2017高考数学试卷湖北卷含答案
湖北省2017年高考文科数学试题及答案(Word版)

湖北省2017年高考文科数学试题及答案(Word版)湖北省2017年高考文科数学试题及答案本次高考文科数学试题共分为选择题和填空题两部分。
选择题部分1.已知集合A={x|x0},则B=()。
A。
AB。
A∩BC。
BD。
B的补集解析:将3-2x>0化简得x<3/2,所以B={x|x<3/2},与A 没有交集,所以B的答案为B。
2.为评估一种农作物的种植效果,选了n块地作试验田。
这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()。
A。
x1,x2,…,xn的平均数B。
x1,x2,…,xn的标准差C。
x1,x2,…,xn的最大值D。
x1,x2,…,xn的中位数解析:稳定程度越高,说明亩产量的波动越小,所以选项B的标准差可以用来评估。
3.下列各式的运算结果为纯虚数的是()。
A。
i(1+i)²B。
i²(1-i)C。
(1+i)²D。
i(1+i)解析:将各式展开得到i(1+i)²=2i,i²(1-i)=-2i,(1+i)²=2i,i(1+i)=i+i²=-1,所以答案为D。
4.如图,正方形ABCD内的图形来自中国古代的太极图。
正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。
在正方形内随机取一点,则此点取自黑色部分的概率是()。
A。
1/4B。
π/8C。
1/2D。
4/y²解析:由于黑色部分和白色部分关于正方形的中心成中心对称,所以黑色部分的面积等于白色部分的面积,即1/2.又因为随机取一点,所以概率为1/2,所以答案为C。
5.已知F是双曲线C:x²/9-y²/4=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3)。
则△APF的面积为()。
A。
3B。
2C。
3/3D。
2/3解析:双曲线的焦距为c=√(a²+b²),其中a=3,b=2,所以c=√(3²+2²)=√13.由于F是右焦点,所以F的横坐标为3.由于PF与x轴垂直,所以△APF是一个直角三角形,且AP=√(1-3²/4)=√7/2,所以△APF的面积为1/2*√7/2*√(13-3) =1/2*√(7*10) = √70/2 = 5/√2,化简得3/3,所以答案为C。
2017年高考真题(全国Ⅲ卷)数学理科含解析

2017年普通高等学校招生统一考试全国卷Ⅲ理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={}22x y y x│,则A B=(,)(,)1│,B={}x y x y+=中元素的个数为A.3 B.2 C.1D.0【答案】B【解析】【考点】交集运算;集合中的表示方法。
【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件。
集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性。
2.设复数z 满足(1+i)z=2i ,则∣z ∣= A .12 BCD .2【答案】C 【解析】【考点】 复数的模;复数的运算法则 【名师点睛】共轭与模是复数的重要性质,注意运算性质有: (1)1212z zz z ±=± ;(2) 1212z z z z ⨯=⨯;(3)22z z z z⋅== ;(4)121212z z z z z z -≤±≤+ ;(5)1212z zz z =⨯ ;(6)1121z z z z =。
3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A【解析】动性大,选项D说法正确;故选D。
【考点】折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律。
湖北省2017届高考全国统考预测密卷(2)数学(理)试卷(含答案)

2017高考理数预测密卷二本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.设,A B 是两个非空集合,定义集合{|A B x x A -=∈且}x B ∉,若{}|05A x Z x =∈≤≤,{}2|7100B x x x =-+<,则A B -的真子集个数为( )A.3B.4C.7D. 15 2.命题“0x ∀>,使得210x x ++>”的否定是 ( )A.00x ∃≤,使得20010x x ++≤ B. 0x ∀≤,使得210x x ++>.C. 0x ∀>,使得210x x ++>D. 00x ∃>,使得210x x ++≤3.已知p :1a =±,q:函数()ln(f x x =为奇函数,则p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4. 若,x y 满足约束条件1020220x y x y x y -+≤⎧⎪-≤⎨⎪+-≤⎩,则目标函数z x y =+( )A. 有最大值32,最小值-3 B.有最大值1,最小值-3 C.有最小值1,无最大值 D.有最大值1,无最小值 5. 执行如图所示的程序框图,若输入的2k =,则输出的k 为( )A.6B.7C.8D. 9 6.已知()sin(2)3f x x π=+,'()2()()g x f x f x =+,在区间 , 02π⎡⎤-⎢⎥⎣⎦上任取一个实数x ,则()g x 的值不小于6的概率为( )A.16 B.38 C.14 D.187.我国古代著名的数学专著《九章算术》中有一个“竹九节”问题为“一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,则这根竹子的总容积为( )A.476升 B. 172升 C. 20122升 D. 30933升 8.函数12017()()cos 12017xxf x x -=+的图象大致为( ) A.B.C. D.9. 若5(1)x ay --的展开式中2x y 的系数为-150,则展开式中各项的系数和为( ) A .55- B. 55 C. 53 D. 54 10.某几何体的三视图如图所示,图中的四边形都是正方形,两条虚线互相垂直, 若该几何体的体积是1603,则该几何体的表面积为( )A. 96162+80162+11.已知M 、N 是等轴双曲线222(0)x y a a -=>上关于原点对称的两点,P 是双曲线上的动点,且直线,PM PN 的斜率分别为1212,,0k k k k ≠,则12k k +的最小值为( ) A .2 B .1 C. 12D 512.已知函数2()2f x x x a =++,1()g x x=-,若存在两点11(,())A x f x ,22(,())B x g x ,12(0,0)x x <>,使得直线AB 与函数()y f x =和()y g x =的图象均相切,则实数a 的取值范围是( )A. 1(1,)8-B. (1,)+∞C. 1(,1)(,)8-∞-+∞UD. 1(,)8-∞第Ⅱ卷(13-21为必做题,22-23为选做题)二、填空题(本大题共4个小题,每小题5分,共20分。
2017年湖北高考试题(理数_word解析版)

2017年普通高等学校招生全国统一考试(湖北卷)数学(理科)本试题卷共5页,共22题,其中第15、16题为选考题。
满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B 铅笔涂黑。
考生应根据自己选做的题目准确填涂题号,不得多选。
答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程26130x x ++=的一个根是A .32i -+B .32i +C .23i -+D .23i + 考点分析:本题考察复数的一元二次方程求根. 难易度:★解析:根据复数求根公式:6x 322i -==-±,所以方程的一个根为32i -+ 答案为A.2.命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q考点分析:本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别.难易度:★解析:根据对命题的否定知,是把谓词取否定,然后把结论否定。
2017高考数学试卷湖北卷含答案

2017年普通高等学校招生全国统一考试数学(理工类)(湖北卷)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.与直线042=+-y x 的平行的抛物线2x y =的切线方程是 ( )A .032=+-y xB .032=--y xC .012=+-y xD .012=--y x 2.复数ii 31)31(2++-的值是( )A .-16B .16C .41-D .i 4341- 3.已知)(,11)11(22x f xx x x f 则+-=+-的解析式可取为( )A .21xx+ B .212xx+-C .212xx+ D .21xx+-4.已知c b a ,,为非零的平面向量. 甲:则乙,:,c b c a b a =⋅=⋅ ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件5.若011<<b a ,则下列不等式①ab b a <+;②|;|||b a >③b a <;④2>+baa b 中,正确的不等式有( )A .1个B .2个C .3个D .4个6.已知椭圆191622=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为 ( )A .59 B .3 C .779 D .497.函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为( )A .41B .21 C .2D .48.已知数列{n a }的前n 项和),,2,1]()21)(1(2[])21(2[11=+---=--n n b a S n n n 其中a 、b 是非零常数,则存在数列{n x }、{n y }使得( )A .}{,n n n n x y x a 其中+=为等差数列,{n y }为等比数列B .}{,n n n n x y x a 其中+=和{n y }都为等差数列C .}{,n n n n x y x a 其中⋅=为等差数列,{n y }都为等比数列D .}{,n n n n x y x a 其中⋅=和{n y }都为等比数列9.函数1)(2++=x ax x f 有极值的充要条件是( )A .0>aB .0≥aC .0<aD .0≤a10.设集合044|{},01|{2<-+∈=<<-=mx mx R m Q m m P 对任意实数x 恒成立},则下列关系中成立的是( )A .P QB .Q PC .P=QD .P Q=11.已知平面βα与所成的二面角为80°,P 为α、β外一定点,过点P 的一条直线与α、β所成的角都是30°,则这样的直线有且仅有( )A .1条B .2条C .3条D .4条12.设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin312∈+=t t y πD .]24,0[),212sin(312t t y ππ++= 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.设随机变量ξ的概率分布为====a k a ak P k则为常数,,2,1,,5)( ξ . 14.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有 种.(以数字作答)15.设A 、B 为两个集合,下列四个命题: zz ①A B ⇔对任意B x A x ∉∈有, ②A B ⇔=B A③A B ⇔A⊇B④A B ⇔存在B x A x ∉∈使得,其中真命题的序号是 .(把符合要求的命题序号都填上)16.某日中午12时整,甲船自A 处以16km/h 的速度向正东行驶,乙船自A 的正北18km处以24km/h 的速度向正南行驶,则当日12时30分时两船之间距间对时间的变化率是 km/h.三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知)32sin(],,2[,0cos 2cos sin sin622παππααααα+∈=-+求的值.18.(本小题满分12分) 如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点.(I )试确定点F 的位置,使得D 1E ⊥平面AB 1F ;(II )当D 1E ⊥平面AB 1F 时,求二面角C 1—EF —A 的大小(结果用反三角函数值表示).19.(本小题满分12分)如图,在Rt △ABC 中,已知BC=a ,若长为2a 的线段PQ 以点A 为中点,问BC PQ 与的夹角θ取何值时⋅的值最大?并求出这个最大值. 20.(本小题满分12分)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两点A 、B.(I )求实数k 的取值范围;(II)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.21.(本小题满分12分)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失. 现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9 和0.85. 若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少. (总费用...=采取预防措施的费用+发生突发事件损失的期望值.) 22.(本小题满分14分)已知.,2,1,1,}{,011 =+==>+n a a a a a a a nn n 满足数列 (I )已知数列}{n a 极限存在且大于零,求n n a A ∞→=lim (将A 用a 表示);(II )设;)(:,,2,1,1A b A b b n A a b n nn n n +-==-=+证明(III )若 ,2,121||=≤n b n n 对都成立,求a 的取值范围.参考答案一、选择题1.D 2.A 3.C 4.B 5.B 6.D 7.B 8.C 9.B 10.A 11.D 12.A 二、填空题13.4 14.240 15.(4) 16.-1.6 三、解答题 17.本小题考三角函数的基本公式以及三角函数式的恒等变形等基础知识和基本运算技能,满分12分. 解法一:由已知得:0)cos sin 2)(cos 2sin 3(=-+αααα 0cos sin 20cos 2sin 3=-=+⇔αααα或 由已知条件可知).,2(,2,0cos ππαπαα∈≠≠即所以 .32tan ,0tan -=∴<αα于是3sin 2cos 3cos 2sin )32sin(παπαπα+=+.tan 1tan 123tan 1tan sin cos sin cos 23sin cos cos sin )sin (cos 23cos sin 22222222222αααααααααααααααα+-⨯++=+-⨯++=-+= 代入上式得将32tan -=α..3265136)32(1)32(123)32(1)32()32sin(222即为所求+-=-+--⨯+-+--=+πα解法二:由已知条件可知所以原式可化为则,2,0cos παα≠≠..32tan .0tan ),,2(.0)1tan 2)(2tan 3(.02tan tan 62下同解法一又即-=∴<∴∈=-+=-+ααππααααα18.本小题主要考查线面关系和正方体等基础知识,考查空间想象能力和推理运算能力,满分12分.解法一:(I )连结A 1B ,则A 1B 是D 1E 在面ABB 1A ;内的射影 ∵AB 1⊥A 1B ,∴D 1E ⊥AB 1, 于是D 1E ⊥平面AB 1F ⇔D 1E ⊥AF. 连结DE ,则DE 是D 1E 在底面ABCD 内的射影. ∴D 1E ⊥AF ⇔DE ⊥AF. ∵ABCD 是正方形,E 是BC 的中点. ∴当且仅当F 是CD 的中点时,DE ⊥AF , 即当点F 是CD 的中点时,D 1E ⊥平面AB 1F.…………6分 (II )当D 1E ⊥平面AB 1F 时,由(I )知点F 是CD 的中点. 又已知点E 是BC 的中点,连结EF ,则EF ∥BD. 连结AC , 设AC 与EF 交于点H ,则CH ⊥EF ,连结C 1H ,则CH 是 C 1H 在底面ABCD 内的射影. C 1H ⊥EF ,即∠C 1HC 是二面角C 1—EF —C 的平面角.在Rt △C 1CH 中,∵C 1C=1,CH=41AC=42,∴tan ∠C 1HC=224211==CH C C . ∴∠C 1HC=arctan 22,从而∠AHC 1=22arctan -π. 故二面角C 1—EF —A 的大小为22arctan -π.解法二:以A 为坐标原点,建立如图所示的空间直角坐标系 (1)设DF=x ,则A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B (1,0,1),D 1(0,1,1),E )0,21,1(,F (x ,1,0)FAB E D CD F x x D AF E D F AB E D AB E D AB E D x AB D 111111111111,.21210,011)0,1,(),1,0,1(),1,21,1(平面的中点时是故当点即平面于是即⊥==-⇔=⋅⇔⇔⊥⊥=-=⋅∴==--=∴(1)当D 1E ⊥平面AB 1F 时,F 是CD 的中点,又E 是BC 的中点,连结EF ,则EF ∥BD. 连结AC ,设AC 与EF 交于点H ,则AH ⊥EF. 连结C 1H ,则CH 是C 1H 在底面ABCD 内的射影.∴C 1H ⊥EF ,即∠AHC 1是二面角C 1—EF —A 的平面角.31898983||||cos ).0,43,43(),1,41,41(),0,43,43(),1,1,1(11111-=⨯-=⋅=∠∴--==HC HA AHC HC H C .31arccos .31arccos )31arccos(11----=-=∠ππ的大小为故二面角即A EF C AHC19.本小题主要考查向量的概念,平面向量的运算法则,考查运用向量及函数知识的能力,满分12分.)()(,,,.0,:AC AQ AB AP CQ BP -⋅-=⋅∴-=-=-==⋅∴⊥ 解法一.cos 2121)(222222θa a a a AC AB AP a a +-=⋅+-=⋅+-=-⋅--=⋅+⋅--=⋅+⋅-⋅-⋅= .0.,)(0,1cos 其最大值为最大时方向相同与即故当CQ BP BC PQ ⋅==θθ解法二:以直角顶点A 为坐标原点,两直角边所在直线为坐标轴建立如图所示的平面直角坐标系..)()())(().2,2(),,(),,(),,().,(),,(.||,2||),,0(),0,(),0,0(,||||22by cx y x b y y x c x y x b c b y x y c x y x Q y x P a BC a PQ b C c B A b AC c AB -++-=--+--=⋅∴--=-=---=-=∴--====则的坐标为设点且则设 .0,,)(0,1cos .cos .cos .cos 2222其最大值为最大时方向相同与即故当CQ BC BC PQ a a CQ BP a by cx aby cx ⋅==+-=⋅∴=-∴-==θθθθθ 20.本小题主要考查直线、双曲线的方程和性质,曲线与方程的关系,及其综合应用能力,满分12分.解:(Ⅰ)将直线整理得后的方程代入双曲线的方程,12122=-+=y x C kx y l .022)2(22=++-kx x k ……①依题意,直线l 与双曲线C 的右支交于不同两点,故.22.022022,0)2(8)2(,0222222-<<-⎪⎪⎪⎩⎪⎪⎪⎨⎧>->-->--=∆≠-k k k k k k k k 的取值范围是解得(Ⅱ)设A 、B 两点的坐标分别为),(11y x 、),(22y x ,则由①式得⎪⎪⎩⎪⎪⎨⎧-=⋅-=+.22,22222221k x x k k x x ……② 假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c,0). 则由FA ⊥FB 得:.0)1)(1())((.0))((21212121=+++--=+--kx kx c x c x y y c x c x 即整理得 .01))(()1(221212=+++-++c x x c k x x k ……③ 把②式及26=c 代入③式化简得 .066252=-+k k 解得))(2,2(566566舍去或--∉-=+-=k k 可知566+-=k 使得以线段AB 为直径的圆经过双曲线C 的右焦点. 21.本小题考查概率的基本知识和数学期望概念及应用概率知识解决实际问题的能力,满分12分.解:①不采取预防措施时,总费用即损失期望为400×0.3=120(万元); ②若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为1-0.9=0.1,损失期望值为400×0.1=40(万元),所以总费用为45+40=85(万元) ③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元); ④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为400×0.015=6(万元),所以总费用为75+6=81(万元).综合①、②、③、④,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.22.本小题主要考查数列、数列极限的概念和数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分.解:(I )由两边取极限得对且存在nn n n n n a a a A a A a 1),0(lim ,lim 1+=>=+∞→∞→ .24,0.24,122++=∴>+±=+=a a A A a a A A a A 又解得 (II ).11,11Ab a A b a a a A b a n n n n n n ++=++=+=++得由都成立对即 ,2,1)(.)(11111=+-=+-=++-=++-=∴++n A b A b b A b A b A b A A b A a b n n n n n n n n (III ).21|)4(21|,21||21≤++-≤a a a b 得令 .,2,121||,23.23,14.21|)4(21|22都成立对时现证明当解得 =≤≥≥≤-+∴≤-+∴n b a a a a a a n n (i )当n=1时结论成立(已验证).(ii )假设当那么即时结论成立,21||,)1(k k b k k n ≤≥= k k k k k A b A A b A b b 21||1|)(|||||1⨯+≤+=+ 故只须证明.232||,21||1成立对即证≥≥+≤+a A b A A b A k k .212121||,23.2||,1212||||.2,14,23,422411222++=⨯≤≥≥+≥-≥-≥+∴≥∴≤-+≥-+=++=k k k k k k k b a A b A b A A b A a a a a a a a A 时故当即时而当由于即n=k+1时结论成立.根据(i )和(ii )可知结论对一切正整数都成立. 故).,23[,2,121||+∞=≤的取值范围为都成立的对a n b n n。
湖北省2017届高考全国统考预测密卷(2)数学(文)试卷(含答案)

边形是个圆内接四边形,且 AC 是圆的直径 . ( 1)求证:平面 BED 平面 ABCD ; ( 2) P 是平面 ABE 内一点,满足 DP 平面 BEC , 求三棱锥 F BDE 的体积 .
E
D A
C B
取最大值时, x y =________.
1 , S PAC S ABC
2 , S PAB S ABC
3 ,则 1 2 3
16.过正方体 ABCD-A1B1C1D1 棱 DD1 的中点与直线 B1 D 所成角为 60°,且与平面 ACC1A1 所成角为 50°
的直线条数为 ________.
D1
C1
)
x2 y2
x2 y2
A.
1 B.
1 C.
256 64
64 16
x2 y2 1 D.
16 4
x2 y2 1 4
9.某几何体的三视图如图所示,则该几何体的侧面积与底面积之比为(
)
A. 2 2 5 2 17 B. 7 4 5 41 C. 2 2 5 2 17 41 D. 2 4 5 41
5
5
5
5
10. 数列 an 满足 a1 1,nan 1 (n 1)an n(n 1) ,数列 bn an cosn ,设 Sn 为数列 bn
的前 n 项和,则 S27 =(
)
A. 351
B. 406
C.
378
D.
324
11. 已知函数 f ( x)
2, x 0 ,若存在 f (x) 图象上的相异两点 A, B ,使得 A, B 关
x3 6x2 9x a, x 0
于原点的对称点仍然落在 f (x) 图象上 , 则实数 a =( )
2017年湖北高考数学试题和答案理科

2018年湖北省高考理科数学A型试卷及参考答案试卷类型A 2018年普通高等学校招生全国统一考试<湖北卷)数学<理工类)本试卷共5页,共22题,其中第15、16题为选考题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己地姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上地指定位置.用统一提供地2B铅笔将答题卡上试卷类型A后地方块涂黑.2.选择题地作答:每小题选出答案后,用统一提供地2B铅笔把答题卡上对应题目地答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题地作答:用统一提供地签字笔将答案直接答在答题卡上对应地答题区域内.答在试卷、草稿纸上无效.4.选考题地作答:先把所选题目地题号答在答题卡上指定地位置用统一提供地2B铅笔涂黑.考生应该根据直接地选做地题目准确填涂题号,不得多选,答题答在答题卡上对应地答题区域内,答在试题卷、草稿纸上无效.5.考生必须保持答题卡地整洁.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出地四个选项中,只有一项是符合题目要求地1. 方程+6x +13 =0地一个根是A -3+2iB 3+2iC -2 + 3iD 2 + 3i2 命题“x0∈C R Q,∈Q ”地否定是A x0∉C R Q,∈QB x0∈C R Q ,∉QC x0∉C R Q ,∈QD x0∈C R Q ,∉Q3 已知二次函数y =f(x>地图像如图所示,则它与X轴所围图形地面积为A. B. C. D.4.已知某几何体地三视图如图所示,则该集合体地体积为A. B.3π C. D.6π5.设a∈Z,且0≤a≤13,若512018+a能被13整除,则a=A.0B.1C.11D.126.设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则A. B. C. D,7.定义在<-∞,0)∪<0,+∞)上地函数f<x),如果对于任意给定地等比数列{a n},{f<a n)}仍是等比数列,则称f<x)为“保等比数列函数”.现有定义在<-∞,0)∪<0,+∞)上地如下函数:①f<x)=x²;②f<x)=2x;③;④f<x)=ln|x |.则其中是“保等比数列函数”地f<x)地序号为A.①②B.③④C.①③D.②④8.如图,在圆心角为直角地扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分地概率是A. B. C. D.9.函数f<x)=xcosx²在区间[0,4]上地零点个数为A.4B.5C.6D.710.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球地体积V,求其直径d地一个近似公式.人们还用过一些类似地近似公式.根据=3.14159…..判断,下列近似公式中最精确地一个是二、填空题:本大题共6小题,考试共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......地位置上.答错位置,书写不清,模棱两可均不得分.<一)必考题<11-14题)11.设△ABC地内角A,B,C,所对地边分别是a,b,c.若<a+b-c)<a+b+c)=ab,则角C=______________.12.阅读如图所示地程序框图,运行相应地程序,输出地结果s=___________.13.回文数是指从左到右与从右到左读都一样地正整数.如22,,121,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则<Ⅰ)4位回文数有______个;<Ⅱ)2n+1<n∈N+)位回文数有______个.14.如图,双曲线地两顶点为A1,A2,虚轴两端点为,,两焦点为F1,F2.若以A1A2为直径地圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则<Ⅰ)双曲线地离心率e=______;<Ⅱ)菱形F1B1F2B2地面积S1与矩形ABCD地面积S2地比值__________.<二)选考题<请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选地题目序号后地方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.<选修4-1:几何证明选讲)如图,点D在⊙O地弦AB上移动,AB=4,连接OD,过点D作OD地垂线交⊙O于点C,则CD地最大值为_____________.16.<选修4-4:坐标系与参数方程)在直角坐标系xOy中,以原点O为极点,x轴地正半轴为极轴建立极坐标系,已知射线与曲线<t为参数)相较于A,B来两点,则线段AB地中点地直角坐标为_________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.<本小题满分12分)已知向量a=,b=,设函数f<x)=a·b+地图像关于直线x=π对称,其中为常数,且(1)求函数f<x)地最小正周期;(2)若y=f<x)地图像经过点求函数f<x)在区间上地取值范围.18.<本小题满分12分)已知等差数列{a n}前三项地和为-3,前三项地积为8.<1)求等差数列{a n}地通项公式;<2)若a2,a3,a1成等比数列,求数列地前n项地和.19.<本小题满分12分)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°<如图2所示),<1)当BD地长为多少时,三棱锥A-BCD地体积最大;<2)当三棱锥A-BCD地体积最大时,设点E,M分别为棱BC,AC地中点,试在棱CD 上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角地大小20.<本小题满分12分)根据以往地经验,某工程施工期间地将数量X<单位:mm)对工期地影响如下表:历年气象资料表明,该工程施工期间降水量X小于300,700,900地概率分别为0.3,0.7,0.9,求:<I)工期延误天数Y地均值与方差;<Ⅱ)在降水量X至少是300地条件下,工期延误不超过6天地概率.21.<本小题满分13分)设A是单位圆x2+y2=1上地任意一点,i是过点A与x轴垂直地直线,D是直线l与x轴地交点,点M在直线l上,且满足丨DM丨=m丨DA丨<m>0,且m≠1).当点A在圆上运动时,记点M地轨迹为曲线C.<I)求曲线C地方程,判断曲线C为何种圆锥曲线,并求焦点坐标;<Ⅱ)过原点且斜率为k地直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上地射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意地k>0,都有PQ⊥PH?若存在,求m地值;若不存在,请说明理由.22.(本小题满分14分><I)已知函数f<x)=rx-x r+<1-r)<x>0),其中r为有理数,且0<r<1.求f<x)地最小值;<II)试用<I)地结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;<III)请将<II)中地命题推广到一般形式,并用数学归纳法.....证明你所推广地命题.注:当α为正有理数时,有求道公式(xα)r=αxα-1新课标第一网申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。
2017年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2017 年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4} 2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(5 分)设非零向量,满足|+|=|﹣|则()A.⊥B.||=|| C.∥D.||>||5.(5 分)若a>1,则双曲线﹣y2=1 的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5 分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5 分)设x,y 满足约束条件,则z=2x+y 的最小值是()A.﹣15 B.﹣9 C.1 D.98.(5 分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5 分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2 位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5 分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.511.(5 分)从分别写有1,2,3,4,5 的5 张卡片中随机抽取1 张,放回后再随机抽取1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.12.(5 分)过抛物线C:y2=4x 的焦点F,且斜率为的直线交C 于点M(M 在x 轴上方),l为C 的准线,点N 在l 上,且MN⊥l,则M 到直线NF 的距离为()A.B.2C.2D.3二、填空题,本题共4 小题,每小题5 分,共20 分13.(5 分)函数f(x)=2cosx+sinx 的最大值为.14.(5 分)已知函数f(x)是定义在R 上的奇函数,当x∈(﹣∞,0)时,f (x)=2x3+x2,则f(2)=.15.(5 分)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为.16.(5 分)△ABC 的内角A,B,C 的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70 分.解答应写出文字说明,证明过程或演算步骤,第17 至21 题为必考题,每个试题考生都必须作答.第22、23 题为选考题,考生根据要求作答.(一)必考题:共60 分.17.(12 分)已知等差数列{a n}的前n 项和为S n,等比数列{b n}的前n 项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12 分)如图,四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD 面积为2,求四棱锥P﹣ABCD 的体积.19.(12 分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.050 0.010 0.001K 3.841 6.635 10.828K2=.20.(12 分)设O 为坐标原点,动点M 在椭圆C:+y2=1 上,过M 作x 轴的垂线,垂足为N,点P 满足= .(1)求点P 的轨迹方程;(2)设点Q 在直线x=﹣3 上,且•=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F.21.(12 分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0 时,f(x)≤ax+1,求a 的取值范围.选考题:共10 分。