来的病原体。
免疫球蛋白还可以参与机体的免疫调节。
例如,一些免疫球蛋白可以通过其F区域与免疫细胞的受体结合,调节免疫细胞的活性和功能。
另外,免疫球蛋白还可以促进炎症反应,通过与炎症介质结合,促进炎症反应的发生和维持。
此外,免疫球蛋白还可以参与机体的清除废物和调节免疫平衡。
一些免疫球蛋白分子可以与抗原特异性结合,帮助机体清除病原体和代谢产物。
另外,免疫球蛋白的种类和数量也可以影响机体的免疫平衡,对机体的免疫状态起到调节作用。
免疫球蛋白的不同类型和功能人体内有五种主要类型的免疫球蛋白,分别是IgG、IgA、IgM、IgD和IgE。
免疫球蛋白结构和功能

免疫球蛋白结构和功能
免疫球蛋白主要就是和抗体分子相似的球蛋白,主要是有两条氢链和有两条相同的重量,通过链接的二硫键进行连接成的四肽链结构。
免疫球蛋白主要分为五类。
免疫球蛋白的功能可以分为抗体和膜免疫球蛋白,抗体主要就是在血清中,可以特异性地结合抗原。
膜免疫球蛋白能够特异性地识别抗原分子。
免疫球蛋白实际上实际上是属于人体免疫的重要组成成分,对人体具有很好的保护作用,可以抵抗外界的细菌,起到消除致病成分的效果,同时也具有一定致病作用,可能导致自身免疫性的疾病,如类风湿性关节炎、红斑狼疮、紫癜等疾病,建议患者需要到正规的医院进行详细的检查之后,根据医生的指导建议针对性的治疗。
免疫球蛋白的结构与功能的关系

免疫球蛋白的结构与功能的关系免疫球蛋白是免疫系统中重要的蛋白质,也称为抗体。
它们由免疫细胞产生,能够识别和中和外来的抗原分子,保护机体免受感染。
免疫球蛋白的结构与功能之间有着密切的关系,这种关系体现在免疫球蛋白的四级结构和多样性、特异性、亲和力以及效应等方面。
免疫球蛋白的结构是由四级结构组成的,包括原型抗体的两条重链和两条轻链,通过二硫键连接在一起,形成重链、轻链和可变区、框架区等结构。
四级结构的组成为抗体提供了稳定的空间结构和分子稳定性,强大的抗体产生了多样性、特异性以及亲和力等功能。
免疫球蛋白能够显示出丰富的多样性,这主要体现在其变能区和框架区的序列变异。
变能区是抗体与抗原结合的部分,由三个高可变性区组成,这三个可变区共有107-115个氨基酸的多样性。
这种变异可以通过基因的重组和突变来产生,使免疫球蛋白可以识别和结合多种抗原物质,从而保护机体免受不同病原体的感染。
这种多样性是由基因重组和区域变异所引发的,使得免疫球蛋白具有高度特异性的抗原结合。
免疫球蛋白的特异性是指其与特定抗原的结合能力。
抗原是指能够诱导机体免疫应答的物质,包括细菌、病毒、寄生虫、肿瘤抗原以及一些药物等。
由于免疫球蛋白的多样性,它们可以结合成千上万种不同的抗原物质。
这种特异性使得免疫球蛋白能够与抗原物质形成特定的抗原-抗体复合物,通过中和、沉淀、凝集、增强吞噬细胞作用以及激活补体等方式对抗原物质进行处理。
免疫球蛋白的亲和力是指其与抗原物质结合的强度,也是抗体识别和结合抗原的重要能力之一、亲和力的强弱可以影响抗体与抗原结合的稳定性和强度,在一定程度上影响着免疫球蛋白的效能。
亲和力的大小与抗体的各种因素有关,包括可变区的氨基酸序列、特定的序列间作用、抗体构象以及各种结合位点的相互作用等。
通过不断的突变和筛选,免疫系统可以产生亲和力更高的抗体来提高免疫应答的效果。
免疫球蛋白的效应是指其通过与抗原结合而诱导的一系列生理和免疫反应。
免疫球蛋白的结构与功能

免疫球蛋白的结构与功能免疫球蛋白(Immunoglobulin,简称Ig)是由B淋巴细胞分泌的一种具有抗体活性的蛋白质分子。
它在机体免疫系统中起着关键的作用,能够识别并结合各种抗原,参与特异性免疫反应。
免疫球蛋白的结构与功能复杂多样,本文将就其结构和功能进行详细阐述。
免疫球蛋白的结构主要包括抗原结合位点、可变区和恒定区。
免疫球蛋白的抗原结合位点具有高度特异性,能够与抗原结合形成抗原抗体复合物。
可变区包括重链可变区(VH)和轻链可变区(VL),它们的氨基酸序列高度变异,决定了免疫球蛋白与不同抗原结合的能力。
恒定区则决定了免疫球蛋白的典型结构和生物活性,包括Fc区和Fab区。
Fab区是抗体分子中的抗原结合位点,能够与抗原特异性结合。
Fc区则与其他免疫细胞、补体系统等相互作用,调节和介导免疫反应。
免疫球蛋白有多种类型,包括IgG、IgA、IgM、IgD和IgE等。
它们在结构上有所不同,从而决定了它们的功能也有所不同。
其中,IgG是体液免疫主要抗体,能够通过胎盘传递给胎儿,提供持久性免疫保护。
IgA主要存在于黏膜表面,参与黏膜免疫反应,具有阻止抗原侵入黏膜的作用。
IgM是第一次免疫应答时最早产生的抗体,具有很高的亲和力和增强溶血能力。
IgD主要存在于B淋巴细胞表面,参与B细胞免疫应答的识别和激活。
IgE主要参与过敏反应,能够与呼吸道、皮肤等组织中的肥大细胞结合,引发过敏反应。
免疫球蛋白在机体免疫应答中具有以下功能。
首先,它能够与抗原特异性结合,形成抗原-抗体复合物,从而中和病原微生物,阻止其侵入机体细胞。
其次,免疫球蛋白能够激活补体系统,参与溶菌反应和炎症反应,进一步杀伤病原微生物。
此外,免疫球蛋白还能够与其他免疫细胞相互作用,如与巨噬细胞结合,促进其吞噬病原微生物。
免疫球蛋白还能够调节免疫反应的兴奋性和抑制性,维持免疫系统的平衡。
最后,免疫球蛋白能够激活B细胞和T细胞,促进免疫应答的形成和维持。
总之,免疫球蛋白作为体液免疫系统的主要组分,具有高度特异性和多样性的结构特点,能够与不同的抗原结合并参与免疫反应。
试述免疫球蛋白的基本结构及其主要生物学功能

免疫球蛋白(Immunoglobulin,简称Ig)是一类在人和其他脊椎动物中广泛存在的蛋白质分子,也被称为抗体。
免疫球蛋白的基本结构是由两个重链和两个轻链组成的Y形结构。
基本结构:
重链(Heavy chain):免疫球蛋白的重链分为五个类别:IgG、IgA、IgM、IgD和IgE。
每种类别的重链在结构和功能上有所不同。
轻链(Light chain):免疫球蛋白的轻链分为κ(kappa)和λ(lambda)两种类型。
在一个免疫球蛋白分子中,两个轻链是相同类型的。
主要生物学功能:
特异性识别:免疫球蛋白具有高度的特异性识别功能,可以与外来的抗原(如细菌、病毒、异物等)结合。
每个免疫球蛋白分子上的抗原结合部位称为抗原结合位点(Antigen-Binding Site),可以与抗原的特定部分形成配对,从而引发免疫反应。
中和与清除:免疫球蛋白可以通过与抗原结合,中和病原体的毒性或致病性,阻止其侵入和繁殖。
同时,它们还可以激活补体系统,促进病原体的清除。
免疫记忆:免疫球蛋白是体内免疫应答的关键组分。
当机体首次遭遇特定抗原时,免疫球蛋白会被产生并参与抗原的清除。
在后续再次遭遇相同抗原时,机体可以迅速产生更多相应的免疫球蛋白,以对抗病原体,这就是免疫记忆的基础。
免疫调节:某些免疫球蛋白可以调节免疫反应的强度和方向。
例如,某些IgG亚型可以调节炎症反应,参与自身免疫的调节和抗体依赖性细胞毒性。
试述免疫球蛋白的结构及功能

试述免疫球蛋白的结构及功能免疫球蛋白是一类重要的免疫分子,也被称为抗体。
它在机体免疫防御中起着至关重要的作用。
本文将试述免疫球蛋白的结构及功能。
免疫球蛋白的结构可以分为四个部分,包括两个重链和两个轻链。
每个链上都存在常见的结构域,如可变区和恒定区。
可变区决定了免疫球蛋白的抗原结合特异性,而恒定区则决定了免疫球蛋白的生物学活性和效应。
免疫球蛋白的功能非常多样化。
首先,免疫球蛋白可以通过特异性抗原结合来识别和中和病原体,从而保护机体免受感染。
其次,免疫球蛋白还可以通过激活免疫细胞,如巨噬细胞和NK细胞,来增强机体的免疫应答。
此外,免疫球蛋白还能够调节免疫系统的平衡,防止自身免疫反应过度激活。
免疫球蛋白的抗原结合特异性是由其可变区决定的。
可变区是免疫球蛋白分子中最多变的部分,其序列可以在免疫应答过程中发生基因重组和突变,从而产生数以百万计的不同抗体。
这种多样性使得免疫球蛋白能够识别和结合各种不同的抗原,包括细菌、病毒、真菌和其他致病微生物。
免疫球蛋白的结构也决定了其不同的功能。
例如,IgM是一种较大的免疫球蛋白,它可以形成五聚体,从而增加其结合抗原的力度和效果。
IgG是最常见的免疫球蛋白,它可以通过胎盘转运到胎儿体内,提供被动免疫保护。
IgA主要存在于黏膜表面,能够阻止病原体进入机体。
IgE则参与过敏反应,引起过敏症状。
免疫球蛋白在机体免疫防御中起着重要的作用。
当机体受到外界病原体的入侵时,免疫球蛋白能够识别并结合这些病原体,从而触发免疫应答。
这一过程涉及到多个免疫细胞和分子的协同作用。
一旦免疫球蛋白结合了病原体,它可以通过激活免疫细胞来引发炎症反应,从而吸引更多的免疫细胞到达感染部位。
免疫球蛋白还可以通过激活补体系统来直接破坏病原体。
除了防御病原体,免疫球蛋白还参与了机体的免疫调节。
它能够与调节性T细胞相互作用,通过调节细胞免疫和体液免疫的平衡来保持机体的免疫稳态。
一些免疫球蛋白还能够与细胞表面的受体结合,从而调控免疫细胞的活性和功能。
免疫球蛋白的结构和功能区

免疫球蛋白的结构和功能区免疫球蛋白是一类重要的免疫分子,也被称为抗体。
它在人体免疫系统中起着关键的作用,具有丰富多样的结构和功能区。
本文将从结构和功能两个方面介绍免疫球蛋白。
一、免疫球蛋白的结构免疫球蛋白的结构非常复杂,由多个组成部分组成。
它主要由四个多肽链组成,包括两个重链和两个轻链。
重链和轻链之间通过非共价键连接在一起,形成一个Y形的结构。
每个Y形结构的两个臂分别由一个重链和一个轻链组成。
重链和轻链的不同组合形成了不同类型的免疫球蛋白。
免疫球蛋白的结构还包括可变区和恒定区。
可变区位于免疫球蛋白的两个臂的末端,由大量氨基酸残基组成。
可变区的序列可以在不同的免疫球蛋白之间差异很大,从而赋予免疫球蛋白抗原结合的特异性。
恒定区位于可变区的内部和臂的基部,由相对稳定的氨基酸组成。
恒定区的序列相对保守,决定了免疫球蛋白的功能。
二、免疫球蛋白的功能区免疫球蛋白具有多种功能区,包括抗原结合区、效应区和补体结合区。
1. 抗原结合区:免疫球蛋白的抗原结合区位于可变区的末端。
它由特定的氨基酸序列组成,可以与抗原结合形成免疫复合物。
抗原结合区的多样性使得免疫球蛋白能够识别和结合不同的抗原,从而启动免疫应答。
2. 效应区:免疫球蛋白的效应区位于恒定区,具有不同的功能。
其中,IgG和IgE的效应区可以与免疫细胞表面的受体结合,介导免疫细胞的活化和效应。
IgM和IgD的效应区则参与了B细胞的激活和信号传导。
3. 补体结合区:部分免疫球蛋白的恒定区具有补体结合活性,可以激活补体系统。
补体是一组血浆蛋白,参与免疫反应的调节和效应。
免疫球蛋白通过与补体结合,可以引起炎症反应、细胞溶解和抗体依赖性细胞毒性等免疫效应。
免疫球蛋白的结构和功能区相互作用,共同发挥其重要的免疫功能。
它可以通过与抗原结合来识别和清除病原体,激活免疫细胞参与免疫应答,并调节和调控免疫反应的进行。
因此,免疫球蛋白在维护机体免疫平衡和抵御疾病方面起着至关重要的作用。
免疫球蛋白的结构和功能研究

免疫球蛋白的结构和功能研究免疫球蛋白(Immunoglobulin)是一类在人体免疫防御中起着至关重要作用的蛋白质,也被称为抗体。
免疫球蛋白具有极高的特异性,可以与各种病原体结合并识别出它们的抗原表位,从而发挥清除病原体的作用。
免疫球蛋白的研究在现代生命科学中占有重要地位,本文将介绍免疫球蛋白的结构和功能研究的相关内容。
免疫球蛋白的结构免疫球蛋白是由两个基本结构单元组成的分子,即Fab片段和Fc片段。
Fab片段指的是可以和抗原结合的部分,而Fc片段则负责免疫球蛋白的生物学效应。
在Fab片段内部,免疫球蛋白由两个重链和两个轻链组成,重链和轻链之间通过二硫键连接。
而Fab片段的外侧则有一个可变区(Variable region)和一个恒定区(Constant region)。
Variable region是由一些精细调节的基因重组事件产生的,其决定了免疫球蛋白的特异性。
而Constant region则决定了免疫球蛋白的种类和生物学效应。
Fc片段则是由两个重链连接而成的。
Fc片段的中央也有一个恒定区,而在两侧则有两个可变区。
而这些可变区的变化也会影响免疫球蛋白的生物学效应。
Fc片段还负责和免疫细胞的受体结合从而进行免疫调节。
免疫球蛋白的功能免疫球蛋白具有多种生物学效应,在人体抵御病原体的过程中扮演着至关重要的角色。
免疫球蛋白的最基本作用是与抗原结合并识别出它们的表位。
在这个过程中,免疫球蛋白可以识别出不同种类的抗原,并形成多种免疫球蛋白,这些免疫球蛋白之间各有特异性,能够保护人体免遭各种病原体的侵袭。
除了发挥直接清除病原体的作用外,免疫球蛋白还能够将病原体和其他白细胞组织起来形成免疫复合物,从而向免疫系统传递信号,启动免疫应答并促进炎症反应。
此外,免疫球蛋白还能够激活补体系统,促进病原体的溶解,加速免疫清除。
结论免疫球蛋白的结构和功能研究是现代生物学中的重要研究领域之一。
在未来的研究中,我们可以预计更多关于免疫球蛋白的细节信息和新的属性将被发现,并且这些发现将会促进人类抵御疾病的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、免疫球蛋白分子的基本结构Porter等对血清IgG抗体的研究证明,Ig分子的基本结构是由四肽链组成的。
即由二条相同的分子量较小的肽链称为轻链和二条相同的分子量较大的肽链称为重链组成的。
轻链与重链是由二硫键连接形成一个四肽链分子称为Ig分子的单体,是构成免疫球蛋白分子的基本结构。
Ig单体中四条肽链两端游离的氨基或羧基的方向是一致的,分别命名为氨基端(N 端)和羧基端(C端)。
图2-3 免疫球蛋白分子的基本结构示意图(一)轻链和重链由于骨髓瘤蛋白(M蛋白)是均一性球蛋白分子,并证明本周蛋白(BJ)是Ig分子的L链,很容易从患者血液和尿液中分离纯化这种蛋白,并可对来自不同患者的标本进行比较分析,从而为Ig分子氨基酸序列分析提供了良好的材料。
1.轻链(light chain,L)轻链大约由214个氨基酸残基组成,通常不含碳水化合物,分子量约为24kD。
每条轻链含有两个由链内二硫键内二硫所组成的环肽。
L链共有两型:kappa(κ)与lambda(λ),同一个天然Ig分子上L链的型总是相同的。
正常人血清中的κ:λ约为2:1。
2.重链(heavy chain,H链)重链大小约为轻链的2倍,含450~550个氨基酸残基,分子量约为55或75kD。
每条H链含有4~5个链内二硫键所组成的环肽。
不同的H链由于氨基酸组成的排列顺序、二硫键的数目和们置、含的种类和数量不同,其抗原性也不相同,根据H链抗原性的差异可将其分为5类:μ链、γ链、α链、δ链和ε链,不同H链与L链(κ或λ链)组成完整Ig的分子分别称之为IgM、IgG、IgA、IgD和IgE。
γ、α和δ链上含有4个肽,μ和ε链含有5个环肽。
(二)可变区和恒定区通过对不同骨髓蛋白或本周蛋白H链或L链的氨基酸序列比较分析,发现其氨基端(N-末端)氨基酸序列变化很大,称此区为可变区(V),而羧基末端(C-末端)则相对稳定,变化很小,称此区为恒定区。
1.可变区(variable region,V区)位于L链靠近N端的1/2(约含108~111个氨基酸残基)和H链靠近N端的1/5或1/4(约含118个氨基酸残基)。
每个V区中均有一个由链内二硫键连接形成的肽环,每个肽环约含67~75个氨基酸残基。
V区氨基酸的组成和排列随抗体结合抗原的特异性不同有较大的变异。
由于V区中氨基酸的种类为排列顺序千变万化,故可形成许多种具有不同结合抗原特异性的抗体。
L链和H链的V区分别称为VL和VH。
在VL和VH中某些局部区域的氨基酸组成和排列顺序具有更高的变休程度,这些区域称为高变区(hypervariable region,HVR)。
在V区中非HVR部位的氨基酸组面和排列相对比较保守,称为骨架区(fuamework rugion)。
VL 中的高变区有三个,通常分别位于第24~34、50~65、95~102位氨基酸。
VL和VH的这三个HVR分别称为HVR1、HVR2和HVR3。
经X线结晶衍射的研究分析证明,高变区确实为抗体与抗原结合的位置,因而称为决定簇互补区(complementarity-determiningregi-on,CDR)。
VL和VH的HVR1、HVR2和HVR3又可分别称为CDR1、CDR2和CDR3,一般的CDR3具有更高的高变程度。
高变区也是Ig分子独特型决定簇(idiotypic determinants)主要存在的部位。
在大多数情况下H链在与抗原结合中起更重要的作用。
图2-4 与表位结合高变区示意图(G表示相对保守的甘氨酸)2.恒定区(constant region,C区)位于L链靠近C端的1/2(约含105个氨基酸残基)和H链靠近C端的3/4区域或4/5区域(约从119位氨基酸至C末端)。
H链每个功能区约含110多个氨基酸残基,含有一个由二锍键连接的50~60个氨基酸残基组成的肽环。
这个区域氨基酸的组成和排列在同一种属动物Ig同型L链和同一类H链中都比较恒定,如人抗白喉外毒素IgG与人抗破伤风外毒素的抗毒素IgG,它们的V区不相同,只能与相应的抗原发生特异性的结合,但其C区的结构是相同的,即具有相同的抗原性,应用马抗人IgG 第二体(或称抗抗体)均能与这两种抗不同外毒素的抗体(IgG)发生结合反应。
这是制备第二抗体,应用荧光、酶、同位毒等标记抗体的重要基础。
(三)功能区Ig分子的H链与L链可通过链内二硫键折叠成若干球形功能区,每一功能区(domain)约由110个氨基酸组成。
在功能区中氨基酸序列有高度同源性。
1.L链功能区分为L链可变区(VL)和L链恒定区(CL)两功能区。
2.H链功能区IgG、IgA和IgD的H链各有一个可变区(VH)和三个恒定区(CH1、CH2和CH3)共四个功能区。
IgM和IgE的H链各有一个可变区(VH)和四个恒定区(CH1、CH2、CH3和CH4)共五个功能区。
如要表示某一类免疫蛋白H链恒定区,可在C(表示恒定区)后加上相应重链名称(希腊字母)和恒定区的位置(阿拉伯数字),例如IgG重链CH1、CH2和CH3可分别用Cγ1、Cγ2和Cγ3来表示。
IgL链和H链中V区或C区每个功能区各形成一个免疫球蛋白折叠(immunoglobulin fold,Ig fold),每个Ig折叠含有两个大致平行、由二硫连接的β片层结构(betapleated sheets),每个β片层结构由3至5股反平行的多肽链组成。
可变区中的高变区在Ig折叠的一侧形成高变区环(hypervariable loops),是与抗原结合的位置。
3.功能区的作用(1)VL和VH是与抗原结合的部位,其中HVR(CDR)是V区中与抗原决定簇(或表位)互补结合的部位。
VH和VL通过非共价相互作用,组成一个FV区。
单位Ig分子具有2个抗原结合位点(antigen-binding site),二聚体分泌型IgA具有4个抗原结合位点,五聚体IgM可有10个抗原结合位点。
(2)CL和CH上具有部分同种异型的遗传标记。
(3)CH2:IgGCH具有补体Clq结合点,能活化补体的经典活化途径。
母体IgG借助CH2部分可通过胎盘主动传递到胎体内。
(4)CH3:IgGCH3具有结合单核细胞、巨噬细胞、粒细胞、B细胞和NK细胞Fc段受体的功能。
IgMCH3(或CH3因部分CH4)具有补体结合位点。
IgE的Cε2和Cε3功能区与结合肥大细胞和嗜碱性粒细胞FCεRI有关。
4.铰链区(hinge region)铰链区不是一个独立的功能区,但它与其客观存在功能区有关。
铰链区位于CH1和CH2之间。
不同H链铰链区含氨基酸数目不等,α1、α2、γ1、γ2和γ4链的铰链区较短,只有10多个氨基酸残基;γ3和δ链的铰链区较长,约含60多个氨基酸残基,其中γ3铰链区含有14个半胱氨酸残基。
铰链区包括H链间二硫键,该区富含脯氨酸,不形成α-螺旋,易发生伸展及一定程度的转动,当VL、VH与抗原结合时此氏发生扭曲,使抗体分子上两个抗原结合点更好地与两个抗原决定簇发生互补。
由于CH2和CH3构型变化,显示出活化补体、结合组织细胞等生物学活性。
铰链区对木瓜蛋白酶、胃蛋白酶敏感,当用这些蛋白酶水解免疫球蛋白分子时常此区发生裂解。
IgM和IgE缺乏铰链区。
(四)J链和分泌成分1.J链(joining chain)存在于二聚体分泌型IgA和五聚体IgM中。
J链分子量约为15kD,由于124个氨基酸组成的酸性糖蛋白,含有8个半胱氨酸残基,通过二硫键连接到μ链或α链的羧基端的半胱氨酸。
J链可能在Ig二聚体、五聚体或多聚体的组成以及在体内转运中的具有一定的作用。
2.分泌成分(secretory component,SC)又称分泌片(secretory piece),是分泌型IgA 上的一个辅助成分,分子量约为75kD,糖蛋白,由上皮细胞合成,以共价形式结合到Ig分子,并一起被分泌到粘膜表面。
SC的存在对于抵抗外分泌液中蛋白水解酶的降解具有重要作用。
(五)单体、双体和五聚体1.单体由一对L链和一对H链组成的基本结构,如IgG、IgD、IgE血清型IgA。
2.双体由J链连接的两个单体,如分泌型IgA(secretory IgA,SIgA)二聚体(或多聚体)IgA结合抗原的亲合力(avidity)要比单体IgA高。
图2-5 分泌型IgA结构示意图3.五聚体由J链和二硫键连接五个单体,如IgM。
μ链Cys414(Cμ3)和Cys575(C 端的尾部)对于IgM的多聚化极为重要。
在J链存在下,通过两个邻近单体IgMμ链Cys之间以及J链与邻μ链Cys575之间形成二硫键组成五聚体。
由粘膜下浆细胞所合成和分泌的IgM五聚体,与粘膜上皮细胞表面pIgR(poly-Ig receptor,pIgR)结合,穿过粘膜上皮细胞到粘膜表面成为分泌型IgM(secretory IgM)。
(六)酶解片段1.本瓜蛋白酶的水解片段Porter等最早用木瓜蛋白酶(papain)水解兔IgG,从而区划获知了Ig四肽链的基本结构和功能。
(1)裂解部位:IgG铰链区H链链间二硫键近N端侧切断。
(2)裂解片段:共裂解为三个片段:①两个Fab段(抗原结合段,fragment of antigen binding),每个Fab段由一条完整的L链和一条约为1/2的H链组成,Fab段分子量为54kD。
一个完整的Fab段可与抗原结合,表现为单价,但不能形成凝集或沉淀反应。
Fab中约1/2H 链部分称为Fd段,约含225个氨基酸残基,包括VH、CH1和部分铰链区。
②一个Fc段(可结晶段,fragment crystallizable),由连接H链二硫键和近羧基端两条约1/2的H链所组成,分子量约50kD。
Ig在异种间免疫所具有的抗原性主要存在于Fc段。
图2-6人分泌型IgA和分泌型IgM的局部产生示意图图2-7 IgM结构示意图2.胃蛋白酶的水解片段Nisonoff等最早用胃蛋白酶(pepsin)裂解免疫球蛋白。
(1)裂解部位:铰链区H链链间二硫键近C端切断。
(2)裂解片段:1)F(ab')2:包括一对完整的L链和由链间二硫键相连一对略大于Fab中Fd的H链,称为Fd',约含235个氨基酸残基,包括VH、VH1和铰链区。
F(ab')2具有双价抗体活性,与抗原结合可发生凝集和沉淀反应。
双价的F(ab')2与抗原结合的亲合力要大于单价的Fab。
由于应用F(ab')2时保持了结合相应抗原的生物学活性,又减少或避免了Fc段抗原性可能引起的副作用,因而在生物制品中有较大的实际应用价值。
虽然F(ab')2与抗原结合特性方面同完整的Ig分子一样,但由于缺乏Ig中部分,因此不具备固定补体以及与细胞膜表面Fc受体结合的功能。