机械设计课程设计机械手课程设计说明书
大三机械设计课程设计

大三机械设计课程设计大三机械设计课程设计是一个综合性的实践项目,旨在让学生掌握机械设计的基本原理和方法,培养其解决实际问题的能力。
以下是一个大三机械设计课程设计:题目:设计一个简单的机械手一、设计任务设计一个简单的机械手,用于抓取和搬运物体。
要求机械手能够实现以下功能:1.抓取物体:机械手能够抓取不同形状和大小的物体。
2.搬运物体:机械手能够将物体从一个位置移动到另一个位置。
3.释放物体:机械手能够将物体释放到指定位置。
二、设计要求1.机械手结构简单、紧凑,易于制造和装配。
2.机械手具有足够的刚度和稳定性,能够承受一定的工作负载。
3.机械手操作简便、灵活,能够适应不同形状和大小的物体。
4.机械手具有安全保护装置,避免在操作过程中对人员造成伤害。
三、设计步骤1.确定设计参数:根据设计任务和要求,确定机械手的基本参数,如手指数量、长度、角度等。
2.选择传动方式:根据设计参数和要求,选择合适的传动方式,如齿轮传动、连杆传动等。
3.设计机械手结构:根据传动方式,设计机械手的整体结构,包括手指、传动机构、支撑结构等。
4.进行运动分析和动力学分析:对机械手的运动进行详细的分析,包括手指的开合运动、抓取物体的过程等。
同时进行动力学分析,确定机械手的负载能力和稳定性。
5.进行结构设计:根据运动分析和动力学分析的结果,对机械手的结构进行详细的设计,包括零件的尺寸、材料选择、热处理工艺等。
6.绘制图纸:根据结构设计的结果,绘制机械手的装配图、零件图等图纸。
7.编写设计说明书:编写详细的设计说明书,包括设计任务书、设计方案说明、设计计算书等内容。
8.提交成果:将设计图纸和设计说明书提交给指导老师进行评审和答辩。
四、注意事项1.在设计过程中要充分考虑机械手的制造工艺和装配工艺,确保设计的可行性和实用性。
2.在进行运动分析和动力学分析时要考虑各种可能的工况和条件,确保设计的可靠性和稳定性。
3.在进行结构设计时要注重细节和精度,确保设计的精确性和美观性。
机械手设计说明书

1 设计项目名称机械装备项目--机械手课程设计2 设计目的利用设计的机械手夹起形状为正六边体,质量为5kg工件,并运送到工作台。
设计的过程主要解决的问题如下:(1)工件的重量和外形尺寸问题:工件质量5kg,半径在90-110mm范围内。
(2)工件的外形问题:工件的横截面为正六边形,夹紧的过程要解决夹到棱边的问题。
(3)各零部件的工艺问题:零部件应有良好的工艺性,可用最简单,常见的工艺(铸,车,铣,钻等),实现零部件的加工。
(4)整体的稳定性,灵活性保证问题:各部件协调工作,保证装配体的工作稳定:如齿轮齿条配合,连杆配合等的稳定性考虑;保证机械手总体质量小,惯性小,灵活可靠。
3 设计方案说明3.1机械手工作原理图1 拆去底板装配图工作过程:液压缸产生推力,推动齿条来回移动,齿轮与齿条啮合旋转,齿轮带动四连杆转动,连杆推动夹板夹住工件。
3.2结构说明3.2.1执行机构:夹板图2 夹板1)特点夹板在竖直方向上有采用铰接,可自动调整到与工件位置相平行的状态,夹板上有滚花工艺,增大摩擦系数,保证夹起的工件不滑落。
2)尺寸根据工件的外形尺寸,确定夹板长×宽为:80×50,根据经验,采用厚度为5mm的钢板。
3.2.2传动链1、四连杆机构图4 四连杆机构1)特点四连杆机构铰链连接的部分采用滑动轴承,安装尺寸小,润滑方便,四连杆运动摩擦小;连杆机构在未到达死点的位置下工作,机构工作可靠;连杆机构可以保证使夹板平行运动,从而保证夹板与工件表面平行,夹板接触工件时受力均匀,可平稳夹住工件,增强了整体装夹的稳定性。
2)尺寸计算图5 结构简图确定L2:因为机械手要夹紧的工件的范围是90~110mm,故L2=L1=(110+19×2-40)÷2=54mm留下一定的设计余量,选L2=60mm。
确定L3:为了能够装夹不同高度的工件,同时选择L5=40mm,连杆的长度L3应满足:L3=L5+h=87.5mm,取L3=90mm。
机械原理课程设计热墩机械手

机械原理课程设计热墩机械手机械原理课程设计说明书——热镦挤送料机械手B指导老师:温亚莲设计者:李霞学号:20109046班级:机电3班目录第一章设计题目及要求 (1)1.1 设计题目简介 (1)1.2 设计数据及要求 (2)1.3 设计任务与提示 (2)第二章热镦挤送料机械手摆臂的设计 (5)2.1 机械手上下摆臂设计方案A (5)2.2 机械手上下摆臂设计方案B (6)2.3 机械手上下摆臂设计方案C (6)2.4 摆臂方案的确定 (7)第三章热镦挤送料机械手回转装置设计 (8)3.1 回转装置设计方案A (8)3.2 回转装置设计方案B (8)3.3 回转装置设计方案C (9)3.4 驱动装置的选择 (10)3.4.1 常用电动机的结构特征 (10)3.4.2 选定电动机的容量 (10)3.5 回转装置方案的确定 (11)3.6 循环图的拟定及运动路线图 (11)第四章热镦挤送料机械手方案的确定与计算 (13)4.1 拟订的方案 (13)4.2 最终方案的确定与说明 (15)4.3 方案的计算 (16)第五章相关建模过程及仿真 (19)第六章设计总结 (22)第七章参考文献 (22)第一章设计题目及要求1.1 设计题目简介设计二自由度关节式热镦挤送料机械手,由电动机驱动,夹送圆柱形镦料,往40吨镦头机送料。
以方案A为例,它的动作顺序是:手指夹料,手臂上摆15º,手臂水平回转120º,手臂下摆15º,手指张开放料。
手臂再上摆,水平反转,下摆,同时手指张开,准备夹料。
主要要求完成手臂上下摆动以及水平回转的机械运动设计。
图1为机械手的外观图。
图1:机械手的外观图1.2 设计数据及要求表11.3 设计任务与提示设计任务1.至少提出可行的两种运动方案,然后进行方案分析评比,选出一种运动方案进行设计;2. 设计传动系统并确定其传动比分配。
3. 图纸上画出步进送料机的机构运动方案简图和运动循环图。
机械手-机械原理课程设计说明书

机械手工作频率:20/min;升降 0.3kw,摆动 0.1kw,伸缩 0.1kw,夹持 0.2kw。
2执行机构的选择与比较§2-1 转角机构(实现平面转角030功能)方案一实现平面转角030的过程:电机带动不完全齿轮运动,不完全齿轮带动全齿轮运动,与全齿轮固结的四杆机构,使滚子在预先设计好形状的槽内运动,左右运动的极限位置恰好是30度。
机构评价:优点:因为槽的形状固定,所以能保证在一个行程内,机构的平面转角就是30度。
不完全齿轮的使用,为机械手在抓放物体时留下了工作时间。
缺点:由于四杆机构的运动被槽限制住,最短杆无法做周转运动,导致机构的回程要求齿轮的翻转,必须在前面加入变速箱改变速度方向。
方案二实现平面转角030的过程:皮带轮传动给蜗轮蜗杆从而使不完全齿轮,有间歇地带动完全齿轮转动,齿轮通过杆拉动齿条,由齿轮来回往复地带动固接杆转动030机构评价:优点:同样具有结构简单,传力较小运动灵活,造价低准确地实现转角030的要求,可以控制间歇实现循环功能。
缺点:磨损较严重,效率较低,齿轮尺寸过大加工难。
方案三30的过程:使用实现平面转角0槽轮实现平面转角30度,只要计算好槽轮的槽数,就能在主动圆盘转360度时,使从动轮转30度。
机构评价:优点:结构简单,外形尺寸小,机械效率高,并能平稳的间歇地进行转位。
缺点:传动存在柔性冲击,且是单向的间歇运动,同样要求变速箱改变运动方向。
方案的选择与比较:只有第二个方案能较好的实现对传动系统的功能要求在平面转动上能准确地控制在30度,制造简单方便。
§2-2 上升机构(实现上升100功能要求)方案一实现上升的过程:皮带轮传动,使蜗杆带动蜗轮,蜗轮和齿条配合。
通过控制蜗杆的半径,使转动一周后,使齿条上升100.机构评价:优点:蜗杆的轮齿是连续的螺旋尺,故传动平稳,啮合冲击小。
缺点:啮合齿轮间的相对滑动速度较大,摩擦磨损较大,传动效率较低,易出现发热现象,常用耐磨材料制作,成本高。
机床上下料机械手设计 说明书(65页)

第1章绪论1.1 选题背景机械手是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,它是在机械化、自动化生产过程中发展起来的一种新型装置。
近年来,随着电子技术特别是电子计算机的广泛应用,机器人的研制和生产已成为高技术领域内迅速发展起来的一门新兴技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。
机械手能代替人类完成危险、重复枯燥的工作,减轻人类劳动强度,提高劳动生产力。
机械手越来越广泛的得到了应用,在机械行业中它可用于零部件组装,加工工件的搬运、装卸,特别是在自动化数控机床、组合机床上使用更普遍。
目前,机械手已发展成为柔性制造系统FMS和柔性制造单元FMC 中一个重要组成部分。
把机床设备和机械手共同构成一个柔性加工系统或柔性制造单元,它适应于中、小批量生产,可以节省庞大的工件输送装置,结构紧凑,而且适应性很强。
当工件变更时,柔性生产系统很容易改变,有利于企业不断更新适销对路的品种,提高产品质量,更好地适应市场竞争的需要。
而目前我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,应用规模和产业化水平低,机械手的研究和开发直接影响到我国自动化生产水平的提高,从经济上、技术上考虑都是十分必要的。
因此,进行机械手的研究设计是非常有意义的。
1.2 设计目的本设计通过对机械设计制造及其自动化专业大学本科四年的所学知识进行整合,完成一个特定功能、特殊要求的数控机床上下料机械手的设计,能够比较好地体现机械设计制造及其自动化专业毕业生的理论研究水平,实践动手能力以及专业精神和态度,具有较强的针对性和明确的实施目标,能够实现理论和实践的有机结合。
目前,在国内很多工厂的生产线上数控机床装卸工件仍由人工完成,劳动强度大、生产效率低。
为了提高生产加工的工作效率,降低成本,并使生产线发展成为柔性制造系统,适应现代自动化大生产,针对具体生产工艺,利用机器人技术,设计用一台装卸机械手代替人工工作,以提高劳动生产率。
机械手课程设计

《机电系统》课程设计说明书课程设计任务书姓名班级学号设计题目简易型机械手的设计设计任务:(1)方案论证;在其基础上进行机械手的总体设计,并绘制总体布局图。
(2)驱动系统设计:根据机械手的特点,选用舍党的驱动方式,根据总体设计要求进行电机选型。
进行电机选型相关计算。
进行驱动系统零部件的选型和设计。
绘制驱动系统布局图。
(3)控制系统设计:确定机械手的控制方式并进行控制系统的控制与编程。
绘制控制系统布局图。
(4)传感与测试系统设计:进行控制与驱动系统的传感与测试系统的设计。
(5)机械本体设计:进行机械本体零部件设计,绘制总体和零件图。
设计工作量:(1)设计说明书一份(2)CAD图纸5张(3)文档整理排版指导教师设计时间2011年1月3日~2011年1月21日目录第1章绪论 (1)1.1机械手概述 (1)1.2机械手的设计目的 (3)1.3机械手的设计内容 (4)1.4机械手的分类及其在生产中的应用 (5)1.5机械手的应用意义 (8)1.6机械手的技术发展方向 (9)第2章设计方案的论证 (10)2.1机械手的总体设计 (10)2.2机械手腰座结构的设计 (12)2.3机械手手臂结构的设计 (14)2.4工业机器人腕部的结构 (16)2.5机械手末端执行器(手爪)的结构设计 (18)2.6机械手的机械传动机构的设计 (21)2.7机械手驱动系统的设计 (26)2.8机器人手臂的平衡机构设计 (33)第3章理论分析和设计计算 (34)3.1液压传动系统设计计算 (34)3.2电机选型有关参数计算 (43)第4章控制系统的设计 (47)4.1可编程控制器PLC (47)4.2 PLC的选型 (51)4.3机械手的工艺流程 (53)4.4 机械手的PLC控制系统程序 (57)第5章机械手本体设计 (59)5.1 机械手零部件设计 (59)5.2 机械手总成和零件图................................................ . (61)致谢 (62)参考文献 (63)第1章绪论1.1机械手的概述机械手主要由手部、运动机构和控制系统三大部分组成。
(完整word版)机械手臂课设说明书.

)机械手臂课设说明书.目录1引言 (1)2 PLC的简介 (2)2。
1 PLC的产生 (2)2.2 PLC的定义和特点 (2)2。
2。
1 PLC的定义 (2)2.2.2 PLC的特点 (2)2。
3可编程控制器的主要性能指标 (3)2。
4 PLC系统的组成 (4)2。
4.1 PLC的硬件结构 (4)2.4。
2 PLC的软件 (4)2。
5 PLC的应用领域 (4)3方案设计 (6)3。
1 主程序设计 (6)3。
2 公用程序设计 (7)3.3 自动程序设计 (8)3.4 手动程序设计 (9)3.5 自动回原点程序设计 (9)4心得体会 (11)参考文献 (12)附录1 (13)附录2 (17)1引言机械手是工业自动化领域中经常遇到的一种控制对象。
近年来随着工业自动化的发展机械手逐渐成为一门新兴学科,并得到了较快的发展。
机械手广泛地应用与锻压、冲压、锻造、焊接、装配、机加、喷漆、热处理等各个行业。
特别是在笨重、高温、有毒、危险、放射性、多粉尘等恶劣的劳动环境中,机械手由于其显著的优点而受到特别重视。
总之,机械手是提高劳动生产率,改善劳动条件,减轻工人劳动强度和实现工业生产自动化的一个重要手段.国内外都十分重视它的应用和发展。
可编程序控制器(PLC)是专为在工业环境下应用而设计的实时工业控制装置。
随着微电子技术、自动控制技术和计算机通信技术的飞速发展,PLC在硬件配置、软件编程、通讯联网功能以及模拟量控制等方面均取得了长足的进步,已经成为工厂自动化的标准配置之一[1]。
由于自动化可以节省大量的人力、物力等,而PLC也具有其他控制方式所不具有的特殊优越性,如通用性好、实用性强、硬件配套齐全、编程方法简单易学,因此工业领域中广泛应用PLC。
机械手在美国、加拿大等国家应用较多,如用果实采摘机械手来摘果实、装配生产线上应用智能机器人等。
我国自动化水平本身比较低,因此用PLC来控制的机械手还比较少。
2 PLC的简介2。
装车机械手计算说明书

装车机械手计算说明书 Revised as of 23 November 2020机械设计课程设计设计计算说明书设计题目:装车机械手姓名:XXX学号:XXX班级:XXX指导教师:XXX设计时间:XXX目录一、设计任务书 (1)二、传动方案修改 (2)三、总体设计计算 (3)1. 电机型号选择2. 各级传动比分配3. 各轴的运动参数和动力参数计算(转速、功率、转矩)四、传动机构设计计算………………1. 齿轮传动(一):齿轮3与齿轮42. 齿轮传动(二):齿轮5与齿轮6五、轴系零件设计计算………………1. 轴的设计计算(一):轴22. 轴的设计计算(二):轴3六、润滑和密封方式的选择……………………………………七、箱体及附件的结构设计和选择……………………………八、设计总结……………………………………………………参考文献…………………………………………………………一、设计任务书设计题目:装车机械手设计一台装车机械手,将生产线上的纸箱搬运到货车车厢。
如图所示,已知纸箱箱体尺寸A×B×Cmm3,重M kg,其他条件及要求见表一。
要求搬运能力J件/小时,工作寿命6年,每年工作300天。
选择电动机型号,分配总传动比,计算各轴的转速、输入输出功率。
对各级传动进行设计计算,并对整机进行结构设计。
允许选用步进电机正反转工作。
纸H LC B机械手KA车箱设计过程及计算说明二、传动方案修改1. 系统运动方案图注一:1.零件1是带内螺纹的套筒,与齿轮2做成一体;2.零件2是带外螺纹的套筒,与零件1旋合;3.零件3是与上机箱连接的空心轴;注二:1.零件3与轴4之间用滑键连接,零件3可随轴4转动,并可沿其上下移动;2.零件2带动零件3上下运动;3.零件2与零件3、零件3与轴4之间皆用圆锥滚子轴承。
F=1000N V=sD=500mm L=500mmc)按弯扭复合强度条件计算(略)2、轴的设计计算(二):轴31).按扭矩初算轴径选用45(调质),硬度217~255HBS根据《机械设计》表15-3,取c=126d≥126 1/3mm=考虑有两个键槽,将直径增大10%-15%,则d=×(1+10%-15%)mm=选d=29mm2).的结构设计a)轴上零件的定位,固定和装配轴4的大齿轮上面由轴肩定位,下面用档油盘轴向固定,联接以平键作过渡配合固定,两轴承分别以套杯和大筒定位,则采用过渡配合固定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、传动方案修改
1.系统运动方案图
2.工作条件:使用年限6年,每年工作300天,载荷平稳,环境清洁。
3.原始数据:纸箱尺寸A*B*C=150*120*200mm,纸箱重量M=10Kg,车厢位置L*K*H=1350*1120*120mm,生产率240件/小时
N
三、总体设计计算
1、电机型号选择
=[2x1.3×27540×(4+1)/0.8x4(2.42x189.9x1.289x0.985
/11368)2]1/3mm
=34.23mm
模数:m=d1/Z1=34.23/28=1.22mm
取标准模数:m=2mm
(6)校核齿根弯曲疲劳强度
根据课本P201(10-5a)式
σF=(2kT1/φdm3Z12)YFaYSa≤[σF]
∴选dmin=20mm
(2)轴的结构设计
a)轴上零件的定位,固定和装配
轴1做成齿轮轴,大齿轮下面由轴肩定位,上面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以端盖和套筒定位,则采用过渡配合固定。
b)确定轴各段直径和长度
I-Ⅱ段:d1=20mm长度取L1=36mm,挡圈D=24mm
II-Ⅲ段:d2=d1+2h=20+2×3=26mm,L2=24mm
m=2mm
d1=56mm
d2=224mm
b=44.8mm
YFa1=2.54
YSa1=1.63
YFa2=2.19
YSa2=1.81
σFlim1=950Mpa
σFlim2=710Mpa
YNT1=0.94
YNT2=0.96
SF=1.4
σF1=39.6Mpa
σF2=4.63Mpa
a=140mm
五、轴系零件设计计算
FA2/FR2=196.8N/148.N=1.32
FA1/FR1<ex1=1FA2/FR2>ex2=0.5
y1=0y2=1.8
C)计算当量载荷P1、P2
P1=fP(x1FR1+y1FA1)=1×(1×747.8+0)=747.8N
=24.6MPa<[σ-1]b=60X0.7MPa=42MPa
∴该轴强度足够。
3、滚动轴承的选择及寿命校核计算
根据根据条件,轴承预计寿命
8×300×6=14400小时
(1)计算输入轴轴承
a)已知nI=43.68r/min
两轴承径向反力:FR1=(743.6²+78.9²)1/2=747.8N
FR2=(123.3²+83.2²)1/2=148.7N
初先两轴承为30207型单列圆锥滚子轴承型
查手册得此轴承e=0.32,Y=1.9,C=15000N,FS1=747.8/(2x1.9)N=196.8N,FS2=148.7/(2x1.9)N=39.1N
则FA1=FS1=196.8NFA2=FS1=196.8N
b)求系数x、y
FA1/FR1=196.8N/747.8N=0.26
(2)按齿面接触疲劳强度设计
由d1≥[2KT1(u+1)/φdu(ZHZEZ Z /[σH])2]1/3
确定有关参数如下:传动比i=1.5,
取小齿轮齿数Z1=28。则大齿轮齿数:
Z2=iZ1=28x4=112
实际传动比i0=112/28=4
传动比误差:i-i0/i=(1.5-1.5)/1.5=0%<2.5%可用
∵i1=i齿轮2×i齿轮3=4
∴i2=i齿轮1=1/4
3、各轴运动参数及动力参数计算
(1)计算各轴转速(r/min)
nIII=2.73r/min
nII=2.73X4=10.92(r/min)
nI=13.65X4=43.68r/min
(2)计算各轴的功率(W)
P0=P工作=133
PI=P工作Xη联轴器=133x0.99W=131.67w
=486.86Mpa
将求得的各参数代入
σF=(2kT1/φdm3Z12)YFaYS=39.6
< [σF]1
σF=(2kT1/φdm3Z22)YFaYS=4.63< [σF]2
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=m/2(Z1+Z2)=1/2(28+112)=140mm
(10)计算齿轮的圆周速度V
(1)电动机类型的选择:步进电动机
(2)电动机功率选择:
传动装置的总效率:
η1=η联轴器×η5轴承×η2齿轮
=0.99×0.985×0.972
=0.842
η2=η联轴器×η3轴承×η齿轮×η梯形螺纹
=0.96×0.983×0.97×0.4
=0.350
电机所需的工作功率:
P工作1=jW/η1
=100*0.393/0.842w
设计一台装车机械手,将生产线上的纸箱搬运到货车车厢。如图所示,已知纸箱箱体尺寸A×B×Cmm3,重M kg,其他条件及要求见表一。要求搬运能力J件/小时,工作寿命6年,每年工作300天。选择电动机型号,分配总传动比,计算各轴的转速、输入输出功率。对各级传动进行设计计算,并对整机进行结构设计。允许选用步进电机正反转工作。
3)、求轴上载荷;
c)按弯矩复合强度计算
①联轴器直径d1=106mm、大齿轮分度圆直径d3=250mm、小齿轮分度圆直径d5=56mm
②求转矩:已知T1=26.54N·m
③求圆周力:Ft1、Ft2、Ft3
Ft1=2T1/d1=463.5N
Ft2=2T1×0.76/d3=206.8N
Ft3=2T1×0.24/d5=285.7N
Ⅲ-Ⅳ段:d3=d2+2h=32mm,因为其同时承受轴向和径向力,故选用型号为30207的单列圆锥滚子轴承,轴径取d3=35mm,宽度为18.25,因右边有轴套定位,所以取长度L3=25mm。
Ⅳ-Ⅴ段:d4=d3+2h=41mm,因此段为齿轮轴,尺宽为48mm,取轴长为46mm,轴径为41mm,齿轮分度圆直径为250mm。
1、轴1的设计计算
(1)按扭矩初算轴径
选用45#调质,硬度217~255HBS
根据课本P366式,并查表15-3,取A0=112
d≥A0x(P/n)1/3=112(0.13167/43.68)1/3mm=16.18mm
考虑有键槽,将直径增大5%,则
dmin=16.18×(1+5%)mm=16.989mm
④求径向力Fr2、Fr3
⑤绘制水平面弯矩图(如图a)
轴承支反力:
FX1=743.6N,FX2=123.3N
FZ1=78.9N,FZ2=83.2N
⑥绘制竖直面弯矩图(如图b)
绘制扭矩图(如图c)
⑧校核危险截面A的强度
由式(6-3)
=(M²+T²)1/2/W=1000(14.3²+22.6²)1/2/(0.1X30³)MPa
(4)确定电动机型号
根据所需电机转矩及传送比参数,可选用130BYG350-200型三相步进电动机。
其主要性能:电流6A,额定转矩30。
2、计算总传动比及分配各级的伟动比
选
(1)传动比:i1=n电动/n转轴=16
i2=n电动/n升降=1/4
(2)分配各级传动比
据指导书P7表1,取齿轮i齿轮1=1/4,i齿轮2=4,i齿轮3=4
(8)许用弯曲应力[σF]
根据课本
[σF]=σFlimKFN/S
由课本图10-24C查得:
σFlim1=950Mpa
σFlim2=710Mpa
按一般可靠度选取安全系数SF=1.4
计算两轮的许用弯曲应力
[σF]1=σFlim1KFN1/S=950x0.94/1.4Mpa
=637.86Mpa
[σF]2=σFlim1KFN1/S=710x0.96/1.4Mpa
i=4
Z1=28
Z2=112
u=4
φd=0.8
T1=26540N·mm
αHlimZ1=1370Mpa
αHlimZ2=1160Mpa
NL1=4.752×108
NL2=1.1232x108
KNT1=0.94KNT2=0.98
[σH]1=1287.8Mpa
[σH]2=1136.8Mpa
d1=34.23mm
=47w
P工作2=FV/η2
=1200×0.025/0.35
=86wP工作Leabharlann P工作1+P工作2=133w
(3)确定电动机转速:
计算工作转速:
n转轴=60*0.25/5.5
=2.73r/min
n升降=0.12*60/(0.01*5.5)
=130r/min
按手册P5推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围i’a=3~5。则二级圆柱斜齿轮总传动比理时范围为i’a=8~20。
PⅢ=42.05W
TI=26.54N·m
TII=36.03N·m
TⅢ=147.1N·m
四、传动机构设计计算
1、齿轮传动(一)的设计计算
(1)选择齿轮材料及精度等级
根据要求,齿轮采用硬齿面标准斜齿轮。小齿轮选用20Cr合金钢,渗碳后淬火,齿面硬度取60HRC。大齿轮选用45钢,调质,齿面硬度50HRC;选7级精度。齿面精糙度Ra≤1.6~3.2μm
[σH]=σHlimKHN/S由课本P209图10-21查得:
σHlimZ1=1370Mpa
σHlimZ2=1160Mpa
计算应力循环次数NL
NL1=60n1jLh=60×550×1×(8×300×6)
=4.752×108
NL2=NL1/i=4.752×108/4=1.1232x108