小学奥数第30讲 容斥原理问题(含解题思路)

合集下载

五年级奥数:用例题讲解【容斥问题】的解题方法

五年级奥数:用例题讲解【容斥问题】的解题方法

五年级奥数:用例题讲解【容斥问题】的解题方法
容斥问题是指在计数时,必须注意没有重复,没有遗漏。

例题
五年级(2)班有45人,其中有35人参加了美术兴趣小组,有21人参加了体育兴趣小组,并且每个人至少参加了一个兴趣小组。

那么,两个兴趣小组都参加的有多少人?
解题方法一
分析
因为:
两个兴趣小组的总人数是:35+21=56(人),五年级(2)班只有45人,就出现了(多出了):56-45=11(人)。

所以:
这个多出的11人就是35和21重叠(重复)的部分。

我们在计算时既不能重复,也不能遗漏。

这个题目里重复的部分(11人)就是两个兴趣小组都参加的人数。

列式
(1)35+21=56(人)
(2)56-45=11(人)
答:两个兴趣小组都参加的有11人
解题方法二
1、我们来看下面的图解法:
2、根据题意以及图解,可以得出:
(1)35+21=56(人)
(2)56-45=11(人)
3、答:两个兴趣小组都参加的人数是11人。

练习题
1、五年级(1)班有46人,参加音乐兴趣小组的有30人,参加舞蹈兴趣小组的有25人,并且每个人至少参加了一个兴趣小组。

你知
道两个小组都参加的有多少人吗?
2、1-500这500个数字中,能被5或7整除的数一共有多少个?
(附练习题答案:第1题9人;第2题157个)。

小学奥数第30讲容斥原理问题(含解题思路)教案资料

小学奥数第30讲容斥原理问题(含解题思路)教案资料

30、容斥原理问题
例1在1至1000的自然数中,不能被5或7整除的数有_________ ■个。

(莫斯科市第四届小学数学竞赛试题)
讲析:能被5整除的数共有1000-5=200 (个);
能被7整除的数共有1000-7=142 (个)……6 (个);
同时能被5和7整除的数共有1000-35=28 (个)……20 (个)。

所以,能被5或7整除的数一共有(即重复了的共有):
200+ 142—28=314 (个);
不能被5或7整除的数一共有
1000—314=686 (个)。

例2某个班的全体学生进行短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到了优秀。

这部分学生达到优秀的项目、人数如下表:
求这个班的学生人数
(全国第三届“华杯赛”复赛试题)
讲析:如图5.90,图中三个圆圈分别表示短跑、游泳和篮球达到优秀级的学生人数。

如剧5.90
只有篮球一项达到优秀的有
15—6—5+2=6(人);
只有游泳一项达到优秀的有
18—6—6+2=8(人);
只有短跑一项达到优秀的有
17—6—5+2=8(人)。

获得两项或者三项优秀的有
6 + 6+5—2X2=13 (人)。

另有 4 人一项都没获优秀。

所以,这个班学生人数是13+6+8+8+4=39(人)。

容斥问题应用题解题技巧及公式

容斥问题应用题解题技巧及公式

容斥问题应用题解题技巧及公式容斥原理是一种组合数学中常用的计数方法,用于解决包含重叠部分的计数问题。

常见的应用有如下几种情况:
1.求集合的并:当求两个集合的并集大小时,可以使用容斥原理来避免重复计数。

公式为|A∪B| = |A| + |B| - |A∩B|,其中|A∪B|表示A和B的并集大小,|A|表示集合A的大小,|B|表示集合B的大小,|A∩B|表示A和B的交集大小。

2.求集合的交:当求两个集合的交集大小时,可以使用容斥原理来避免重复计数。

公式为|A∩B| = |A| + |B| - |A∪B|,其中|A∩B|表示A和B的交集大小,|A|表示集合A的大小,|B|表示集合B的大小,|A∪B|表示A和B的并集大小。

3.求不满足某个条件的情况:当求满足某个条件的情况时,可以使用容斥原理来求不满足该条件的情况。

假设有n个事件,A1到An,分别表示这些事件,那么不满足任何一个事件的情况数目为S =
∑|Ai| - ∑|Ai∩Aj| + ∑|Ai∩Aj∩Ak| - ... +/-
|A1∩A2∩...∩An|。

其中|Ai|表示事件Ai发生的情况数目,
|Ai∩Aj|表示事件Ai和Aj同时发生的情况数目,依此类推。

在应用容斥原理解题时,需要注意对问题进行合理的划分,避免出现重复计数或者漏计的情况。

同时,需要对问题进行适当的拓展和转化,以便更好地利用容斥原理解决更复杂的计数问题。

小学奥数教程:容斥原理之数论问题_全国通用(含答案)

小学奥数教程:容斥原理之数论问题_全国通用(含答案)

1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.7-7-4 容斥原理之数论问题在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个? A B【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图,用长方形表示1~100的全部自然数,A 圆表示1~100中3的倍数,B 圆表示1~100中5的倍数,长方形内两圆外的部分表示既不是3的倍数也不是5的倍数的数.由1003331÷=可知,1~100中3的倍数有33个;由100520÷=可知,1~100中5的倍数有20个;由10035610÷⨯=()可知,1~100既是3的倍数又是5的倍数的数有6个.由包含排除法,3或5的倍数有:3320647+-=(个).从而不是3的倍数也不是5的倍数的数有1004753-=(个).【答案】53【巩固】 在自然数1100~中,能被3或5中任一个整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1003331÷=,100520÷=,10035610÷⨯=().根据包含排除法,能被3或5中任一个整除的数有3320647+-=(个).【答案】47【巩固】 在前100个自然数中,能被2或3整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图所示,A 圆内是前100个自然数中所有能被2整除的数,B 圆内是前100个自然数中所有能被3整除的数,C 为前100个自然数中既能被2整除也能被3整除的数.前100个自然数中能被2整除的数有:100250÷=(个).由1003331÷=知,前100个自然数中能被3整除的数有:33个.由10023164÷⨯=()知,前100个自然数中既能被2整除也能被3整除的数有16个.所以A 中有50个数,B 中有33个数,C 中有16个数.因为A ,B 都包含C ,根据包含排除法得到,能被2或3整除的数有:50331667+-=(个).【答案】67【例 2】 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1~1000之间,5的倍数有10005⎡⎤⎢⎥⎣⎦=200个,7的倍数有10007⎡⎤⎢⎥⎣⎦=142个,因为既是5的倍数,又是7的倍数的数一定是35的倍数,所以这样的数有100035⎡⎤⎢⎥⎣⎦=28个. 所以既不能被5除尽,又不能被7除尽的数有1000-200-142+-28=686个.【答案】686【巩固】 求在1至100的自然数中能被3或7整除的数的个数.【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 记 A :1~100中3的倍数,1003331÷=,有33个;B :1~100中7的倍数,1007142÷=,有14个;A B :1~100中3和7的公倍数,即21的倍数,10021416÷=,有4个.依据公式,1~100中3的倍数或7的倍数共有3314443+-=个,则能被3或7整除的数的个数为43个.【答案】43例题精讲【例 3】 以105为分母的最简真分数共有多少个?它们的和为多少?【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 以105为分母的最简真分数的分子与105互质,105=3×5×7,所以也是求1到105不是3、5、7倍数的数有多少个,3的倍数有35个,5的倍数有21个,7的倍数有15个,15的倍数有7个,21的倍数有5个,35的倍数有3个,105的倍数有1个,所以105以内与105互质的数有105-35-21-15+7+5+3-1=48个,显然如果n 与105互质,那么(105-n )与n 互质,所以以105为分母的48个最简真分数可两个两个凑成1,所以它们的和为24.【答案】48个,和24【巩固】 分母是385的最简真分数有多少个?并求这些真分数的和.【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 385=5×7×11,不超过385的正整数中被5整除的数有77个;被7整除的数有55个;被11整除的数有35个;被77整除的数有5个;被35整除的数有11个;被55整除的数有7个;被385整除的数有1个;最简真分数的分子可以有385-77-55-35+5+11+7-1=240.对于某个分数a/385如果是最简真分数的话,那么(385-a )/385也是最简真分数,所以最简真分数可以每两个凑成整数1,所以这些真分数的和为120.【答案】240个,120个【例 4】 在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有 个.【考点】容斥原理之数论问题 【难度】3星 【题型】填空【关键词】西城实验【解析】 1到2008这2008个自然数中,3和5的倍数有200813315⎡⎤=⎢⎥⎣⎦个,3和7的倍数有20089521⎡⎤=⎢⎥⎣⎦个,5和7的倍数有20085735⎡⎤=⎢⎥⎣⎦个,3、5和7的倍数有200819105⎡⎤=⎢⎥⎣⎦个.所以,恰好是3、5、7中两个数的倍数的共有1331995195719228-+-+-=个.【答案】228个【例 5】 求1到100内有____个数不能被2、3、7中的任何一个整除。

三年级奥数题及参考答案-容斥原理问题

三年级奥数题及参考答案-容斥原理问题

三年级奥数题及参考答案-容斥原理问题
编者导语:数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高教学水平、发现和培养数学人才都有着积极的作用。

这项活动也激励着广大青少年学习数学的兴趣,吸引他们去进行积极的探索,不断培养和提高他们的创造性思维能力。

为大家准备了小学三年级奥数题,希望小编整理的三年级奥数题及参考答案:容斥原理问题,可以帮助到你们,助您快速通往高分之路!!
容斥原理
三年级科技活动组共有 63人。

在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人。

每个同学都至少完成了一项活动。

问:同时完成这两项活动的同学有多少人?
解:因42+34=76,76>63,所以必有人同时完成了这两项活动。

由于每个同学都至少完成了一项活动,根据包含排除法知,42+34-(完成了两项活动的人数)=全组人数,即76-(完成了两项活动的人数)=63。

由减法运算法则知,完成两项活动的人数为
76-63=13(人)。

小学数学容斥问题

小学数学容斥问题

小学数学容斥问题篇一:数学运算--容斥问题数学运算--容斥问题容斥问题作为数学运算的重要题型之一,每个同学都需要掌握,并且在考试中快速解出答案。

容斥问题的解决方法主要有公式法和图示法,一般建议两种方法联合使用,图示法是为了便于理解题意和理清多个集合之间的关系,公式法适用于计算过程和最终解答。

一、两个集合之间的容斥问题。

1、图示法。

这张图中,A和B表示两个集合,中间阴影部分表示同时符合这两个集合要求的字迹。

例如,集合A表示数学好的学生,B 表示英语好的学生,那么中间阴影部分就代表数学和英语都好的学生。

而在国考的容斥问题中经常求所有学生的人数,实际上就是集合A和B所覆盖的总面积。

经验分享:虽然自己在这帖子里给大家发了很多感慨,但我更想跟大家说的是自己在整个公务员考试的过程中的经验的以及自己能够成功的考上的捷径。

首先就是自己的阅读速度比别人的快考试过程中的优势自然不必说,平时的学习效率才是关键,其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。

公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。

非常多的人输就输在时间上,我是特别注重效率的。

第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。

我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。

包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计过,我最多不超过3分钟,这样就比别人多出20几分钟,这在考试中是非常不得了的。

论坛有个帖子专门介绍速读的,叫做“得速读者得行测”,我就是看了这个才接触了速读,也因为速读,才获得了笔试的好成绩。

其实,不只是行测,速读对申论的帮助更大,特别是那些密密麻麻的资料,看见都让人晕倒。

小学奥数趣味学习《容斥问题》典型例题及解答

小学奥数趣味学习《容斥问题》典型例题及解答

小学奥数趣味学习《容斥问题》典型例题及解答容斥原理是解决计数问题的重要方法,在计数时要求注意无一重复无一遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

常见的容斥问题有两者容斥、三者容斥两种。

数量关系:A∪B = A+B - A∩BA∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C解题思路和方法:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。

可画文氏(韦恩)图来解题。

例题1:有两块木板各长50厘米,把两块木板钉成一块长木板,中间钉在一起的重叠部分长8厘米。

钉成的木板长 _____ 厘米。

解:1、本题考查了学生的运算能力、应用能力。

解决重叠问题时,要注意重叠的部分不能重复计算。

2、两块木板一共长50+50=100(厘米),如果钉在一起,说明原来的两个8厘米变成了一个8厘米,这样钉成的木板比100厘米少了8厘米,所以钉成的木板长100-8=92(厘米)。

例题2:有两张各长20厘米的纸条,粘贴在一起后的总长是36厘米,那么重叠部分长()厘米。

A、2B、4C、8D、16解:1、此题考查孩子的应用能力、运算能力。

孩子没有进行画图理解,只是凭自己的主观想象进行思考,没有找到总长度与重复部分长度之间的关系,在后面计算时出现错误。

2、两张纸条如果没有重叠,那么一共长20+20=40(厘米),而重叠后的长度是36厘米,短了40-36=4(厘米),说明重叠部分的长度是4厘米。

选择B。

例题3:某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,这个班共有多少人?解:根据题意画图2、我们可以先算出19+20+21=60(人),但是这里有被重复算的和漏算的,我们要注意减去重复的部分,加上漏算的部分。

数量关系之容斥问题解题原理及方法

数量关系之容斥问题解题原理及方法

数量关系之容斥问题解题原理及方法一、知识点1、集合与元素:把一类事物的全体放在一起就形成一个集合。

每个集合总是由一些成员组成的,集合的这些成员,叫做这个集合的元素。

如:集合A={0,1,2,3,……,9},其中0,1,2,…9为A的元素。

2、并集:由所有属于集合A或集合B的元素所组成的集合,叫做A,B的并集,记作A ∪B,记号“∪”读作“并”。

A∪B读作“A并B”,用图表示为图中阴影部分表示集合A,B的并集A∪B。

例:已知6的约数集合为A={1,2,3,6},10的约数集合为B={1,2,5,10},则A ∪B={1,2,3,5,6,10}3、交集:A、B两个集合公共的元素,也就是那些既属于A,又属于B的元素,它们组成的集合叫做A和B的交集,记作“A∩B”,读作“A交B”,如图阴影表示:例:已知6的约数集合A={1,2,3,6},10的约数集合B={1,2,5,10},则A∩B={1,2}。

4、容斥原理(包含与排除原理):(用|A|表示集合A中元素的个数,如A={1,2,3},则|A|=3)原理一:给定两个集合A和B,要计算A∪B中元素的个数,可以分成两步进行:第一步:先求出∣A∣+∣B∣(或者说把A,B的一切元素都“包含”进来,加在一起);第二步:减去∣A∩B∣(即“排除”加了两次的元素)总结为公式:|A∪B|=∣A∣+∣B∣-∣A∩B∣原理二:给定三个集合A,B,C。

要计算A∪B∪C中元素的个数,可以分三步进行:第一步:先求∣A∣+∣B∣+∣C∣;第二步:减去∣A∩B∣,∣B∩C∣,∣C∩A∣;第三步:再加上∣A∩B∩C∣。

即有以下公式:∣A∪B∪C∣=∣A∣+∣B∣+∣C∣-∣A∩B∣-∣B∩C∣- |C∩A|+|A∩B∩C∣二、例题分析:例1 求不超过20的正整数中是2的倍数或3的倍数的数共有多少个。

分析:设A={20以内2的倍数},B={20以内3的倍数},显然,要求计算2或3的倍数个数,即求∣A∪B∣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

30、容斥原理问题
例1 在1至1000的自然数中,不能被5或7整除的数有______个。

(莫斯科市第四届小学数学竞赛试题)
讲析:能被5整除的数共有1000÷5=200(个);
能被7整除的数共有1000÷7=142(个)……6(个);
同时能被5和7整除的数共有1000÷35=28(个)……20(个)。

所以,能被5或7整除的数一共有(即重复了的共有):
200+142—28=314(个);
不能被5或7整除的数一共有
1000—314=686(个)。

例2 某个班的全体学生进行短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到了优秀。

这部分学生达到优秀的项目、人数如下表:
求这个班的学生人数。

(全国第三届“华杯赛”复赛试题)
讲析:如图5.90,图中三个圆圈分别表示短跑、游泳和篮球达到优秀级的学生人数。

只有篮球一项达到优秀的有
15—6—5+2=6(人);
只有游泳一项达到优秀的有
18—6—6+2=8(人);
只有短跑一项达到优秀的有
17—6—5+2=8(人)。

获得两项或者三项优秀的有
6+6+5—2×2=13(人)。

另有4人一项都没获优秀。

所以,这个班学生人数是13+6+8+8+4=39(人)。

相关文档
最新文档