数字图像处理

合集下载

数字图像处理ppt课件

数字图像处理ppt课件

基于特征分类的辨认
总结词
通过提取图像中的特征,利用分类器对特征 进行分类,从而辨认图像的类别。
详细描写
基于特征分类的图像辨认方法是一种常用的 图像辨认方法。它通过提取图像中的特征, 如边缘、角点、纹理等,利用分类器如支持 向量机、神经网络等对特征进行分类,从而 辨认图像的类别。这种方法能够有效地提取 图像中的本质特征,并具有较强的鲁棒性,
纹理特征提取
灰度共生矩阵
通过分析图像中像素灰度值的空间依赖关系,形成共生矩阵,并从中提取出统 计特征,如对照度、能量和相关性等。该方法适用于描写图像的粗糙程度和方 向性。
小波变换
将图像分解成不同频率和方向的小波分量,通过分析小波系数的统计特性来提 取纹理特征。该方法能够有效地表示图像的细节信息和全局结构。
但特征提取和分类器的设计是关键。
基于深度学习的辨认
总结词
利用深度学习算法自动提取图像特征, 并进行分类辨认。
VS
详细描写
基于深度学习的图像辨认方法是目前研究 的热点。它利用深度学习算法如卷积神经 网络(CNN)等自动提取图像的特征, 并进行分类辨认。这种方法能够有效地从 原始图像中提取复杂的特征,并具有较高 的辨认准确率。但需要大量的标注数据进 行训练,且计算复杂度较高。
04
CATALOGUE
特征提取
颜色特征提取
颜色直方图
通过统计图像中不同颜色像素的数量 ,形成颜色直方图作为图像的颜色特 征。该方法简单、有效,适用于不同 光照和视角变化的场景。
颜色矩
利用图像颜色的散布信息,通过计算 一阶矩(均值)、二阶矩(方差)和 三阶矩(偏度)来表示颜色特征。该 方法对颜色突变和噪声不敏锐。
图像辨认
基于模板匹配的辨认

数字图像处理的主要内容

数字图像处理的主要内容

数字图像处理的主要内容
数字图像处理是将原始数字图像经过一系列特定步骤处理达到所需要的修改或
者提取图像相关信息的一种技术。

它包括图像采样、数字图像处理技术、图像参数维度,以及图像状态分析与特征抽取的等多种技术,是计算机视觉技术的一个重要组成部分。

数字图像采样,是将复杂的现实世界的信息片段,利用计算机进行图像编码处理,编码后进行数据采样,将采样结果以图像数据形式表示或显示出来,它通常将摄取到的图像数据编排成一系列矩阵,空间分辨率越高,代表的信息量越大,所采样出的图像就越清晰,通常采用RGB三原色或者灰度级,将原始图像进行信息处理,使图像变换成采样图形序列。

数字图像处理技术,是指对已经采样的图像进行编码与处理,将所采样的图像
数据变换成另一种形式,进行增强、转换、滤波、压缩、边缘检测、分割、提取特征等等,在不同参数精度上都得到所期望的结果。

比如,在处理图像边缘时,利用Robert、Prewitt等运算来实现图像边缘的提取,将图像中非边缘部分消除,是广
泛应用的数字图像处理技术。

图像参数的维度是指它所收集的图像参数的测量方法,其中包括图像尺寸、像
素数、色彩模式、分辨率等。

它可以影响到图像的色彩细节和色调等的变化,也可以用来改变图像的视觉效果,因此,有必要根据图像的数字图像处理要求,首先了解图像参数的维度,以决定有效操作方法。

最后,图像状态分析和特征抽取,即分析图像特征,提取好特征和信息,以用
于一些应用场景或参考,常见的技术有空间和时间域的处理方法,将图像变换成一系列特征向量,以用于特征相似度的评估,以及图像的聚类和分类等,可以用于分析图像的状态和特征,以支撑和管理图像应用中的信息抽取。

数字图像处理的基础知识

数字图像处理的基础知识

数字图像处理的基础知识数字图像处理是一种以计算机为基础的处理图像的技术。

它的核心是数字信号处理技术,其中包括数字滤波、傅里叶变换、数字图像处理等等。

数字图像处理主要是针对图像进行数字信号处理和计算机算法处理,从而得到使图像更加美观、清晰,同时也可对其进行各种分析和处理。

数字图像处理的基础知识包括图像的获取、表示和处理。

在此,我们将分别阐述这些基础知识。

一、图像的获取图像的获取方式有很多种,包括摄影、扫描、数码相机等等。

这些方式都可以将图像转化为数字信号,以便于计算机的处理。

在数字相机中,传感器采集光线信息并将其转化为电信号,再经过模数转换后保存在内存卡中。

而在扫描仪中,可以通过光线照射样品,然后采集样品的反射信息,保存成数字图像的形式。

二、图像的表示图像可以用矩阵的形式进行表示,其中每个矩阵的元素都对应图像中的一个像素点。

这个像素值可以代表颜色、灰度和亮度等信息。

将图像信息存储成数字矩阵的方式称为栅格画。

在黑白影像中,每个像素点只有黑和白两种颜色,每个像素点都用1或0表示。

在彩色图像中,每个像素中则由红绿蓝三原色按一定比例混合而成的颜色值来表示,并用数值表示。

这些数值也可以是整数或浮点数等形式。

另外,还有图像的压缩技术。

图像压缩通常包括有损压缩和无损压缩。

有损压缩会使压缩的图像失去一些细节,但能帮助减少图像的尺寸。

无损压缩则不会丢失图像的任何信息。

常见的无损压缩格式为PNG、BMP、TIFF等,常见的有损压缩格式为JPEG、GIF等。

三、图像的处理图像的处理包括预处理、增强、分割、检测和识别等等。

其中预处理指图像的去噪、灰度平衡、色彩校正等,以利用后续处理。

增强指通过调整图像的对比度、亮度等等,使图像更加清晰、唯美。

分割技术可以将图像分为多个区域,每个区域有独特的特征。

例如,我们可以用分割技术将人体和背景分开。

检测技术用于在图像中找到我们感兴趣的点,例如在医学图像中检测肿瘤。

识别技术允许计算机对图像中的对象进行分类,例如人脸识别技术和指纹识别技术等等。

数字图像处理技术

数字图像处理技术

数字图像处理技术数字图像处理技术是一种针对数字图像进行处理和分析的技术。

随着计算机技术的不断发展和普及,数字图像处理技术在图像处理领域中扮演着越来越重要的角色。

本文将详细介绍数字图像处理技术的概念、原理、应用及未来发展方向。

概念数字图像处理技术是指利用计算机对数字图像进行处理和分析的技术。

数字图像是通过像素表示的图像,而像素是图像最小的单元,每个像素都有其特定的数值表示颜色和亮度。

数字图像处理技术可以对图像进行各种操作,如增强图像的质量、提取图像特征、恢复图像信息等。

原理数字图像处理技术的原理主要包括图像获取、图像预处理、图像增强、图像分割、特征提取和图像识别等基本步骤。

1.图像获取:通过相机或扫描仪等设备获取数字图像,将图像转换为数字信号。

2.图像预处理:对原始图像进行去噪、几何校正、尺度变换等预处理操作,以提高后续处理的效果。

3.图像增强:通过直方图均衡化、滤波等方法增强图像的对比度、亮度等特征。

4.图像分割:将图像分割成若干个区域或对象,以便更好地分析和处理图像。

5.特征提取:提取图像中的特征信息,如颜色、纹理、形状等,为图像识别和分类提供依据。

6.图像识别:利用机器学习、深度学习等算法对图像进行分类、识别和分析。

应用数字图像处理技术在各个领域都有广泛的应用,如医疗影像分析、无人驾驶、安防监控、智能交通等。

以下列举一些典型的应用场景:•医疗影像分析:利用数字图像处理技术分析医学影像,辅助医生进行疾病诊断和治疗。

•安防监控:通过视频监控系统、人脸识别技术等实现对安全领域的监控和警报。

•智能交通:通过交通监控系统、车辆识别技术等提高交通管理效率和道路安全。

未来发展数字图像处理技术在人工智能、物联网等新兴技术的推动下不断发展和创新,未来的发展方向主要包括以下几个方面:1.深度学习在图像处理中的应用:深度学习技术在图像分类、目标检测等方面取得重大突破,将在数字图像处理领域得到更广泛的应用。

2.虚拟现实与增强现实:数字图像处理技术将与虚拟现实、增强现实技术结合,实现更加沉浸式的用户体验。

数字图像处理技术

数字图像处理技术

数字图像处理技术数字图像处理技术是一种利用计算机对图像进行处理和分析的技术。

随着计算机技术和图像采集设备的不断发展,数字图像处理技术已经广泛应用于影像处理、医学图像分析、机器视觉、模式识别等领域。

本文将重点介绍数字图像处理技术的基本原理、常见的图像处理方法和应用领域。

一、数字图像处理技术的基本原理数字图像处理是在计算机中对图像进行数值计算和变换的过程。

图像是由像素组成的二维数组,每个像素包含了图像中某一点的亮度或颜色信息。

数字图像处理技术主要包括如下几个基本步骤:1. 图像采集:利用摄像机、扫描仪等设备将实际场景或纸质图像转换成数字图像。

2. 图像预处理:对采集到的图像进行预处理,包括图像增强、去噪、几何校正等操作,以提高图像质量。

3. 图像变换:通过一系列的数值计算和变换,改变图像的亮度、对比度、颜色等特征,以满足特定的需求。

4. 图像分析:对图像进行特征提取、目标检测、模式识别等操作,以获取图像中的各种信息。

5. 图像展示:将处理后的图像显示在计算机屏幕上或输出到打印机、投影仪等设备上,以便人们观看和分析。

二、常见的图像处理方法1. 图像增强:通过调整图像的亮度、对比度、颜色等参数,使图像更清晰、更鲜艳。

2. 图像滤波:利用滤波器对图像进行低通滤波、高通滤波、中值滤波等操作,以去除噪声、平滑图像或增强边缘。

3. 图像分割:将图像分成若干个区域,以便更好地分析和识别图像中的目标。

4. 特征提取:从图像中提取出与目标相关的特征,如纹理特征、形状特征、颜色特征等。

5. 目标检测:利用机器学习、模式识别等方法,从图像中检测和识别出目标,如人脸、车辆等。

三、数字图像处理技术的应用领域数字图像处理技术在很多领域都有广泛的应用,以下列举几个主要的应用领域:1. 影像处理:数字图像处理技术可以应用于电影特效、动画制作、数字摄影等领域,提高影像的质量和逼真度。

2. 医学图像分析:数字图像处理技术可以应用于医学影像的分析、诊断和治疗,如CT扫描、核磁共振等。

数字图像处理

数字图像处理

第一章概论一、数字图像与像素数字图像是由一个个的像素(Pixel)构成的,各像素的值(灰度,颜色)一般用整数表示。

二、数字图像处理的目的1、提高图像的视觉质量。

2、提取图像中的特征信息。

3、对图像数据进行变换、编码和压缩。

三、工程三层次图像处理、图像分析和图像理解图像理解符号目标像素高层中层低层高低抽象程度数据量操作对象小大语义图像分析图像处理四、图像处理硬件系统组成图像输入设备(采集与数字化设备,如数码相机),图像处理设备(如PC机)和图像输出设备(如显示器,打印机)第二章数字图像处理基础一、图像数字化过程----采样与量化模拟图像的数字化包括采样和量化两个过程。

细节越多,采样间隔应越小。

把采样后得到的各像素的灰度值进一步转换为离散量的过程就是量化。

一般,灰度图像的像素值量化后用一个字节(8bit)来表示。

二、采样、量化与图像质量的关系采样点数越多,图像质量越好;量化级数越多,图像质量越好。

为了得到质量较好的图像采用如下原则:对缓变图像,细量化,粗采样,以避免假轮廓。

对细节化图像,细采样,粗量化,以避免模糊。

三、图像尺寸、数据量、颜色数量的计算灰度图像的像素值量化后用一个字节(8bit)来表示。

彩色图像的像素值量化后用三个字节(24bit)来表示。

一幅512X512(256K)的真彩色图像,计算未压缩的图像数据量是多少?(必考)图像总像素:512px*512px=256K总数据量:256K*3Byte=768KB一幅256X256(64K)的真彩色图像,计算未压缩的图像数据量是多少?图像总像素:256px*256px=64K总数据量:64K*1Byte=64KB四、数字图像类型二值图像、灰度图像、索引颜色图像)和真彩色图像。

五、数字图像文件的类型jpg、bmp、tif、gifJPEG采用基于DCT变换的压缩算法,为有损压缩。

六、图像文件三要素文件头、颜色表、图像数据七、读取一个图像,并将其尺寸缩小0.5倍,将缩小后的图像旋转30度。

数字图像处理

数字图像处理

数字图像处理数字图像,即将连续的模拟图像经过离散化处理后变成计算机能够辨识的点阵图像。

严格的数字图像是一个经过等距离矩形网格采样,对幅度进行等间隔量化的二维函数,因此,数字图像实际上就是被量化的二维采样数组。

而数字图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,由于图像处理是利用计算机实现的.因此也被称为计算机图像处理。

图像处理最早出现于 20 世纪 50 年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。

早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。

数字图像处理作为一门学科大约形成于 20 世纪 60 年代初期。

图像处理中,输入的是质量低的图像,输出的是改善质量后的图像。

例如可以用数码相机将难以看清的的资料拍摄下来输入计算机,将原始的资料变为数字图象,再用数字图象处理的方法将其处理还原,以达到人眼可以看清内容,进行研究的效果。

数字图象处理一般有两种基本的方法:一种方法是在图象的空间域中处理.即在图象空间中对图象本身直接进行各种处理优化,达到改善图象质量的目的;另一种方法是把空间图象进行某些转化,从空间域转到频率域里,再在频率域中进行各种处理,然后再转到空间域,形成处理后的图象,从而达到改善图象质量的目的。

而数字图像处理主要分为:图像变换,图像编码压缩,图像增强和复原,图像分割,图像描述和图像分类数字图像处理有以下几个基本特点:①处理精度高,再现性好。

②易于控制处理效果。

③处理具有多样性。

④数字图像中各个像素间的相关性和压缩的潜力大。

⑤图像数据量庞大。

⑥占用的频带较宽。

⑦图像质量评价受主观因素的影响。

⑧图像处理技术综合性强。

21世纪的图像技术要向高质量化方面发展,主要体现在以下几点:高分辨率、高速度:图像处理技术发展的最终目标是要实现图像的实时处理,移动目标的生成、识别和跟踪。

立体化:立体化所包括的信息最为完整和丰富,未来采用数字全息技术将有利于达到这个目的。

数字图像处理

数字图像处理

数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。

它涉及对数字图像进行获取、处理、分析和解释的过程。

数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。

本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。

数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。

在数字图像处理中,我们通常使用灰度图像和彩色图像。

•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。

灰度图像通常表示黑白图像。

•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。

彩色图像可以表示图像中的颜色信息。

图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。

1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。

2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。

3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。

常见的处理包括滤波、边缘检测、图像变换等。

4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。

常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。

常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。

•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。

•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。

•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。

边缘检测边缘检测是用于寻找图像中物体边缘的方法。

常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。

•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。

•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字图像处理》各章要求及必做题参考答案
第一章要求
了解图像及图像处理的概念、图像的表达方法、图像处理系统的构成及数字图像处理技术的应用。

必做题及参考答案
1.4 请说明图像数学表达式I = f ( x, y, z,λ , t,)
中各参数的含义,该表达式代表哪几种不同种类的图
像?
解答:
图像数学表达式I = f ( x , y , z , λ , t , ) 中,(x,y,z)是空间坐标,λ是波长,t 是时间,I 是光点(x,y,z)
的强度(幅度)。

上式表示一幅运动(t) 的、彩色/多光谱(λ) 的、立体(x,y,z)图像。

1.5 请说明f(x,y)表示的图像类型及与f (x, y, z,λ , t)之间的关系。

解答:
f (x, y, z,λ , t)表示一幅运动(t) 的、彩色/多光谱(λ) 的、立体(x,y,z)图像。

对于静止图像,则与时间t 无关;对于单色图像(也称灰度图像),则波长λ为一常数;对于平面图像,则与坐标z 无
关,故f(x,y)表示平面上的静止灰度图像,它是一般图像f (x, y, z,λ , t)的一个特例。

1.6 一个数字图像处理系统由哪几个模块组成?试说明各模块的作用。

解答:
一个基本的数字图像处理系统由图像输入、图像存储、图像输出、图像通信、图像处理和分析5
个模块组成,如下图所示。

图像通信
图像输入处理和分析图像输出
图像存储
各个模块的作用分别为:
图像输入模块:图像输入也称图像采集或图像数字化,它是利用图像采集设备(如数码照相机、数
码摄像机等)来获取数字图像,或通过数字化设备(如图像扫描仪)将要处理的连续图像转换成适于计
算机处理的数字图像。

图像存储模块:主要用来存储图像信息。

图像输出模块:将处理前后的图像显示出来或将处理结果永久保存。

图像通信模块:对图像信息进行传输或通信。

图像处理与分析模块:数字图像处理与分析模块包括处理算法、实现软件和数字计算机,以完成图
像信息处理的所有功能。

2
第二章要求
1. 了解三基色原理及颜色模型;
2. 了解人的视觉特性;
3. 了解图像数字化过程及分辨率变化对图像的影响;
4. 了解数字图像的表示形式和特点。

必做题及参考答案
2.6 人观察如题图2.6 所示两幅形状相同的目标图像时,会觉得哪一个目标更亮一些?与实际亮度有无
不同?简述理由。

[黑色(最暗)灰度值定为0,白色(最亮)灰度值定为255]
题图2.6
解答:
两个不同亮度的目标物处于不同亮度的背景中,人会按对比度感觉目标物的亮度对比,因此人感觉
(a)要亮一些,但事实上,目标(b)的实际亮度要高于(a)的实际亮度。

2.7 在串行通信中,常用波特率描述传输的速率,它被定义为每秒传输的数据比特数。

串行通信中,
数据传输的单位是帧,也称字符。

假如一帧数据由一个起始比特位、8 个信息比特位和一个结束比
特位构成。

根据以上概念,请问:
(1)如果要利用一个波特率为56kbps(1k=1000)的信道来传输一幅大小为1024×1024、256 级灰度的数字图像需要多长时间?
(2)如果是用波特率为750kbps 的信道来传输上述图像,所需时间又是多少?
(3)如果要传输的图像是512×512的真彩色图像(颜色数目是32 bit),则分别在上面两种信道
下传输,各需要多长时间?
解答:
(1)传输的比特数为1024×1024×8×(1+8+1)/8=10485760,则在波特率为56kbps 的信道上传输时,所需时间为10485760/56000=187.25 秒。

(2)传输的比特数为1024×1024×8×(1+8+1)/8=10485760,则在波特率为750kbps 的信道上传输时,所需时间为10485760/750000=13.98 秒。

(3)传输的比特数为512×512×32×(1+8+1)/8=10485760。

在波特率为56kbps 的信道上传输时,所需时间为10485760/56000=187.25 秒;在波特率为750kbps 的信道上传输时,所需时间为
10485760/750000=13.98 秒。

2.10(1)存储一幅1024×768,256 个灰度级的图像需要多少bit?
(2)一幅512×512 的32 bit 真彩图像的容量为多少bit?
解答:
(1)一幅1024×768,256 个灰度级的图像的容量为:b=1024×768×8 = 6291456 bit
(2)一幅512×512的32位真彩图像的容量为:b=512×512×32=8388608 bit
20 50
60 100
背景
目标
(a)(b)
3
2.11 某一线性移不变系统,其点扩展函数h(x, y)是输入为δ (x)δ ( y)时系统的输出,求下述情况下的
调制转移函数H(u, v)。

(1)0 0 h( x, y) = δ (x − x )δ ( y − y )
(2)| | | | ( , ) {0 h x y = E x ≤ a y ≤ b ,和,其他
(3)( , ) ( , ) {0 h x y = E x y ∈R ,
,其他
其中R 如题图2.11 所示。

解答:
(1)H(u,v) h(x, y)e juxe jvydxdy +∞ +∞ − −
−∞ −∞
= ∫ ∫ 0 0 δ (x x )δ ( y y )e juxe jvydxdy +∞ +∞ − −−∞ −∞
= ∫ ∫ − −
0 0 δ (x x )e juxdx δ ( y y )e jvydy +∞ − +∞ −
−∞ −∞
= ∫ − ∫ − = e− jux0e− jvy0
(2)( , ) ( , ) a b jux jvy
a b
H u v h x y e e dxdy + + − −
− −
= ∫ ∫
a jux
b jvy
a b
E e dx e dy + − + −
− −
= ∫ ∫
e jua e jua e jvb e jvb E
ju jv
− − − −
=
− −
4E sin uasin vb
uv
=
(3)H(u,v) h(x, y)e juxe jvydxdy +∞ +∞ − −
−∞ −∞
= ∫ ∫
x a jux jvy a x a jux jvy
a xa xa
dx Ee e dy dx Ee e dy + − − − + − −
− − − −
= ∫ ∫ + ∫ ∫
jux 2sin ( ) a jux 2sin ( ) a
E e v x a dx E e v x a dx v v
− −

+ − +
= ∫ + ∫
0 jux 2sin ( ) 0 jux 2sin ( )
a a
E e v x a dx E e v x a dx v v

− −
+ +
= ∫ − ∫
( )
( )
( )
2 2
2 sin ( )
4 sin sin ( )
4 sin sin
jux jux
a
a
E e e vx adx
v
jE ux v x a dx
v
jE u va v ua
v u v



= ⎡− + ⎤⎢⎣⎥⎦
− ⎡⎤ = ⎢ + ⎥⎣⎦

=

∫。

相关文档
最新文档