图像的空域增强
实验二空域图像增强

实验三空域图像增强一、实验目的与要求1、掌握灰度直方图的概念及其计算方法;2、熟练掌握直力图均衡化和直方图规定化的计算过程;3、熟练掌握空域滤波中常用的平滑和锐化滤波器;4、掌握色彩直方图的概念和计算方法5、利用MATLAB程序进行图像增强。
二、实验内容与步骤1、图像的直方图与直方图均衡方法a. 从硬盘加载cameraman.tif图象(using function imread).b. 显示图象.c. 显示图象的直方图(using function imhist).d. 用直方图均衡方法进行图象增强.e. 对处理后的图象显示其直方图.f. 比较图象的质量并且进行讨论.代码如下:I=imread(‘原图像名.gif); % 读入原图像J=histeq(I); %对原图像进行直方图均衡化处理Imshow(I); %显示原图像Title(‘原图像’); %给原图像加标题名Figure;imshow(J); %对原图像进行屏幕控制;显示直方图均衡化后的图像Title(‘直方图均衡化后的图像’) ; %给直方图均衡化后的图像加标题名Figure; subplot(1,2,1) ;%对直方图均衡化后的图像进行屏幕控制;作一幅子图作为并排两幅图的第1幅图Imhist(I,64); %将原图像直方图显示为64级灰度Title(‘原图像直方图’) ; %给原图像直方图加标题名Subplot(1,2,2); %作第2幅子图Imhist(J,64) ; %将均衡化后图像的直方图显示为64级灰度Title(‘均衡变换后的直方图’) ; %给均衡化后图像直方图加标题名从处理前后的图像可以看出,许多在原始图像中看不清楚的细节在直方图均衡化处理后所得到的图像中都变得十分清晰。
2、对图象加入躁声,改变噪声参数(均值、方差或比例),比较其影响。
使用3x3或7x7的均值滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。
图像增强的基本原理

图像增强的基本原理图像增强是一种用于改善图像视觉质量或提取目标特征的技术。
它通过改变图像的亮度、对比度、颜色、清晰度等属性来增强图像的可视性和可识别性。
图像增强的基本原理可以归纳为以下几点:1. 空域增强:采用空域操作,即对图像的每个像素进行操作。
常见的空域增强方法有直方图均衡化、灰度拉伸、滤波等。
直方图均衡化通过重新分布图像中像素的亮度来增加图像的对比度,灰度拉伸则通过线性转换将图像的亮度范围拉伸到整个灰度级范围内。
滤波则通过应用低通、高通、中通等滤波器来增强图像的细节和轮廓。
2. 频域增强:采用频域操作,即将图像转换到频域进行处理。
常见的频域增强方法有傅里叶变换、小波变换等。
傅里叶变换可以将图像从空域转换到频域,通过对频谱进行滤波操作来增强图像的细节和边缘。
小波变换则可以将图像分解为不同频率的子带,可以更加灵活地选择性地增强特定频率的信息。
3. 增强算法:通过应用特定的增强算法来增强图像的视觉效果。
常用的增强算法有Retinex算法、CLAHE算法等。
Retinex算法通过模拟人眼对光源的自适应调整能力来增强图像的亮度和对比度,CLAHE算法则通过分块对比度受限的直方图均衡化来增强图像的细节和纹理。
4. 机器学习方法:利用机器学习算法对图像进行增强。
通过训练模型,学习图像的特征和上下文信息,然后根据学习到的模型对图像进行增强处理。
常见的机器学习方法包括卷积神经网络、支持向量机等。
综上所述,图像增强的基本原理包括空域增强、频域增强、增强算法和机器学习方法等。
这些原理可以单独或结合使用,根据图像的特点和需求,选择合适的方法来对图像进行增强处理,以获得更好的图像视觉质量和目标特征提取效果。
遥感入门-遥感数字图像增强处理

或:
Lg g ( x, y ) f ( x, y ),
研究边缘灰度 级的变化,但 不受背景影响
只对边缘位置 感兴趣
f ( x, y ) g ( x, y ) Lb , L g ( x, y ) g Lb ,
直方图规定化
直方图规定化
T(xa)为原图像直方图均衡化的变换函 数,G(yc)为参考图像直方图均衡化的变换函 数,变换后的灰度值均为Zb,由上述可知
Z b T ( xa ) ha( xaj )
j 0 k k
Z b G ( yc ) hc( ycj )
j 0
yc G ( zb ) G [T ( xa )]
4
6 5 5 4 3 3
0.35
0.47 0.57 0.67 0.76 0.82 0.88
0.33
0.51 0.51 0.67 0.82 0.82 0.92
14 /16
15 /16 1
2
2 2
0.92
0.96 1
0.92
1.00 1.00
空域增强-邻域增强
• 邻域
对于图像中的某个像元f(x,y),把以像元为中心一定距 离内的像元集合Axy={x±p,y±q}(p,q取任意整数) 叫做该像元的邻域。
用这种非线性的滤波,比邻域平均法可以在很大的程 度上防止边缘的模糊。
3
5
10 12 16
2
5
4
6
8
8
10 5
3 7
4
3
6
7
45 8
10 19
30 8
试用1*3和3*3的窗口对此进行中值滤波
数字图像处理冈萨雷斯空间域图像增强(共104张PPT)

例如每个象素点的灰度值用8bit表示,假设某像素点的灰度值为00100010,分解处理 如下 :
00100010
00000000(0) 00000010(2)
00000000(0)
00000000(0) 00000000(0)
001000(0302) 00000000(0)
这样这个位置的像素,就分解 成了8局部,各局部的值转成
1时 , 该 变 换 将
低 灰 度 值 ( 暗 值 ) 进 行 拉 伸
例 : 0.4时 , 该 变 换 将 动 态 范 围
从 [0,L5]扩 展 到 [0,L2]
1时 , 该 变 换 将
L5
高 灰 度 值 ( 亮 值 ) 进 行 拉 伸
3.2 根本灰度变换
幂次变换应用 (伽马)校正 s cr
00000000(0)
十进制就是该点在该位平面上
的灰度值。
④分段线性变换函数
3.2 根本灰度变换
位图切割
位图切割例如
位图切割在图像压缩和重建中的应用
重建:
①第n个bit平面的每个像素 2 n1 ;
②所有bit平面相加;
MATLAB 例子:线性变换
I=imread('pout.tif');
pout=double(I);
随机变量:不一定是均匀分布的
根据该方程可以由原图像的各像素灰度值直接得到直方图 均衡化后各灰度级所占的百分比
➢直方图均衡化处理的计算步骤如下:
(1)统计原始图象的直方图
是rk 输入图象灰度级; (2)计算直方图累积分布曲线
pr
rk
nk n
3.3 直方图处理
sk T(rk)j k0pr(rj)j k0nnj
简述空域处理方法和频域处理方法的区别

空域处理方法和频域处理方法是数字图像处理中常见的两种基本处理方法,它们在处理图像时有着不同的特点和适用范围。
下面将从原理、应用和效果等方面对两种处理方法进行简要介绍,并对它们的区别进行分析。
一、空域处理方法1. 原理:空域处理是直接对图像的像素进行操作,常见的空域处理包括图像增强、平滑、锐化、边缘检测等。
这些处理方法直接针对图像的原始像素进行操作,通过像素之间的关系来改变图像的外观和质量。
2. 应用:空域处理方法广泛应用于图像的预处理和后期处理中,能够有效改善图像的质量,增强图像的细节和对比度,以及减轻图像的噪声。
3. 效果:空域处理方法对图像的局部特征和细节有很好的保护和增强作用,能够有效地改善图像的视觉效果,提升图像的清晰度和质量。
二、频域处理方法1. 原理:频域处理是通过对图像的频率分量进行操作,常见的频域处理包括傅立叶变换、滤波、频域增强等。
这些处理方法将图像从空间域转换到频率域进行处理,再通过逆变换得到处理后的图像。
2. 应用:频域处理方法常用于图像的信号处理、模糊去除、图像压缩等方面,能够有效处理图像中的周期性信息和干扰信号。
3. 效果:频域处理方法能够在频率域对图像进行精细化处理,提高图像的清晰度和对比度,对于一些特定的图像处理任务有着独特的优势。
三、空域处理方法和频域处理方法的区别1. 原理不同:空域处理方法直接对图像像素进行操作,而频域处理方法是通过对图像进行频率分析和变换来实现图像的处理。
2. 应用范围不同:空域处理方法适用于对图像的局部特征和细节进行处理,而频域处理方法适用于信号处理和频率信息的分析。
3. 效果特点不同:空域处理方法能更好地保护和增强图像的细节和对比度,频域处理方法能更好地处理图像中的周期性信息和干扰信号。
空域处理方法和频域处理方法是数字图像处理中常用的两种处理方法,它们在原理、应用和效果等方面有着不同的特点和适用范围。
在实际应用中,可以根据图像的特点和处理需求选择合适的方法,以获得更好的处理效果。
微弱红外目标图像增强技术研究

微弱红外目标图像增强技术研究微弱红外目标图像增强技术研究引言:红外图像技术在军事、安防、医学等领域具有重要的应用价值。
然而,由于红外图像的特殊性质,即目标低热性、低对比度和低分辨率等问题,使得微弱红外目标的检测和识别成为一项具有挑战性的任务。
为了克服这些问题,研究人员提出了各种微弱红外目标图像增强技术。
本文将对几种常见的微弱红外目标图像增强技术进行综述,并对各种技术的优缺点进行评述。
一、微弱红外目标图像增强技术综述1. 直方图均衡化技术:直方图均衡化是一种常见的图像增强技术,通过将图像的灰度级分布均匀化,增强图像的对比度和细节。
然而,直方图均衡化容易导致图像的亮度和对比度过度增强,同时在图像局部细节的增强方面效果较差。
2. 基于滤波的增强技术:滤波技术被广泛应用于红外图像增强中,包括中值滤波、高斯滤波和自适应滤波等。
这些滤波方法可以有效去噪,但在增强微弱红外目标方面存在一定局限性,容易产生边缘模糊等不可逆失真。
3. 空域增强技术:空域增强技术是基于图像局部统计特性进行增强的方法,包括维纳滤波、谱偏移、算子滤波等。
这些技术能够提高图像的对比度和边缘信息,但对于微弱红外目标的增强效果有限。
4. 基于光谱特征的增强技术:利用红外图像的光谱特征进行增强是一种有效的策略,包括基于小波多尺度分析的增强方法、多尺度Retinex增强方法等。
这些方法将图像分解为不同尺度的子带,通过增强各个子带的细节信息,提高了微弱红外目标的可见度。
二、微弱红外目标图像增强技术优缺点评价1. 直方图均衡化技术:优点:简单易行,适用于快速增强红外图像的场景。
缺点:容易造成过度增强和细节信息丢失。
2. 基于滤波的增强技术:优点:能够有效去噪,提高图像的清晰度。
缺点:容易造成边缘模糊和不可逆失真。
3. 空域增强技术:优点:能够提高图像的边缘信息和对比度。
缺点:对微弱红外目标的增强效果有限。
4. 基于光谱特征的增强技术:优点:提高了微弱红外目标的可见度。
图像增强-数字图像处理

图像增强
2.图像噪声的特点 (1)噪声在图像中的分布和大小不规则,即具有随机性。 (2)噪声与图像之间一般具有相关性。 (3)噪声具有叠加性。
图像增强
3.3.2 模板卷积 模板操作是数字图像处理中常用的一种邻域运算方式,
灰度变换就是把原图像的像素灰度经过某个函数变换成 新图像的灰度。常见的灰度变换法有直接灰度变换法和直方 图修正法。直接灰度变换法可以分为线性变换、分段线性变 换以及非线性变换。直方图修正法可以分为直方图均衡化和 直方图规定化。
图像增强
3.1.1 线性变换 假定原图像f(x,y)的灰度范围为[a ,b],希望变换后图像
ቤተ መጻሕፍቲ ባይዱ
图像增强
例如,假定一幅大小为64×64、灰度级为8个的图像,其灰 度分布及均衡化结果如表3-1 所示,均衡化前后的直方图及变 换用的累积直方图如图3-10所示,则其直方图均衡化的处理 过程如下。
图像增强
图像增强 由式(3-12)可得到一组变换函数:
依此类推:s3=0.81,s4=0.89,s5=0.95,s6=0.98,s7=1.0。变换函 数如图3-10(b)所示。
图像增强
1
图像增强
图3-1 灰度线性变换
图像增强
图3-2 灰度线性变换示例
图像增强
3.1.2 分段线性变换 为了突出感兴趣的灰度区间,相对抑制那些不感兴趣的
灰度区间,可采用分段线性变换。常用的3段线性变换如图33所示,L 表示图像总的灰度级数,其数学表达式为
图像增强
图3-3-分段线性变换
图像增强
设r 为灰度变换前的归一化灰度级(0≤r≤1),T(r)为变换函 数,s=T(r)为变换后的归一化灰度级(0≤s≤1),变换函数T(r)满足 下列条件:
图像处理中的图像质量评价与图像增强技术研究

图像处理中的图像质量评价与图像增强技术研究图像处理是一门研究如何利用计算机技术对图像进行处理和分析的学科。
在现代社会中,图像处理技术已经广泛应用于各个领域,如医学影像分析、远程感知、计算机视觉等。
然而,在图像处理的过程中,图像质量评价和图像增强技术是两个重要的问题。
本文将从图像质量评价和图像增强技术两个方面,来探讨图像处理中的相关研究内容。
一、图像质量评价图像质量评价是图像处理中常用的一个重要指标,它可以用来评价图像的清晰度、对比度和色彩等特征。
图像质量评价的目的是帮助我们找出图像中存在的问题,以便进一步采取措施对图像进行处理和修复。
1. 主观评价主观评价是人眼对图像质量的直观感受。
在主观评价中,一些训练有素的观察者被要求对一组图像进行评价,然后通过统计分析得到图像的质量评分。
主观评价的优点是能够真实地反映人眼对图像的感受,但其缺点在于评分的主观性和人为因素的干扰。
2. 客观评价客观评价是利用计算机算法对图像进行分析和评价。
常用的客观评价方法包括均方根误差(MSE)、峰值信噪比(PSNR)和结构相似性指标(SSIM)等。
这些评价指标可以通过计算图像的差异性来得到图像质量评分,客观评价的优点在于能够自动化地进行评价,但其缺点是无法完全代表人眼对图像的感受。
二、图像增强技术图像增强技术是指通过各种算法和方法对图像进行处理,以改善图像的质量和细节。
图像增强技术的目的是使图像更加清晰、锐利、对比度更高和色彩更鲜艳。
1. 空域增强技术空域增强技术是指在图像的像素级别上进行处理,包括直方图均衡化、空间滤波和锐化等。
其中,直方图均衡化是一种常用的增强技术,它通过对图像的像素值进行线性变换,使图像的直方图分布更均匀,从而增加图像的对比度和细节。
2. 频域增强技术频域增强技术是指将图像从空域转换到频域进行处理,然后再将图像转换回空域。
其中,快速傅里叶变换(FFT)和小波变换是常用的频域增强技术。
通过对图像的频谱进行分析和处理,可以改善图像的细节和对比度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K= imnoise(I,'gaussian',0.01,0.01);
subplot(132);imshow(J);title('Salt&pepper noise');
subplot(133);imshow(K);title('gaussian noise');
4)运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像(提示:利用fspecial函数的’average’类型生成均值滤波器)。
figure;
I=imread('coins.jpg');
J = imnoise(I,'salt & pepper',0.05);
H= fspecial('gaussian',[3 3],0.5);
gaussian = imfilter(I,H,'replicate');
subplot(224);imshow(gaussian);title('gaussian imag');
3)使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。
subplot(232),imshow(K1);title('laplacian operator 5*5 ');
K2=conv2(T,w2,'same');
subplot(233),imshow(K2);title('laplacian operator 9*9 ');
K3=conv2(T,w3,'same');
w = ones(n);
x = ceil(n/2);
w(x, x) = -1 * (n * n - 1);
end
3)分别采用5×5,9×9大小的拉普拉斯算子对blurry_moon.tif进行锐化滤波,观察其有何不同,要求在同一窗口中显示。
w1 = genlaplacian(5);
w2 = genlaplacian(9);
评语:
h=fspecial('average');
J1=imfilter(J,h);
for i=1:10
J1=imfilti=1:20
J2=imfilter(J,h);
end
subplot(131);imshow(I); title('Original image');
subplot(132);imshow(J1); title('10-Averaging image');
originalRGB = imread('peppers.png');
h = fspecial('motion', 50, 45);
RGB = imfilter(originalRGB, h);
boundaryReplicateRGB = imfilter(originalRGB, h, 'replicate');
二、实验内容
1)实现平滑空间滤波
2)实现锐化空间滤波
三、实验过程(步骤、命令)及结果(截图、源程序)
1、平滑空间滤波
1)读出coins.jpg这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。
figure;
I=imread('coins.jpg');
subplot(131);imshow(I); title('Original image');
boundary0RGB = imfilter(originalRGB, h, 0);
boundarysymmetricRGB = imfilter(originalRGB, h, 'symmetric');
boundarycircularRGB = imfilter(originalRGB, h, 'circular');
w3 = genlaplacian(15);
w4 = genlaplacian(25);
I=imread('blurry_moon.tif');
T=double(I);
subplot(231),imshow(T,[]);title('Original Image');
K1=conv2(T,w1,'same');
2)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。
figure;
I=imread('coins.jpg');
subplot(221);imshow(I);title('original image');
H = fspecial('sobel');
Sobel = imfilter(I,H,'replicate');
subplot(234),imshow(K3);title('laplacian operator 15*15 ');
K4=conv2(T,w4,'same');
subplot(235),imshow(K4);title('laplacian operator 25*25 ');
四、存在问题及解决方法
subplot(324);imshow(boundary0RGB);title('0-padding image');
subplot(325);imshow(boundarysymmetricRGB);title('symmetric image');
subplot(326);imshow(boundarycircularRGB);title('circular image');
2、锐化空间滤波
1)读出blurry_moon.tif这幅图像,采用3×3的拉普拉斯算子w = [ 1,1,1; 1,–8,1; 1,1,1]对其进行滤波。
I=imread('blurry_moon.tif');
T=double(I);
subplot(121),imshow(T,[]);title('Original Image');
实验报告
2012年11月22日第9、10节综合楼426号室
进入实验室
时间
进入时仪器
设备状况
离开实验室
时间
离开时仪器
设备状况
机器号
15:30
良好
17:00
良好
4-54
实验项目名称
图像的空域增强
一、实验目的
1)掌握图像滤波的基本定义及目的。
2)理解空间域滤波的基本原理及方法。
3)掌握进行图像的空域滤波的方法。
J1=imfilter(J,h);
J2=medfilt2(J);
subplot(131);imshow(I); title('Original image');
subplot(132);imshow(J1); title('Averaging image');
subplot(133);imshow(J2); title('median image');
w =[1,1,1; 1,-8,1; 1,1,1];
K=conv2(T,w,'same');
subplot(122),imshow(K);title('laplacian transform');
2)编写函数w = genlaplacian(n),自动产生任一奇数尺寸n的拉普拉斯算子
function w = genlaplacian(n)
subplot(321);imshow(originalRGB);title('original image');
subplot(322);imshow(RGB);title('motion blurred image');
subplot(323);imshow(boundaryReplicateRGB);title('replicate image');
subplot(222);imshow(Sobel);title('sobel image');
H = fspecial('laplacian',0.4);
lap = imfilter(I,H,'replicate');
subplot(223);imshow(lap);title('laplacian image');
subplot(133);imshow(J2); title('20-Averaging image');
5)对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。
figure;
I=imread('coins.jpg');
h=fspecial('average');