正常组织的放射生物学

合集下载

放射生物学6r原则

放射生物学6r原则

放射生物学6r原则放射生物学6R原则放射生物学是研究放射性物质对生物体的影响和作用机制的学科。

在进行放射生物学研究时,我们需要遵循一系列的原则,这些原则被称为放射生物学6R原则。

本文将逐一介绍这些原则,并探讨其在放射生物学研究中的重要性和应用。

1. 辐射剂量(Radiation Dose)辐射剂量是指生物体所接受到的辐射能量的量度。

在放射生物学研究中,准确测量和记录辐射剂量是至关重要的。

这有助于我们评估辐射对生物体的影响程度,并制定相应的防护措施。

辐射剂量的测量方法包括个人剂量计、环境剂量计等。

2. 辐射质量(Radiation Quality)辐射质量是指辐射粒子的特性,如电离能力、相对生物效应等。

不同类型和能量的辐射粒子对生物体的影响有所不同。

研究辐射质量可以帮助我们了解辐射对生物体的作用机制,并为放射防护提供科学依据。

3. 辐射修复(Radiation Repair)辐射修复是指生物体受到辐射后,通过一系列的修复机制来恢复正常状态的过程。

辐射损伤的修复对于维护生物体的正常功能至关重要。

研究辐射修复机制有助于我们理解生物体对辐射的抵抗能力,并有可能开发相应的治疗方法。

4. 辐射敏感性(Radiation Sensitivity)辐射敏感性是指不同生物体或组织对辐射的敏感程度。

不同种类的生物体对辐射的敏感性有所不同,甚至同一生物体的不同组织也存在差异。

研究辐射敏感性可以帮助我们评估生物体对辐射的风险,并制定个性化的防护策略。

5. 辐射反应(Radiation Response)辐射反应是指生物体在受到辐射后所表现出的生物学效应。

不同剂量和质量的辐射会引起不同的生物学反应,包括细胞死亡、遗传损伤、肿瘤发生等。

研究辐射反应可以帮助我们了解辐射对生物体的影响机制,并为辐射治疗和防护提供科学依据。

6. 辐射风险(Radiation Risk)辐射风险是指接受辐射后可能引起的不良效应或健康风险。

辐射对人体的风险评估是放射生物学研究的重要内容之一。

放射生物学课件

放射生物学课件

临床放射生物学分次照射中的生物因素4R放射治疗中的分次照射分次照射的治疗模式是以时间—剂量因子对生物效应的影响和作用机制为基础的,通过调整每次照射的时间间隔和照射剂量,达到保护周围正常组织,并最大限度的杀灭肿瘤组织,获得最佳治疗效果。

放射治疗中的分次照射放射治疗从一开始基本就是一种分次治疗的模式:•1896年1月29日芝加哥报道开始为一位乳腺癌病人进行了每天一次,共18次的治疗。

•第一例单纯采用放射治疗治愈的肿瘤病人是一位49岁的患鼻根部基底细胞癌的妇女。

治疗开始于1899年7月4日共照射了99次。

治疗30年后也没发现有残余病灶的证据,说明完全治愈了。

放射治疗中的分次照射•自20世纪30年代以来,以临床实践经验为基础建立起来的分次照射治疗方法(每周5次,每次2Gy)已被认为是标准方法。

•长期大量的临床实践表明,这种方法基本上符合大多数情况下正常组织和肿瘤组织对射线反应差异的客观规律,起到了保护正常组织和保证一定肿瘤细胞群杀灭率的作用。

分次照射中的生物因素(4R)•放射损伤的修复(R epair of radiationdamage)•再群体化(R epopulation)•细胞周期的再分布(R edistribution within the cell cycle)•乏氧细胞的再氧化(R e-oxygenation of hypoxia cel(一)放射损伤的修复(R epair of radiation damage)1.细胞的放射损伤•任何活体组织及细胞都会有其耐受剂量,人体正常组织也不例外,当肿瘤致死剂量超过了正常组织的耐受剂量时,治愈肿瘤将会使正常组织出现不可接受的放射损伤。

•放射损伤的关键靶是DNA,造成DNA链的断裂(SSB和DSB)•放射损伤概括为亚致死性损伤·潜在致死性损伤和致死性损伤放射损伤的修复(R epair of radiation damage) 2.放射损伤的修复(1)亚致死损伤的修复(STD)定义:某一既定单次照射剂量分成间隔一定时间的两次所观察到的存活细胞增加的现象。

放射生物学讲义

放射生物学讲义

快速电子 离子自由基物效应
射线质与相对生物效应
线性能量传递(LET,linear energy transmission) 射线与生物分子相互作用产生电离而发生的能量转换。 以射线沿径迹1u所消耗的能量表示,单位为KeV/u。 LET=dE/dL 高LET射线:质子、中子 低LET射线:直线加速器产生的X线和钴机产生γ线
细胞死亡的机制: 染色体DNA是关键靶 调亡:照射启动了细胞内的某种基因机制,从而发生一系 列程序性改变,最终导致细胞死亡。多 发生在间期细胞 及成熟分化的细胞。它是高度细胞类型依赖性的。唾液腺 分泌细胞:照射几次即出现口干;神经细胞,淋巴细胞等。 在一定意义上说,只需使肿瘤细胞产生增殖性死亡,即肿 瘤细胞不再无限分裂增殖,就能达到根治肿瘤的目的。 细胞死亡和再增殖完整性丢失(loss of reproductive integrity of tumor cells)存在根本意义上的不同。放射 可治愈性最主要依据是后者。
D0 Gy
线性二次模型(linearquadratic model) 辐射杀灭细胞有两部分:一部 分与照射剂量成比例,另一部 分与照射剂量的平方成比例 S=e -αD-βD2
α和β是常数
存活分数
S是照射剂量为D时的细胞存活 当αD= βD2或D= α/ β,照射剂量 与细胞杀灭成比例的部分与照射剂量 平方成比例的部分相等,在这个剂量 点α/ β,线性和平方项对细胞杀灭 的贡献相等。 α/ β:早反应组织高 晚反应组织低
第三章:电离辐射的细胞效应
辐射诱导的DNA损伤及修复
DNA的链断裂
单链断裂: 离体DNA受照射后约90%为单链断裂;活体DNA受照射后比 例更高。单链断裂后可以按照DNA的碱基配对原则修复 (如此时发生错误修复,可产生突变)。 双链断裂: 离体DNA受照射后约10%为双链断裂;活体DNA受照射后比 例更低。双链断裂后,由于模板的消失,一般不能修复。 注意断裂部位:如断裂部分彼此分开(间隔一段距离), 可以修复; 断裂在对侧互补碱基位置或仅隔几个碱基, 发生真正双链断裂,及染色体折成两段,导致细胞死亡/ 突变致癌。 双链断裂修复:同源和非同源重组

放射生物学

放射生物学

放射生物学(Radiobiology)放射生物学研究的是放射对生物体作用及其效应规律的一-门学科。

1.正常组织对放射性的反应2.肿瘤对放射性的反应正常组织对放射的反应最小耐受量(TD5/5)一定的剂量-分割模式照射后5年内严重放射并发症发生率不超过5%的剂量最大耐受量(TD50/5)一定的剂量-分割模式照射后5年内严重放射并发症发生率不超过50%的剂量肿瘤放射治疗的两大基本原则1.最大程度地杀灭肿瘤2.最大程度地保护正常组织正常组织与肿瘤组织分次照射后的差别二、分次放疗的生物学基础(4R理论)在引起相同正常组织损伤时,多数时候分割照射的肿瘤局控要优于单次照射分割放射的生物学基础一4R理论(1975由Withers提出)放射损伤的修复(Repair of radiation damage)细胞周期的再分布(Redistribution within the cell cycle)乏氧细胞的再氧合(Reoxygenation)再群体化(Repopulation)(一)细胞放射损伤的修复1.亚致死损伤(sublethal damage)指受照射以后,细胞的部分靶内所累积的电离事件,通常指DNA单链断裂。

亚致死损伤是一种可修复的放射损伤。

亚致死损伤的修复:指假如将某一给定单次照射剂量,分成间隔一定时间的两次时所观察到的存活细胞增加的现象。

1959年EIkind发现,当细胞受照射产生亚致死损伤而保持修复能力时,细胞能在3小时内完成这种修复,将其称之为亚致死损伤修复。

影响亚致死损伤的修复的因素:1.放射线的质低LET辐射细胞有亚致死损伤和亚致死损伤的修复,高LET辐射细胞没有亚致死损伤因此也没有亚致死损伤的修复2.细胞的氧合状态处于慢性乏氧环境的细胞比氧合状态好的细胞对亚致死损伤的修复能力差3.细胞群的增殖状态未增殖的细胞几乎没有亚致死损伤的修复临床意义:细胞亚致死损伤的修复速率一般为30分钟到数小时常用亚致死损伤半修复时间(T1/2) 来表示不同组织亚致死损伤的修复特性在临床非常规分割照射过程中,两次照射之间间隔时间应大于6小时,以利于亚致死损伤完全修复2.潜在致死损伤(potential lethal damage)正常状态下应当在照射后死亡的细胞,在照射后置于适当条件下由于损伤的修复又可存活的现象。

正常组织的放射生物学(放射治疗学基础)

正常组织的放射生物学(放射治疗学基础)

正常组织的临床放射生物学中山大学肿瘤医院放疗科韩非前言放射肿瘤学的内容放射肿瘤学临床肿瘤学放射物理学放疗技术学放射生物学实验放射生物学临床放射生物学实验生物学与临床生物学的关系§争论: 增殖能力与生存能力§我国研究现状§我科研究现状放射肿瘤学的发展特点§放射治疗技术的改进,放射物理学的迅猛发展,肿瘤诊断水平提高,治疗效果“越来越好”–肿瘤(尤其头颈部癌)的局控率明显增加–生存时间延长–生活质量在治疗效果的评价方面日益重要放射生物学的意义§放射治疗的两大基本原则–最大程度地杀灭肿瘤–最大程度地保护正常组织§正常组织的放射生物学效应对放疗方案的设计、实施和修改影响巨大复发是最严重的并发症?§Eagle§Pigeon目的§掌握和熟悉正常组织在放射治疗中和放射治疗后的生物学效应,是临床医师更好运用各种放射治疗方案所必须考虑的重点之一§如何使正常组织和重要器官在接受放射治疗时能够避免或尽量减少照射剂量是当今放射肿瘤学的一个重要内容正常组织的增殖动力学各组成细胞群的动力学为基础§人体正常组织受一种自动稳定控制系统的控制,正常情况下细胞群的增殖相当于细胞群的丢失§当组织处于稳定状态时,新生和死亡的细胞数相等§但当某一细胞群失去平衡时这种自动控制作用将使细胞加快增殖,以迅速补充缺损不同组织的细胞群按增殖和生长活动可分为四大类§快更新组织(fast renew tissue)–具有未分化的干细胞(undifferentiated stem cell,USC),包括造血细胞、小肠上皮、表皮、输精上皮和淋巴生成细胞等§慢更新组织(slow renew tissue)–更新时间很长,包括肝、肾、呼吸道、内分泌器官和结缔组织等§非更新组织–偶有分裂,在成年人这种分裂不足以自我更新,包括骨、脂肪和平滑肌等§无更新组织–细胞完全没有分裂,组织无法更新,包括神经细胞、睾丸的足细胞和心肌细胞等放射损伤的决定因素§损伤的表现取决于细胞内干细胞的耗尽程度§损伤发展的过程、程度及严重性取决于–干细胞中前体细胞的分化速度和方式–干细胞增殖速度放射损伤的组织效应模式§结构等级制模式(hierarchical model)–至少存在两个层次的细胞:干细胞层次和成熟细胞层次–与照射剂量无关–大多数上皮性早反应组织经历的模式§灵活模式(flexible model)–无明确细胞分化层次和严格细胞等级制度–与照射剂量相关§混合模式早反应组织和晚反应组织§临床上将正常组织分为两大类:早反应组织(early response tissue)和晚反应组织(late response tissue)§分类基础–增殖动力学–靶细胞存活公式对α/β比值的推算§两者在放射损伤的表现方面有明显的区别早反应组织§快更新组织–主要表现为放射急性反应–照射损伤出现时间较早–主要通过同源干细胞增殖、分化来补充§大多数正常组织与肿瘤组织都属于早反应组织晚反应组织§慢更新组织§主要表现为放射晚期反应–一般都有纤维细胞和其他结缔组织过度增生–广泛纤维化–血管内皮细胞的损伤造成血供减少–器官功能的缓慢丧失§损伤后不是干细胞增殖分化的结果,而是由附近的功能细胞进入分裂周期,通过细胞复制来代偿加速再增殖理论§经射线照射后可引起细胞群的再增殖§在一定的剂量作用下可能存在加速再增殖§加速再增殖在其他治疗方式(例如外科、化疗、加温治疗等)所致的损伤时很少出现或根本没有§不同组织加速再增殖的开始时间存在较大的差异3“A”学说(Dorr)§治疗一段时间后,组织细胞在接受一定损伤刺激,正常组织和肿瘤内部会出现三种情况–干细胞加速分裂(Accelerated stem cell division)–不对称丢失(Asymmetry loss)–流产分裂(Abortive division)§它们相互影响,使组织发生比治疗前要快几倍的再增殖临床上加速再增殖的表现有§分段放疗的疗效比连续放疗的疗效差§肺肿瘤治疗后短期内复发,复发时间远远小于肿瘤倍增时间§头颈肿瘤的放疗时间延长,肿瘤复发比例增加§头颈肿瘤放疗前与放疗中的肿瘤细胞倍增时间由最初的60天左右缩短至4天左右§正常组织加速再增殖理论上应该存在且与肿瘤组织类似§常规分割,单纯放疗的鼻咽癌患者,在放疗DT40Gy以后,口腔粘膜反应程度会有所减轻正常组织放射敏感性放射敏感性定义§放射敏感性是指一切照射条件完全严格一致时,机体器官或组织对辐射反应的强弱或速度快慢不同;若反应强、速度快,其敏感性就越高,反之则低§细胞放射生物学角度来看,放射敏感性定义为造成一次击中所需的辐射量(剂量)越小,放射敏感性越高§B-T 定律为四大类(1)§高度敏感组织–剂量范围为1000~2000cGy–包括生殖腺——卵巢、睾丸,发育中的乳腺,生长中的骨和软骨,骨髓等§中度敏感组织–剂量范围为2000~4500cGy–胃,小肠,结肠,肾,肺,肝,甲状腺,垂体,生长中的肌肉,淋巴结等为四大类(2)§低度敏感组织–剂量范围5000~7000cGy–皮肤,口腔粘膜,食管,直肠,唾液腺,胰腺,膀胱,成熟的骨和软骨,中枢神经系统,脊髓,眼,耳,肾上腺等§不敏感组织–剂量范围7500cGy以上–输尿管,子宫,成人乳腺,成人肌肉,血液,胆道,关节软骨和周围神经,肺尖可耐受6000~9000cGy的剂量,常规剂量放疗对这些组织基本不发生严重并发症组织放射敏感性的放射生物学因素§再增殖和加速再增殖§氧效应(再氧化)§再修复§细胞周期再群体化放射线对正常组织的影响放射线生物损伤的机理§放射线作用于组织,组织内细胞群会发生一系列物理、化学和生物反应§射线作用于生物体,产生了大量的快速运动电子,许多电子能够使吸收介质的其他原子电离,破坏机体内不可缺少的化学键,造成一系列后果,最终表现为生物损伤生物损伤的表现§生物损伤–微观上表现为细胞死亡,细胞内结构和细胞连接组成的改变–宏观上表现为组织功能暂时或永久的丧失§不同类型细胞其死亡的定义也有不同–已分化不再增殖的细胞,如神经细胞、肌肉细胞、分泌细胞指功能的丧失–增殖性细胞,指丧失持续增殖的能力,即失去完整的增殖能力基于放射损伤的器官分类(1)§Ⅰ类器官§包括骨髓、肝、胃、小肠、脑、脊髓、心脏、肺、肾和胎儿等§多为人体的重要器官,如果受到照射的话,在一定剂量下可能会产生严重的放射损伤,甚至影响患者的生命§临床计划设计时应尽量避免不照射或少照射基于放射损伤的器官分类(2)Ⅱ类器官§包括皮肤、口腔、咽部、食管、直肠、唾液腺、膀胱、子宫、睾丸、卵巢、生长期软骨、儿童骨、成人软骨、成人骨、眼(视网膜、角膜、晶体)、内分泌腺(甲状腺、肾上腺、垂体)、周围神经、耳(中耳、内耳)等§可以耐受一定的放射剂量,产生中度的放射损伤,损伤后可能导致一定的功能障碍,但基本对生命无严重影响§临床计划设计可在肿瘤剂量充足的条件下考虑减少此类器官的照射量基于放射损伤的器官分类(3)§Ⅲ类器官§包括肌肉、淋巴结和淋巴管、大动静脉、关节软骨、子宫、阴道、乳腺等§组织的耐受量大多高于肿瘤的致死量,照射后一般不产生或产生轻度的放射损伤§临床计划设计时常优先考虑肿瘤的致死量,而不着重考虑此类器官的耐受和损伤问题正常组织器官的耐受量§定义:产生临床可接受的综合症的剂量§最小耐受量(TD5/5)–是指在标准治疗条件下,照射后5年内放射合并症发生率不超过5%(实际工作中指发生率为1%~5%)所对应的放射剂量§最大耐受量(TD50/5)–是指标准治疗条件下,照射后5年内放射合并症发生率不超过50%(实际工作中指发生率为25%~30%)所对应的放射剂量标准治疗条件§超高压治疗(1~6MeV)§1000cGy/周,每天1次,治疗5次,休息2天§整个治疗根据总剂量在2~8周内完成耐受剂量的正确认识§只能代表一种几率§非标准条件的照射方式的影响§再程放疗的影响§精确设计和精确治疗§年龄的影响§全身性疾病的影响§其他治疗手段的影响(化疗、生物修饰剂甚至手术)§医生记录及评价标准的影响正常组织的放射耐受量(cGy )全部或部分晶体1 200500白内障晶体全角膜>6 0005 000角膜炎角膜全眼10 0005 500全眼炎,出血眼全垂体20 000~30 0004 500功能低下垂体10cm 5 5004 500梗死,坏死脊髓全脑干6 5005 000梗死,坏死脑干25%8 0007 000梗死,坏死全脑7 0006 000梗死,坏死脑100cm 27 0005 500溃疡,严重纤维化皮肤设野面积或长度TD50/5TD5/5损伤组织器官正常组织的放射耐受量(cGy )全肺2 5001 500100cm 23 5003 000急、慢性肺炎肺100cm 28 0006 000溃疡,狭窄直肠100cm 26 5004 500溃疡,狭窄结肠100cm 26 5005 000溃疡,穿孔,出血小肠100cm 25 5004 500溃疡,穿孔,出血胃75cm 27 5006 000食管炎,溃疡,狭窄食管喉全甲状腺15 0004 500功能低下甲状腺50cm 27 0005 000口腔干燥唾液腺50cm 27 5006 000溃疡,粘膜炎症口腔粘膜全前庭7 0006 000梅尼埃病耳(前庭)全中耳7 0006 000严重中耳炎耳(中耳)设野面积或长度TD50/5TD5/5损伤组织器官正常组织的放射耐受量(cGy )全肾上腺->6 000功能低下肾上腺全肾条状照射2 0001 500全肾2 5002 000急、慢性肾炎肾脏全肝4 5003 500肝功能衰竭,腹水全肝条状照射2 0001 500全肝4 0002 500急、慢性肝炎肝脏全乳>10 000>5 000萎缩,坏死乳腺(成人)全乳1 5001 000不发育乳腺(儿童)60%5 5004 500心包炎,全心炎心脏设野面积或长度TD50/5TD5/5损伤组织器官正常组织的放射耐受量(cGy )全身骨髓450200再生不良骨髓关节整块骨或10cm 210 0006 000坏死,骨折硬化骨、软骨(成人)整块骨或10cm 23 0001 000生长受阻,侏儒骨、软骨(儿童)全胎儿400200死亡胎儿全阴道>10 0009 000溃疡,瘘管阴道全子宫>20 000>10 000坏死,穿孔子宫全卵巢625~1200200~300永久不育卵巢(5cGy/天,散射)全睾丸400100永久不育睾丸尿道5~10cm 10 0007 500狭窄输尿管全膀胱8 0006 000挛缩膀胱设野面积或长度TD50/5TD5/5损伤组织器官正常组织的放射耐受量(cGy )10cm 210 0006 000神经炎周围神经整块肌肉8 0006 000纤维化肌肉(成人)整块肌肉4 000~5 0002 000~3000萎缩肌肉(儿童)整个淋巴结>7 0005 000萎缩,硬化淋巴结(管)10cm 2>10 000>8 000硬化大静脉10cm 2>10 000>8 000硬化大动脉7 000~10 0005 000~6000扩张,硬化毛细血管设野面积或长度TD50/5TD5/5损伤组织器官剂量体积与放射耐受量串联器官与并联器官§正常器官组织的耐受量–剂量和体积–正常组织放射并发症的发生概率(NTCP)依赖于组织的放射性类型§各器官损伤实质是射线破坏了器官的“功能元单位”,根据“功能元单位”的性质,可以将全身器官分成以下四种类型⑴串联器官§器官的功能单位呈“串行”相连接,其中一个单位的损伤会导致其它功能单位的功能障碍§如脊髓、脑干、视神经等,这类器官的损伤程度与全结构中最大剂量相关⑵并联器官§器官的功能单位以“并行”形式相连接,某一功能单位的损伤不会引起周围功能单位的功能障碍§如肝脏、肺脏,腮腺,颞叶等等。

放射治疗技术生物

放射治疗技术生物

(3)总治疗时间:因为晚反应组织更新慢,放疗期 间不发生代偿性增殖,所以对治疗时间变化不敏感 ,缩短治疗时间会增长对肿瘤细胞旳杀灭,但不会 增长晚期并发症。早反应组织对治疗时间反应敏感 ,缩短治疗时间早反应组织损伤加重。早反应组织 对射线旳反应类似于肿瘤组织。
二、非常规分割照射旳生物学基础
超分割:指在一样旳总治疗时间内用更多旳分次数。一天内多 于一种分次,但分次剂量降低。 1.2Gy/次,每天2次,间隔6 小时以上。总剂量与常规放疗相同,其目旳是保护正常组织。
细胞存活旳意义
细胞存活曲线
1、细胞存活曲线旳绘制
离体细胞培养 不同剂量照射 单细胞接种 细 胞培养 2周左右计算集落形成数目 计算存活率
绘制存活曲线
2、细胞存活曲线旳形状
1)指数性存活曲线 2)非指数性存活曲线
3、细胞存活曲线有关参数旳含义
D0 (平均致死剂量):是指细胞存活从0.1下降到0.037或从 0.01下降到0.0037所需旳剂量。表达受照射细胞在高剂量 区旳放射敏感性。D0值越大,细胞对放射越抗拒。
线性二次模式与α/β值
S =e -n (αd +βd2) 描述了组织生物效应与分次照射及剂量 之间旳关系 预测不同剂量分割方式旳生物效应 进行不同剂量分割方式旳等效转换
不同组织射线照射后反应不同。根据细胞增殖动力学 和α/β比值将正常组织提成早反应组织和晚反应组织。
早反应组织:指机体内分裂、增殖活跃并对放射线早期反 应强烈旳组织,如上皮、黏膜、造血组织、精原细胞等;( 涉及大多数肿瘤组织) 晚反应组织:指机体内无再增殖能力,损伤后仅以修复代 偿其功能旳细胞组织,如脊髓、肾、肺、肝、结缔组织等。
② 潜在倍增时间(potential doubling time ,T pot), 用来描述肿瘤生长速度旳理论参数,定义:假设在没有细胞 丢失 旳情况下,肿瘤细胞群体增长一倍所需要旳时间。这 取决于细胞周期时间和生长百分比。 潜在倍增时间能够经过测定胸腺嘧啶标识数(LI)或S期百 分比(S-Phase fraction)取得:T pot=λ×Ts/LI ③ 细胞丢失因子(cell loss factor),肿瘤细胞旳丢失 能够经过计算细胞丢失因子来体现。细胞丢失因子=1- T pot/Td

辐射生物学效应分类和影响因素

辐射生物学效应分类和影响因素

第四节辐射生物学效应分类和影响因素‎、辐射生物学‎效应分类机体受辐射‎作用时,根据照射剂‎量、照射方式以‎及效应表现‎的情况,在实际工作‎中常将生物‎效应分类表‎述(一)按照射方式‎分1.外照射与内‎照射(exter‎n al and inter‎n al irrad‎i atio‎n):辐射源由体‎外照射人体称外照射。

γ线、中子、X线等穿透‎力强的射线‎,外照射的生‎物学效应强‎。

放射性物质‎通过各途径‎进入机体,以其辐射能‎产生生物学‎效应者称内‎照射。

内照射的作‎用主要发生在放射性物‎质通过途径‎和沉积部位‎的组织器官,但其效应可‎波及全身。

内照射的效‎应以射程短‎、电离强的α、β射线作用‎主。

2.局部照射和‎全身照射(local‎and total‎body irrad‎i atio‎n)当外照射的‎射线照射身‎体某一部位‎,引起局部细胞的反应者称局部照‎射。

局部照射时‎身体各部位‎的辐射敏感‎性依次为腹‎部>胸部>头部>四肢。

当全身均匀‎地或非均匀‎地受到照射‎而产生全身‎效应时称全‎身照射。

如照射剂量‎较小者为小‎剂量效应,如照射剂量‎较者(>1Gy)则发展为急‎性放射病。

大面积的胸腹部局‎部照射也可‎发生全身效‎应,甚至急性放‎射病。

根据照射剂‎量大小和不‎同敏感组织‎的反应程度‎,辐射所致全‎身损伤分为‎骨髓型(bone marro‎w type)、肠型(gastr‎o- intes‎t inal‎type)和脑型(centr‎a l nervo‎u s syste‎m type)三种类型。

(二)按照射剂量‎率分1.急性效应(acute‎radia‎t ion effec‎t):高剂量率照‎射,短时间内达‎到较大剂量‎,效应迅速表‎现。

2.慢性效应(chron‎i c radia‎t ion effec‎t):低剂量率长‎期照射,随着照射剂‎量增加,效应逐渐积‎累,经历较长时‎间表现出来‎。

《放射生物学》(含实验内容)教学大纲.

《放射生物学》(含实验内容)教学大纲.

《放射生物学》(含实验内容)教学大纲课程编码:10272060课程名称:放射生物学英文名称:Medical Radiobiology开课学期:8学时/学分:80学时/5 (其中实验学时:36学时)课程类型:专业必修课开课专业:放射医学选用教材:医学放射生物学(第二版)主要参考书:《生物化学》,顾天爵主编《生理学》,张镜如主编《医学免疫学》,龙振洲主编《医学遗传学基础》,杜传书主编《医学细胞生物学》,宋今丹主编《医学分子生物学》,伍欣星、聂广主编《辐射剂量学》,田志恒编《实用放射放射治疗物理学》,冯宁远、谢虎臣、史荣等主编《肿瘤放射治疗学》,谷铣之、殷蔚伯、刘泰福等主编《放射毒理学》,朱寿彭、李章主编《放射损伤和防护》,刘克良、姜德智编《医学放射生物学》,刘树铮主编《低水平辐射兴奋效应》刘树铮著《辐射免疫学》,刘树铮编著《辐射血液学》,刘及主编Radiobiology for the radiologist, Hall EJ eds执笔人:金顺子、龚守良、吕喆一、课程性质、目的与任务医学放射生物学是放射医学的一门重要的基础学科。

通过医学放射生物学的学习,使放射医学专业本科生重点掌握电离辐射对动物机体,特别是人体的影响,为进一步学习放射防护,放射损伤和放射治疗提供生物学理论基础。

二、教学基本要求理论课教学要求使用多媒体和板书结合起来,讲授放射生物学的理论知识;实验课教学要求教师提前进行预实验,保证实验结果的可行性和准确性,让学生掌握实验技能,培养学生的科研思维和创新能力。

三、各章节内容及学时分配第一章电离辐射生物学作用的物理和化学基础[目的]1.了解医学放射生物学研究的基本知识2.系统掌握电离辐射生物学作用的基本规律及其原理3.掌握影响电离辐射生物效应的主要因素[讲授内容]1.电离辐射的种类与物质的相互作用(1)电磁辐射(2)粒子辐射2.电离和激发(1)电离作用(2)激发作用(3)水的电离和激发3.传能线密度与相对生物效能(1)传能线密度(2)相对生物效应4.自由基(1)自由基的概念(2)自由基与活性氧(3)自由基对生物分子的作用(4)抗氧化防御功能5.直接作用与间接作用(1)直接作用(2)间接作用6.氧效应与氧增强比(1)氧效应(2)氧增强比(3)氧浓度对氧效应的影响(4)照射时间对氧效应的影响(5)氧效应的发生机制7.靶学说与靶分子(1)概述(2)单击模型(3)多击模型(4)单击与多靶模型(5)DNA双链断裂模型(6)靶分子8.影响电离辐射生物效应的主要因素(1)与辐射有关的因素(2)与机体有关的因素[授课时数] 6学时[自学内容]1.辐射增敏及辐射防护[教学手段]课堂讲授,采用挂图或多媒体教学设备等第二章电离辐射的分子生物学效应[目的]1.掌握DNA损伤、修复及其生物学意义2.掌握染色质的辐射生物效应3.掌握辐射对细胞膜结构与功能的影响及辐射致癌的分子基础4.了解辐射所致RNA、蛋白质细胞与功能变化以及辐射所致的能量代谢障碍[讲授内容]1.辐射甩致DNA损伤及其生物学意义(1)DNA链断裂(2)DNA交联(3)DNA损伤的生物学意义2.辐射引起的DNA功能与代谢变化(1)辐射对噬菌体、DNA感染性的灭活作用(2)辐射对DNA转化活力的影响(3)辐射对DNA生物合成的抑制作用与机制(4)辐射对DNA降解过程的作用3.染色质的辐射生物效应(1)染色质的辐射敏感效应(2)染色质的辐射降解(3)染色质蛋白的辐射效应4.DNA辐射损伤的修复及其遗传学控制(1)不同类型DNA损伤的修复(2)DNA的损伤修复机制(3)基因组内修复的不均一性(4)DNA修复基因5.辐射对细胞膜结构与功能的影响(1)辐射对膜组分的影响(2)辐射对膜转运功能的影响(3)辐射对膜结合酶活性的影响(4)辐射对膜受体功能的影响(5)辐射对DNA-膜复合物的作用6.辐射致癌的分子基础(1)体细胞突变(2)癌基因和肿瘤抑制基因[授课时数] 6学时[自学内容]1.辐射所致RNA结构与功能的变化2.蛋白质和酶的辐射生物效应3.辐射所致的能量代谢障碍[教学手段]板书、挂图或多媒体课件第四章电离辐射的细胞效应[目的]1.掌握电离辐射对细胞作用的特点,为学习辐射整体效应打下基础2.学习辐射细胞生物学的基本规律,指导肿瘤放射治疗的临床实践[授课内容]1.细胞的放射敏感性(1)不同细胞群体的放射敏感性(2)不同时相细胞的放射敏感性(3)环境因素对细胞放射敏感性的影响2.电离辐射对细胞周期进程的影响(1)电离辐射对细胞周期进程的影响(2)电离辐射影响细胞周期进程的机制①G1期阻滞及基因调控②G2期阻滞及基因调控③电离辐射影响细胞周期进程的生物学意义3.电离辐射引起细胞死亡及机制(1)辐射引起细胞死亡的类型(2)细胞凋亡①细胞凋亡的概念②细胞凋亡的的特征③细胞凋亡的基因调控④细胞凋亡的辐射效应4.细胞存活的剂量效应(1)细胞存活的概念(2)细胞存活的体内、外测量(3)细胞存活的剂量效应曲线①指数单击曲线②多击或多靶曲线5.辐射诱导的细胞损伤及其修复(1)细胞放射损伤的分类(2)细胞放射损伤的修复(3)影响细胞放射损伤及修复的因素[授课时数] 6学时[自学内容]1.辐射对细胞功能的影响(本章第六节)2.诱导的细胞突变及恶性转化(本章第七节)[教学手段]部分多媒体教学第五章电离辐射对调节系统的作用[目的]学习电离辐射对调节系统作用的基本规律,解释辐射效应整体调节机制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26
生物损伤的表现
生物损伤
– 微观上表现为细胞死亡,细胞内结构和细胞连接 组成的改变 – 宏观上表现为组织功能暂时或永久的丧失
不同类型细胞其死亡的定义也有不同
– 已分化不再增殖的细胞,如神经细胞、肌肉细胞、 分泌细胞指功能的丧 4 000
全身骨髓 局部骨髓
36
正常组织的放射耐受量(cGy)
组织器官 损伤 TD5/5 5 000~6 000 >8 000 >8 000 5 000 2 000~3 000 6 000 6 000 TD50/5 7 000~10 000 >10 000 >10 000 >7 000 4 000~5 000 8 000 10 000 10cm2 10cm2 整个淋巴结 整块肌肉 整块肌肉 10cm2
10
不同组织的细胞群按增殖和生长活动 可分为四大类
快更新组织(fast renew tissue)
– 具有未分化的干细胞(undifferentiated stem cell, USC),包括造血细胞、小肠上皮、表皮、输精上皮和 淋巴生成细胞等
慢更新组织(slow renew tissue)
23
组织放射敏感性的放射生物学因素
再增殖和加速再增殖
氧效应(再氧化) 再修复 细胞周期再群体化
24
放射线对正常组织的影响
25
放射线生物损伤的机理
放射线作用于组织,组织内细胞群会发生一 系列物理、化学和生物反应 射线作用于生物体,产生了大量的快速运动 电子,许多电子能够使吸收介质的其他原子 电离,破坏机体内不可缺少的化学键,造成 一系列后果,最终表现为生物损伤
定义:产生临床可接受的综合症的剂量 最小耐受量(TD5/5)
– 是指在标准治疗条件下,照射后5年内放射合并 症发生率不超过5%(实际工作中指发生率为1 %~5%)所对应的放射剂量
最大耐受量(TD50/5)
– 是指标准治疗条件下,照射后5年内放射合并症 发生率不超过50%(实际工作中指发生率为25 %~30%)所对应的放射剂量
22
根据放射敏感性来将全身正常组织分 为四大类 (2)
低度敏感组织
– 剂量范围5000~7000cGy – 皮肤,口腔粘膜,食管,直肠,唾液腺,胰腺,膀胱, 成熟的骨和软骨,中枢神经系统,脊髓,眼,耳,肾上 腺等
不敏感组织
– 剂量范围7500cGy以上 – 输尿管,子宫,成人乳腺,成人肌肉,血液,胆道,关 节软骨和周围神经,肺尖可耐受6000~9000cGy的剂量, 常规剂量放疗对这些组织基本不发生严重并发症
21
根据放射敏感性来将全身正常组织分 为四大类(1)
高度敏感组织
– 剂量范围为1000~2000cGy – 包括生殖腺——卵巢、睾丸,发育中的乳腺,生 长中的骨和软骨,骨髓等
中度敏感组织
– 剂量范围为2000~4500cGy – 胃,小肠,结肠,肾,肺,肝,甲状腺,垂体, 生长中的肌肉,淋巴结等
损伤
严重中耳炎 梅尼埃病 溃疡,粘膜炎 症 口腔干燥 功能低下
TD5/5
6 000 6 000 6 000 5 000 4 500
TD50/5
7 000 7 000 7 500 7 000 15 000 全中耳 全前庭 50cm2 50cm2
设野面积或长度
全甲状腺
正常组织的放射耐受量(cGy)
组织器官 心脏 损伤 心包炎,全心 炎 TD5/5 4 500 1 000 >5 000 2 500 TD50/5 5 500 1 500 >10 000 4 000 60% 全乳 全乳 全肝 设野面积或长度
10 000
400 625~1200 >20 000 >10 000 400 3 000 10 000
5~10cm
全睾丸 (5cGy/天,散射) 全卵巢 全子宫 全阴道 全胎儿 整块骨或10cm2 整块骨或10cm2
生长受阻, 1 000 侏儒 坏死,骨 折硬化 再生不良 6 000
200 3 000
乳腺(儿童) 不发育 乳腺(成人) 萎缩,坏死 肝脏 急、慢性肝炎 肝功能衰竭, 腹水 肾脏 肾上腺 急、慢性肾炎 功能低下
1 500
3 500 2 000 1 500 >6 000
2 000
4 500 2 500 2 000 -
全肝条状照射
全肝 全肾 全肾条状照射 全肾上腺
35
正常组织的放射耐受量(cGy)
27
基于放射损伤的器官分类(1)
Ⅰ类器官 包括骨髓、肝、胃、小肠、脑、脊髓、心脏、 肺、肾和胎儿等 多为人体的重要器官,如果受到照射的话, 在一定剂量下可能会产生严重的放射损伤, 甚至影响患者的生命 临床计划设计时应尽量避免不照射或少照射
28
基于放射损伤的器官分类(2)
Ⅱ类器官 包括皮肤、口腔、咽部、食管、直肠、唾液腺、膀胱、子宫、 睾丸、卵巢、生长期软骨、儿童骨、成人软骨、成人骨、眼 (视网膜、角膜、晶体)、内分泌腺(甲状腺、肾上腺、垂 体)、周围神经、耳(中耳、内耳)等 可以耐受一定的放射剂量,产生中度的放射损伤,损伤后可 能导致一定的功能障碍,但基本对生命无严重影响 临床计划设计可在肿瘤剂量充足的条件下考虑减少此类器官 的照射量
正常组织的放射耐受量(cGy)
组织器官
耳(中耳) 耳(前庭) 口腔粘膜 唾液腺 甲状腺 喉 食管 胃 小肠 结肠 直肠 肺 食管炎,溃疡, 6 000 狭窄 溃疡,穿孔, 出血 溃疡,穿孔, 出血 溃疡,狭窄 溃疡,狭窄 急、慢性肺炎 4 500 5 000 4 500 6 000 3 000 1 500 7 500 5 500 6 500 6 500 8 000 3 500 2 500 75cm2 100cm2 100cm2 100cm2 100cm2 100cm2 全肺 34
16
加速再增殖理论
经射线照射后可引起细胞群的再增殖,在一 定的剂量作用下还可能存在加速再增殖,这 种加速再增殖在其他治疗方式(例如外科、 化疗、加温治疗等)所致的损伤时很少出现 或根本没有,不同组织加速再增殖的开始时 间存在较大的差异
17
3―A‖学说(Dorr)
治疗一段时间后,组织细胞在接受一定损伤 刺激,正常组织和肿瘤内部会出现三种情况
– 干细胞加速分裂(Accelerated stem cell division) – 不对称丢失(Asymmetry loss) – 流产分裂(Abortive division)
它们相互影响,使组织发生比治疗前要快几 倍的再增殖
18
临床上加速再增殖的表现有
分段放疗的疗效比连续放疗的疗效差; 肺肿瘤治疗后短期内复发,复发时间远远小于肿瘤倍增时间 临床观察到头颈肿瘤的放疗时间延长,肿瘤复发比例增加 头颈肿瘤放疗前与放疗中的肿瘤细胞倍增时间由最初的60天 左右缩短至4天左右
快更新组织 主要表现为放射急性反应,照射损伤出现时 间较早,损伤后主要通过同源干细胞增殖、 分化来补充 大多数正常组织与肿瘤组织都属于早反应组 织
15
晚反应组织
慢更新组织 主要表现为放射晚期反应,一般都有纤维细 胞和其他结缔组织过度增生,形成广泛纤维 化,尚有血管内皮细胞的损伤造成血供减少 和器官功能的缓慢丧失 损伤后不是干细胞增殖分化的结果,而是由 附近的功能细胞进入分裂周期,通过细胞复 制来代偿
混合模式
13
早反应组织和晚反应组织
分类基础
– 增殖动力学 – 靶细胞存活公式对α/β比值的推算
临床上将正常组织分为两大类:早反应组织 (early response tissue)和晚反应组织 (late response tissue) 两者在放射损伤的表现方面有明显的区别
14
早反应组织
正常组织加速再增殖理论上应该存在且与肿瘤组织类似 常规分割,单纯放疗的鼻咽癌患者,在放疗DT40Gy以后, 口腔粘膜反应程度会有所减轻 具体是组织细胞群再增殖还是加速再增殖的作用更大无定论
19
正常组织放射敏感性
20
放射敏感性定义
放射敏感性是指一切照射条件完全严格一致 时,机体器官或组织对辐射反应的强弱或速 度快慢不同;若反应强、速度快,其敏感性 就越高,反之则低 细胞放射生物学角度来看,放射敏感性定义 为造成一次击中所需的辐射量(剂量)越小, 放射敏感性越高 B-T 定律
– 肿瘤(尤其头颈部癌)的局控率明显增加 – 生存时间延长 – 生活质量在治疗效果的评价方面日益重要
5
放射生物学的意义
放射治疗的两大基本原则
– 最大程度地杀灭肿瘤 – 最大程度地保护正常组织
正常组织的放射生物学效应对放疗方案的设 计、实施和修改影响巨大
6
复发是最严重的并发症?
Eagle Pigeon
正常组织的临床放射生物学
中山大学肿瘤医院 放疗科 韩 非
前 言
2
放射肿瘤学的内容
放射肿瘤学
临床肿瘤学 放射物理学 放疗技术学
放射生物学
临床放射生物学
实验放射生物学
3
实验生物学与临床生物学的关系
争论: 增殖能力与生存能力
我国研究现状 我科研究现状
4
放射肿瘤学的发展特点
放射治疗技术的改进,放射物理学的迅猛发 展,肿瘤诊断水平提高,治疗效果“越来越 好”
梗死,坏死
7 000
8 000
25%
脑干
梗死,坏死
5000
6500
全脑干
脊髓
垂体 眼 角膜 晶体
梗死,坏死
功能低下 全眼炎,出 血 角膜炎 白内障
4 500
4 500 5 500 5 000 500
5 500 20 000~30 000
相关文档
最新文档