八年级数学上册各单元单元试卷(含答案)

合集下载

数学八年级上册《分式》单元测试题含答案

数学八年级上册《分式》单元测试题含答案

八年级上册数学《分式》单元测试卷考试时间:90分钟满分:100分第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•松桃县期末)若分式有意义,则实数x的取值范围是()A .x=2B .x=﹣2C .x≠2D .x≠﹣22.(2018秋•鸡东县期末)在,,﹣3xy+y2,,,分式的个数为()A .2B .3C .4D .53.(2018秋•永川区期末)如果把分式中的x和y都同时扩大2倍,那么分式的值()A .不变B .扩大4倍C .缩小2倍D .扩大2倍4.(2018春•利津县期末)若A =﹣22,B =2﹣2,C =()﹣2,D =()0.则()A .A <B <D <C B .A <B <C <D C .B <A <D <C D .A <C <B <D5.(2018春•开江县期末)若x为整数,使分式值为整数,则满足条件的整数有()A .5个B .6个C .8个D .7个6.(2018秋•江北区期末)从﹣3,﹣2,﹣1,,1,3这六个数中,随机抽取一个数,记为A .关于x的方程1的解是正数,那么这6个数中所有满足条件的A 的值有()个.A .3B .2C .1D .47.(2018秋•香坊区期末)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,提速前列车的平均速度是()A .km/hB .km/hC .km/hD .km/h8.(2018秋•怀柔区期末)定义:如果一个关于x的分式方程 B 的解等于,我们就说这个方程叫和解方程.比如:4就是个和解方程.如果关于x的分式方程3﹣n是一个和解方程,那么n的值是()A .B .C .D .9.(2019春•包河区期末)计算的结果是()A .﹣3xB .3xC .﹣12xD .12x10.(2018秋•海淀区期末)学完分式运算后,老师出了一道题:化简.小明的做法是:原式;小亮的做法是:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4;小芳的做法是:原式1.对于这三名同学的做法,你的判断是()A .小明的做法正确B .小亮的做法正确C .小芳的做法正确D .三名同学的做法都不正确第Ⅱ卷(非选择题)二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•吕梁期末)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=0.000000001m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm,将28nm用科学记数法可表示为.12.(2018春•惠山区期末)在分式,,,中,最简分式有个.13.(2019春•泰州期末)已知关于x的方程1的解是负值,则A 的取值范围是.14.(2018秋•芝罘区期末)若分式的值为0,则x的值为.15.(2019春•丹东期末)如果解关于x的分式方程时,出现增根,那么m的值为.16.(2018秋•阳东区期末)小明家离学校2000米,小明平时从家到学校需要用x分钟,今天起床晚,怕迟到,走路速度比平时快5米/分钟,结果比平时少用了2分钟到达学校,则根据题意可列方程.评卷人得分三.解答题(共6小题,满分46分)17.(6分)(2019春•顺义区期末)计算:(﹣1)﹣2018+()2﹣(π﹣4)0﹣3﹣2;18.(6分)(2018秋•孝义市期末)先化简,再从,﹣1,0,1中选一个合适的数作为m的值代入求值.19.(8分)(2019秋•娄底期中)解分式方程:(1)(2)20.(8分)(2018秋•宜都市期末)如图,“复兴一号“水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“复兴二号“水稻的试验田是边长为(m﹣n)米的正方形,两块试验田的水稻都收获了A 千克.(1)哪种水稻的单位面积产量高?为什么?(2)高的单位面积产量比低的单位面积产量高多少?21.(8分)(2018秋•凉州区期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是(填写序号即可);(2)若A 为正整数,且为“和谐分式”,请写出A 的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:小强:显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:,请你接着小强的方法完成化简.22.(10分)(2018秋•鞍山期末)近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,一般的高铁包括G字头的高速动车组以及D 字头的动车组.由大连到北京的G377的平均速度是D 31的平均速度的1.2倍,行驶相同的路程1500千米,G377少用1个小时.(1)求D 31的平均速度.(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段D 31票价为266元/张,G377票价为400元/张,如果你有机会给有关部门提一个合理化建议,使G377的性价比达到D 31的性价比,你如何建议,为什么?参考答案一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•松桃县期末)若分式有意义,则实数x的取值范围是()A .x=2B .x=﹣2C .x≠2D .x≠﹣2[解析]解:由题意得,x﹣2≠0,解得:x≠﹣2;故选:D .[点睛]此题考查了分式有意义的条件,属于基础题,掌握分式有意义分母不为零是关键.2.(2018秋•鸡东县期末)在,,﹣3xy+y2,,,分式的个数为()A .2B .3C .4D .5[解析]解:分式有:,,共2个.故选:A .[点睛]本题主要考查分式的定义,注意判断分式的条件是:含有分母,且分母中含有未知数.3.(2018秋•永川区期末)如果把分式中的x和y都同时扩大2倍,那么分式的值()A .不变B .扩大4倍C .缩小2倍D .扩大2倍[解析]解:分式中的x和y都同时扩大2倍,可得2,所以分式的值扩大为原来的2倍,故选:D .[点睛]本题主要考查了分式的基本性质,在解题时要根据分式的基本性质进行解答是本题的关键.4.(2018春•利津县期末)若A =﹣22,B =2﹣2,C =()﹣2,D =()0.则()A .A <B <D <C B .A <B <C <D C .B <A <D <C D .A <C <B <D[解析]解:∵A =﹣22=﹣4,B =2﹣2,C =()﹣2=4,D =()0=1,∴﹣41<4,∴A <B <D <C .故选:A .[点睛]此题主要考查了负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.5.(2018春•开江县期末)若x为整数,使分式值为整数,则满足条件的整数有()A .5个B .6个C .8个D .7个[解析]解:∵2,∴x+3=±1、±2、±3、±6,则x=﹣4、﹣2、﹣1、﹣5、0、﹣6、3、﹣9时分式的值为整数,故选:C .[点睛]此题考查了分式的值,将原式计算适当的变形是解本题的关键.6.(2018秋•江北区期末)从﹣3,﹣2,﹣1,,1,3这六个数中,随机抽取一个数,记为A .关于x的方程1的解是正数,那么这6个数中所有满足条件的A 的值有()个.A .3B .2C .1D .4[解析]解:由1得:2x+A =x﹣1∴x=﹣1﹣A∵解是正数,且x﹣1为原方程的分母,∴﹣1﹣A >0,且﹣1﹣A ≠1∴A <﹣1,且A ≠﹣2故在﹣3,﹣2,﹣1,,1,3这六个数中,符合题意得数有:﹣3,,故选:B .[点睛]本题考查了分式方程的解及一元一次不等式的应用,本题难度不大,属于基础题.7.(2018秋•香坊区期末)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,提速前列车的平均速度是()A .km/hB .km/hC .km/hD .km/h[解析]解:设提速前这次列车的平均速度xkm/h.由题意得,,方程两边乘x(x+v),得s(x+v)=x(s+50)解得:x,经检验:由v,s都是正数,得x是原方程的解.∴提速前这次列车的平均速度km/h,故选:D .[点睛]本题考查了列代数式(分式),解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.8.(2018秋•怀柔区期末)定义:如果一个关于x的分式方程 B 的解等于,我们就说这个方程叫和解方程.比如:4就是个和解方程.如果关于x的分式方程3﹣n是一个和解方程,那么n的值是()A .B .C .D .[解析]解:关于x的分式方程3﹣n是一个和解方程,根据题中的新定义得:x,把x代入得:3n=3﹣n,解得:n,故选:D .[点睛]此题考查了解分式方程,弄清题中的新定义是解本题的关键.9.(2019春•包河区期末)计算的结果是()A .﹣3xB .3xC .﹣12xD .12x[解析]解:原式12x;故选:D .[点睛]分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.10.(2018秋•海淀区期末)学完分式运算后,老师出了一道题:化简.小明的做法是:原式;小亮的做法是:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4;小芳的做法是:原式1.对于这三名同学的做法,你的判断是()A .小明的做法正确B .小亮的做法正确C .小芳的做法正确D .三名同学的做法都不正确[解析]解:小明的作法是错误的,错误在于第二个等号后面的分子书写错误,忘记加括号了,分子部分正确书写是(x+3)(x﹣2)﹣(x﹣2);小亮的作法是错误的,错误在于第一个等号后面的部分,此处应该是通分,而小亮直接把分母漏掉了;小芳的作法是正确的;故选:C .[点睛]本题考查分式的混合运算、合并同类项,解答本题的关键是明确分式加减的计算方法,同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,再根据同分母分式相加减的方法计算.二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•吕梁期末)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=0.000000001m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm,将28nm用科学记数法可表示为 2.8×10﹣8.[解析]解:将28nm用科学记数法可表示为28×10﹣9=2.8×10﹣8.故答案为:2.8×10﹣8.[点睛]本题考查用科学记数法表示较小的数,一般形式为A ×10﹣n,其中1≤|A |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(2018春•惠山区期末)在分式,,,中,最简分式有3个.[解析]解:是最简分式,是最简分式,,不是最简分式,是最简分式,故答案为:3.[点睛]本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.13.(2019春•泰州期末)已知关于x的方程1的解是负值,则A 的取值范围是 A <﹣2且A ≠﹣4.[解析]解:方程1,去分母得:2x﹣A =x+2,解得:x=A +2,由分式方程的解为负值,得到A +2<0,且A +2≠﹣2,解得:A <﹣2且A ≠﹣4,故答案为:A <﹣2且A ≠﹣4[点睛]此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14.(2018秋•芝罘区期末)若分式的值为0,则x的值为﹣1.[解析]解:∵分式的值为0,∴1﹣|x|=0且(x﹣1)(x﹣2)≠0,解得:x=﹣1.故答案为:﹣1.[点睛]此题主要考查了分式的值为零的条件,正确把握分式有意义的条件是解题关键.15.(2019春•丹东期末)如果解关于x的分式方程时,出现增根,那么m的值为﹣4.[解析]解:去分母得:m+2x=x﹣2,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m+4=0,解得:m=﹣4,故答案为:﹣4[点睛]此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.(2018秋•阳东区期末)小明家离学校2000米,小明平时从家到学校需要用x分钟,今天起床晚,怕迟到,走路速度比平时快5米/分钟,结果比平时少用了2分钟到达学校,则根据题意可列方程.[解析]解:设小明平时从家到学校需要用x分钟,则实际从家到学校用(x﹣2)分钟,根据题意,得.故答案为:.[点睛]本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.三.解答题(共6小题,满分46分)17.(6分)(2019春•顺义区期末)计算:(﹣1)﹣2018+()2﹣(π﹣4)0﹣3﹣2;[解析]解:原式=11.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)(2018秋•孝义市期末)先化简,再从,﹣1,0,1中选一个合适的数作为m的值代入求值.[解析]解:原式•,当m时(m≠﹣1,0,1),原式=﹣2.[点睛]此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(8分)(2019秋•娄底期中)解分式方程:(1)(2)[解析]解:(1)去分母得:x2+x﹣x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:2x2﹣2x﹣4﹣x2﹣2x=x2﹣2,解得:x,经检验x是分式方程的解.[点睛]此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.(8分)(2018秋•宜都市期末)如图,“复兴一号“水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“复兴二号“水稻的试验田是边长为(m﹣n)米的正方形,两块试验田的水稻都收获了A 千克.(1)哪种水稻的单位面积产量高?为什么?(2)高的单位面积产量比低的单位面积产量高多少?[解析]解:(1)根据题意知,“复兴一号“水稻的实验田的单位面积为(千克/米2),“复兴二号“水稻的实验田的单位面积为(千克/米2),则,∵m、n均为正数且m>n,∴0,∴“复兴二号”水稻的单位面积产量高;(2)由(1)知,∴高的单位面积产量比低的单位面积产量高(kg).[点睛]此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21.(8分)(2018秋•凉州区期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是②(填写序号即可);(2)若A 为正整数,且为“和谐分式”,请写出A 的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:小强:显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,请你接着小强的方法完成化简.[解析]解:(1)②分式,不可约分,∴分式是和谐分式,故答案为:②;(2)∵分式为和谐分式,且A 为正整数,∴A =4,A =5;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,原式故答案为:小强通分时,利用和谐分式找到了最简公分母.[点睛]本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答.22.(10分)(2018秋•鞍山期末)近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,一般的高铁包括G字头的高速动车组以及D 字头的动车组.由大连到北京的G377的平均速度是D 31的平均速度的1.2倍,行驶相同的路程1500千米,G377少用1个小时.(1)求D 31的平均速度.(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段D 31票价为266元/张,G377票价为400元/张,如果你有机会给有关部门提一个合理化建议,使G377的性价比达到D 31的性价比,你如何建议,为什么?[解析]解:(1)设D 31的平均速度为x千米/时,则G377的平均速度为1.2x千米/时.由题意:1,解得x=250.经检验:x=250,是分式方程的解.答:D 31的平均速度250千米/时.(2)G377的性价比0.75D 31的性价比0.94,∵0.94>0.75∴为了G377的性价比达到D 31的性价比,建议降低G377票价.[点睛]本题考查分式方程的应用,解题的关键是正确寻找等量关系,构建方程解决问题,属于中考常考题型.。

人教版数学八年级上册《全等三角形》单元综合检测题含答案

人教版数学八年级上册《全等三角形》单元综合检测题含答案

人教版数学八年级上学期《全等三角形》单元测试(考试时间:90分钟试卷满分:120分)一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°第3题第4题第5题5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°第6题7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC, 第7题A.①②B.①③④C.①②③④8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.79.根据下列已知条件,能画出唯一△ABC的是()第8题A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=410.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④第10题11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6第12题二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是.第13题第14题14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长m.第15题第16题16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为.三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.第17题18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.第18题19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF的长.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.第20题20.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.第21题22.如图,△ABE和△ACD中,给出以下四个论断:(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.第22题23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.第23题24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.第24题参考答案一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到∠DEB=∠DEC=90°,∠ABD=∠DBC=∠C,根据三角形内角和定理计算即可.【解答】解:∵△EDB≌△EDC,∴∠DEB=∠DEC=90°,∵△ADB≌△EDB≌△EDC,∴∠ABD=∠DBC=∠C,∠BAD=∠DEB=90°,∴∠C=30°,故选:D.4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°【分析】依据直角三角形两锐角互余,即可得到∠A的度数,再根据全等三角形的对应角相等,即可得到结论.【解答】解:∵AE⊥BC,∠B=25°,∴Rt△ABE中,∠A=65°,又∵△AEB≌△DFC,∴∠D=∠A=65°,故选:B.5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm D.4cm【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可;【解答】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3cm,故选:C.6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,A.①②B.①③④C.①②③④D.①③【分析】根据全等三角形的对应边相等,全等三角形的对应角相等可得AC=AF,EF=CB,∠EAF=∠BAC,再利用等式的性质可得∠EAB=∠F AC.【解答】解:∵△ABC≌△AEF,∴AC=AF,EF=CB,∠EAF=∠BAC,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠F AC,正确的是①③④,故选:B.8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.7【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=7,∴EF=7,∵EC=5,∵CF=EF﹣EC=7﹣5=2.故选:A.9.根据下列已知条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=4【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【解答】解:A、3+4=7,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、根据AB=4,BC=3,∠A=30°不能画出唯一三角形,故本选项错误;C、∠A=30°,AB=3,∠B=45°,能画出唯一△ABC,故此选项正确;D、∠C=90°,AB=4,不能画出唯一三角形,故本选项错误;故选:C.10.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④【分析】由已知条件,得到三角形全等,得到结论,对每一个式子进行验证从而确定正确的式子.【解答】解:∵在Rt△ADB和Rt△BCA中AB=ABAC=BD∴Rt△ADB≌Rt△BCA(HL)∴AD=BC,∴①正确;∠DAB=∠CBA,∠DBA=∠CAB∴∠DBC=∠CAD,∴②正确;在△AOD和△BOC中∠ADO=∠BCO∠DOA=∠COBAD=BC∴△AOD≌△BOC(AAS)∴AO=BO,∴③正确;∵∠CDO+∠DCO+∠COD=180°,∠CDO=∠DCO,∠OAB+∠OBA+∠AOB=180°,∠OAB=∠OBA∠COD=∠AOB∴∠DCO=∠OAB∴AB∥CD,∴④正确;所以以上结论都正确,故选:A.11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤【分析】根据全等三角形的判定定理,选择合适组合条件即可.【解答】解:A、符合SSA,不能判定两三角形全等;B、符合AAA,不能判定两三角形全等;C、符合AAS,能判定两三角形全等;D、符合SSA,不能判定两三角形全等;故选:C.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6【分析】根据角平分线的性质定理得出CD=DE,代入求出即可.【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选:A.二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是BD=CD.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是:BD=CD,理由是:∵在△ABD和△ACD中AB=ACAD=ADAC=CD∴△ABD≌△ACD(SSS),故答案为:BD=CD14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是24.【分析】直接利用全等三角形的性质得出对应边相等进而得出答案.【解答】解:∵△ABC≌△FED,BC⊥AF,∴∠EDF=∠ACB=90°,∵AB=10,BC=6,∴AC==8,∴DE=BC=6,AC=DF=8,EF=AB=10,∴△FED的周长是:6+8+10=24.故答案为:24.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长12m.【分析】直接利用全等三角形的判定方法得出△ABC≌△EDC(AAS),进而得出答案.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,又∵直线BF与AE交于点C,∴∠ACB=∠ECD(对顶角相等),在△ABC和△EDC中∠ABC=∠EDC∠BCA=∠DCECB=CD∴△ABC≌△EDC(AAS),∴AB=ED=12m,故答案为:12.16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为3.【分析】首先过D作DE⊥AB,再根据角的平分线上的点到角的两边的距离相等可得ED=DC,进而可得答案.【解答】解:过D作DE⊥AB,∵BC=5,BD=2,∴CD=5﹣2=3,∵AD为角平分线,∴CD=DE=3,故答案为:3三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.【分析】根据全等三角形对应顶点的字母写在对应位置上即可写出它们的对应顶点、对应边和对应角.【解答】解:∵△ABC≌△CDA,∴点B和点D是对应点,点A和点C是对应点,AB与CD是对应边,BC与DA是对应边,AC与CA是对应边,∠B和∠D是对应角,∠BAC和∠DCA是对应角,∠BCA和∠DAC是对应角.18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.【分析】根据全等三角形对应角相等可得∠AED=∠ACB,∠D=∠B,再根据邻补角的定义求出∠ACF,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF 的长.【分析】先求出BC的长,再根据全等三角形对应边相等可得EF=BC.【解答】解:∵△ABC的周长是30,AB=8,AC=13,∴BC=30﹣8﹣13=9,∵△ABC≌△DEF,∴EF=BC=9.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.【分析】连接OP,由“HL”可证Rt△ON≌Rt△OMP,可得PM=ON.【解答】证明:如图,连接OP,∵AN⊥OB,BM⊥OA,∴∠ANO=∠BMO=90°,∵OP=OP,OM=ON,∴Rt△ONP≌Rt△OMP(HL)∴PM=PN.21.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.【分析】过点D作DE⊥AB于点E,先根据比例求出CD的长度.再根据角平分线上的点到角的两边的距离相等可得DE =CD .【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BD :DC =2:1,BC =7.8cm ,∴CD =×7.8=2.6cm , ∵AD 平分∠BAC ,∴DE =CD =2.6cm ,即D 到AB 的距离2.6cm .22.如图,△ABE 和△ACD 中,给出以下四个论断:(1)AD =AE ;(2)AB =AC ;(3)AM =AN ;(4)AD ⊥DC ,AE ⊥BE .请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.【分析】可以取AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE 得到AM =AN :由AD ⊥DC ,AE ⊥BE 得到∠ADC =∠AEB =90°,则根据“HL ”可判断Rt △ADC ≌Rt △AEB ,得到∠C =∠B ,然后根据“ASA ”判断△AMC ≌△ANB ,所以AM =AN .【解答】解:若AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE ,则AM =AN .理由如下:∵AD ⊥DC ,AE ⊥BE ,∴∠ADC =∠AEB =90°,在Rt △ADC 和Rt △AEB 中 AD=AEAC=AB,∴Rt △ADC ≌Rt △AEB (HL )∴∠C =∠B ,211在△AMC和△ANB中∠C=∠BAC=AB∠MAC=∠NAB,∴△AMC≌△ANB(ASA),∴AM=AN.23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.【分析】(1)由平行线的性质证得∠A=∠DMB,由线段中点的定义证得AM=MB,则结合已知条件,根据全等三角形的判定定理SAS证得结论;(2)由(1)中的全等三角形的对应边相等得到CM=DB,由对应角相等推知同位角∠CMA=∠DBM,则CM∥DB.【解答】(1)证明∵AC∥MD,∴∠A=∠DMB,∵M是AB的中点,∴AM=MB,∴在△AMC与△MBD中,AC=MD∠A=∠DMBAB=MB∴△AMC≌△MBD(SAS);(2)∵由(1)知,△AMC≌△MBD,∴CM=DB.∴∠CMA=∠DBM,∴CM∥DB.24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.【分析】过点C作CF⊥AB于F,由“AAS”可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.【解答】解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠F AC,∠FBC=∠EBC,∵∠ADC=∠AFC=90°,∠DAC=∠F AC,AC=AC,∴△ADC≌△AFC(AAS),∴AD=AF,∵∠CFB=∠CEB=90°,∠FBC=∠EBC,BC=BC,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE.。

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。

北师大版数学八年级上册全册全套单元试题及答案

北师大版数学八年级上册全册全套单元试题及答案

北师大版数学八年级上册全册单元试卷第一章 勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。

湘教版八年级数学上册单元测试题全套(含答案)

湘教版八年级数学上册单元测试题全套(含答案)

湘教版八年级数学上册单元测试题全套(含答案)湘教版八年级数学上册单元测试题全套(含答案)第1章测试题时间:120分钟。

满分:120分一、选择题(每小题3分,共30分)1.要使分式有意义,则x的取值应满足(。

C。

)。

x-2A.x>2B.x<2C.x≠-2D.x≠22.生物学家发现了一种病毒的长度约为0.xxxxxxxx毫米,数据0.xxxxxxxx用科学记数法表示为(。

C。

)。

A.0.432×105B.4.32×106C.4.32×107D.43.2×1073.根据分式的基本性质,分式可变形为(。

C。

)。

aa-baaA.a-baB.a-baC.aa+bD.aa+b4.如果分式中的x、y都扩大为原来的2倍,那么所得分式的值(。

C。

)。

x+y1A.扩大为原来的2倍B.缩小为原来的2倍C.不变D.不确定a+1a2-15.化简22的结果是(。

A。

)。

a-aa-2a+11A.aa+1B.a-1a+1C.aa-1D.a+1a-16.若分式2的值为,则x的值为(。

C。

)。

x-2A.4B.-4C.4或-4D.-27.速录员XXX打2500个字和XXX打3000个字所用的时间相同,已知XXX每分钟比XXX多打50个字,求两人的打字速度。

设XXX每分钟打x个字,根据题意列方程,正确的是(。

B。

)。

2500.3000A.=x。

x+502500.3000B.=x+50.x+502500.3000C.=x。

x2500.3000D.=x+50.x8.下列分式中,正确的是(。

B。

)。

A.a2+2a+1a2-1B.a2-1a2+2a+1C.a2+1a2-1D.a2-1a2+19.对于非零的两个数a,b,规定a⊕b=-。

若1⊕(x+1)=1,则x的值为(。

B。

)。

b a311.222A.1B.-C.D.10.若解分式方程k-x3k。

2-x产生增根,则k的值为(。

C。

)。

A.2B.1C.D.任何数二、填空题(每小题3分,共24分)11.已知分式2x+1÷x+2,当x=(。

华师大版八年级上册数学单元测试题全套(含答案)

华师大版八年级上册数学单元测试题全套(含答案)

华师大版八年级上册数学单元测试题全套(含答案)第11章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分) 1.27的立方根是( B ) A .±3B .3C .-3D.32.在给出的一组数0,π,5,3.14,39,227中,无理数有( C )A .1个B .2个C .3个D .5个 3.下列各组数中互为相反数的是( A ) A .-2与(-2)2 B .-2与3-8 C .-2与-12D .|-2|与24.在下列说法中:①10的平方根是±10;②-2是4的一个平方根;③49的平方根是23;④0.01的算术平方根是0.1;⑤a 4=±a 2,其中正确的是( C )A .1个B .2个C .3个D .4个 5.下列说法中正确的是( B ) A .立方根是它本身的数只有1和0 B .算术平方根是它本身的数只有1和0 C .平方根是它本身的数只有1和0 D .绝对值是它本身的数只有1和06.(六盘水中考)下列说法正确的是( D ) A .|-2|=-2 B .0的倒数是0 C .4的平方根是2 D .-3的相反数是37.(北京中考)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( A )A .aB .bC .cD .d 8.已知a 的平方根是±8,则a 的立方根是( D ) A .±2 B .±4 C .2D .49.★若a <0,则化简|a 2-a |的结果是( B ) A .0 B .-2a C .2a D .以上都不对10.★已知x 是169的平方根,且2x +3y =x 2,则y 的值是( D )A .11B .±11C .±15D .65或1433第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题,每小题3分,共24分) 11.3-0.125的相反数是 0.5 ,-π2的倒数是 -2π .12.比较大小:5-12__>__12.(用“>”“<”或“=”填空) 13.若a ,b 都是无理数,且a +b =2,则a ,b 的值可以是 a =2+3,b =-2-1 (填上一组满足条件的即可).14.-8的立方根与81的算术平方根的和为 1 .15.若一个正数的平方根是2a -1和-a +2,则a = -1 .16.(宜昌中考)数轴上表示2,5的点分别是A ,B ,且AC =AB ,则点C 所表示的数是4- 5 .17.★若-2x m -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是 2 . 18.请你认真观察、分析下列计算过程: (1)∵112=121,∴121=11;(2)∵1112=12 321,∴12 321=111;(3)∵1 1112=1 234 321,∴ 1 234 321=1 111;…由此可得:12 345 678 987 654 321= 111__111__111 . 三、解答题(本大题共8小题,共66分) 19.(12分)计算:(1)0.64+3-8-(-4)2; 解:原式=0.8-2-4 =-5.2.(2)3(-3)3+(-5)2+(32)3; 解:原式=-3+5+2=4.(3)25-364+|3-2|-(-1)2 018; 解:原式=5-4+2-3-(+1)=2- 3.(4)318-523-1125+3-343-3-27.解:原式=12+52×15-7+3=-3.20.(6分)求下列各式中x 的值. (1)4x 2=25; 解:x 2=254,x =±52.(2)(x -0.7)3=0.027. 解:x -0.7=0.3 x =1.21.(6分)比较大小:(1)12.1与3.5;解:∵(12.1)2=12.1,3.52=12.25. 而12.25>12.1,∴3.5>12.1 .(2)3260与6.解:∵(3260)3=260,63=216. 而216<260,∴3260>6.22.(6分)如图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A ,B 是数轴上的点,完成下列各题:(1)如果点A 表示实数-3,将点A 向右移动3个单位长度,那么终点B 表示的实数是________,A ,B 两点间的距离是________.(2)如果点A 表示实数是3,将点A 向左移动3个单位长度,再向右移动5个单位长度,那么终点B 表示的实数是________,A ,B 两点间的距离是________.一般地,如果点A 表示的实数为a ,将点A 向右移动b 个单位长度,再向左移动c 个单位长度,那么请你猜想终点B 表示的实数是________,A ,B 两点间的距离是________.解:(1)-3+3 3;(2)8-3 5-3 a +b -c |b -c|.23.(6分)已知3既是x -1的算术平方根,又是x -2y +1的立方根,求4x -3y 的平方根和立方根.解:∵3为x -1的算术平方根,∴x -1=9,x =10;把x =10代入x -2y +1,即11-2y ,又∵3是11-2y 的立方根,∴11-2y =27,∴y=-8;则4x-3y=64,∴4x+3y的平方根为±8,立方根为4.24.(6分)实数a,b,c在数轴上对应点如图,其中|a|=|c|,化简|b+3|+|a-2|+|c -2|+2c.解:由题图可知a>2,c<2,b<-3,∴原式=-b-3+a-2+2-c+2c=-b-3+a+c,又|a|=|c|,∴a+c=0,∴原式=-b- 3.25.(8分)已知a,b满足2a+8+|b-3|=0,解关于x的方程(a+2)x+b2=a-1.解:由题意得2a+8=0,b-3=0,解得a=-4,b= 3.将a,b的值代入方程中得-2x+3=-5,解得x=4.26.(8分)如图,长方形ABCD的面积为300 cm2,长和宽的比为3 ∶2.在此长方形内沿着边的方向能否并排裁出两个面积均为147 cm2的圆(π取3),请通过计算说明理由.解:设长方形的长DC为3x cm,宽AD为2x cm.由题意,得3x·2x=300,解得:x2=50,∵x>0,∴x=50,∴AB=350 cm,BC=250 cm.∵圆的面积为147 cm2,设圆的半径为r cm,∴πr2=147,解得:r=7 cm.∴两个圆的直径总长为28 cm.∵350<364=3×8=24<28,∴不能并排裁出两个面积均为147 cm2的圆.27.(8分)观察:2-25=85=4×25=225,即2-25=225;3-310=2710=9×310=3310,即3-310=3310.(1)猜想5-526等于什么,并通过计算验证你的猜想;(2)请用含字母n(n≥2,且n为整数)的式子来表示上述规律(不需证明).解:(1)5-526=5526;验证:5-526=12526=25×526=5526; (2) n -nn 2+1=nn n 2+1.华师大版八年级数学上册第12章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分) 1.计算2x 2·(-3x )的结果是( D ) A .-6x 2 B .5x 3 C .6x 3 D .-6x 3 2.下列运算中,正确的是( D ) A .(a +1)2=a 2+1 B .3a 2b 2÷a 2b 2=3ab C .(-2ab 2)=8a 3b 4 D .x 3·x =x 43.下列从左边到右边的变形,属于因式分解的是( D ) A .(x +1)(x -1)=x 2-1 B .x 2-2x +1=x (x -2)+1 C .x 2-4y 2=(x +4y )(x -4y ) D .x 2-x -6=(x +2)(x -3)4.(白银中考)若a 2+(m -3)a +25是一个完全平方式,则m 的值是( C ) A .8或-5 B .13 C .13或-7 D .-105.若n 为正整数,且a n =2,则(-3a 2n )2-9[a ·(-a )2]n 的值为( C ) A .0 B .64 C .72 D .216 6.在算式(x +m )(x -n )的积中不含x 的一次项,则m ,n 一定( C ) A .互为倒数 B .互为相反数 C .相等 D .mn =07.★如果多项式p =a 2+2b 2+2a +4b +2 018,则p 的最小值是( A ) A .2 015 B .2 016 C .2 017 D .2 018 8.将多项式[(17x 2-3x +4)-(ax 2+bx +c )]除以(5x +6)后,得商式为(2x +1),余式为0,则a -b -c 的值是( D ) A .3 B .23C .25D .29第Ⅱ卷(非选择题 共96分) 二、填空题(本大题共8小题,每小题3分,共24分)9.计算:a 3·a 5= a 8 ,-14a 2b ÷2a = -7ab ,(-2a 3)2= 4a 6 .10.已知x a =3,x b =2,则x 2a +3b = 72 . 11.分解因式:a 3b -4ab = ab(a +2)(a -2) .12.若m -n =2,m +n =5,则m 2-n 2的值为 10 . 13.若x -y =12,则代数式(y -x )3·(x -y )的值为 -116 .14.如果三角形的底边为(3a +2b ),高为(9a 2-6ab +4b 2),则面积为272a 3+4b 3 .15.★若一个正方形的面积为a 2+a +14,则此正方形的周长为 4a +2 .16.★观察下列等式:(x -1)(x +1)=x 2-1,(x -1)(x 2+x +1)=x 3-1,(x -1)(x 3+x 2+x +1)=x 4-1,……,利用你发现的规律回答:若(x -1)(x 6+x 5+x 4+x 3+x 2+x +1)=-2,则x 2 018的值是 1 .三、解答题(本大题共8小题,共72分) 17.(12分)计算:(1)2(x 3)2·x 3-(3x 3)3+(5x )2·x 7; 解:原式=2x 9-27x 9+25x 9 =0.(2)(27a 3x 2-9a 2x 2-3abx )÷(-3ax ); 解:原式=-9a 2x +3ax +b.(3)x (4x +3y )-(2x +y )(2x -y ); 解:原式=4x 2+3xy -4x 2+y 2 =3xy +y 2.(4)(a -2b -3c )(a -2b +3c ). 解:原式=(a -2b)2-9c 2 =a 2-4ab +4b 2-9c 2.18.(12分)分解因式: (1)12x 2y 2+2xy +2y 2; 解:原式=12y(x 2y +4x +4y).(2)(2x +y )(2y -x )-2x (x -2y ); 解:原式=(2y -x)(4x +y).(3)-9x 3+6x 2-x ;解:原式=-x(9x 2-6x +1) =-x(3x -1)2.(4)a 4-8a 2+16.解:原式=(a 2-4)2 =[(a -2)(a +2)]2 =(a -2)2(a +2)2.19.(10分)(1)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2. 解:原式=x 2-x +5x -5+x 2-4x +4 =2x 2-1.当x =-2时,原式=8-1=7.(2)若x 满足x 2-2x -1=0,求代数式(2x -1)2-x (x +4)+(x -2)(x +2)的值. 解:原式=4x 2-4x +1-x 2-4x +x 2-4 =4x 2-8x -3.∵x 2-2x -1=0,∴x 2-2x =1,∴原式=4(x 2-2x)-3=4-3=1.20.(6分)已知x 3m =2,y 2m =3,求(x 2m )3+(y m )6-(x 2y )3m ·y m 的值. 解:原式=x 6m +y 6m -x 6m y 3m ·y m =(x 3m )2+(y 2m )3-(x 3m )2(y 2m )2 =4+27-4×9 =-5.21.(6分)已知⎪⎪⎪⎪a +12+(b -3)2=0,求代数式[(2a +b )2+(2a +b )(b -2a )-6b ]÷2b 的值. 解:∵⎪⎪⎪⎪a +12+(b -3)2=0,且⎪⎪⎪⎪a +12≥0,(b -3)2≥0, ∴由非负数性质知a +12=0,b -3=0,即a =-12,b =3.将代数式化简,得原式=2a +b -3. 当a =-12,b =3时,原式=-1.22.(8分)已知多项式M =x 2+5x -a ,N =-x +2,P =x 3+3x 2+5,且M ·N +P 的值与x 的取值无关,求字母a 的值.解:M ·N +P =(x 2+5x -a)(-x +2)+(x 3+3x 2+5) =-x 3+2x 2-5x 2+10x +ax -2a +x 3+3x 2+5 =(10+a)x -2a +5.∵代数式的值与x 的取值无关, ∴10+a =0,即a =-10.23.(8分)根据条件,求下列代数式的值: (1)若x (y -1)-y (x -1)=4,求x 2+y 22-xy 的值;(2)若a +b =5,ab =3,求代数式a 3b -2a 2b 2+ab 3的值. 解:(1)由题知xy -x -xy +y =4, 即x -y =-4,∴x 2+y 22-xy =(x -y )22=8;(2)原式=ab(a2-2ab+b2)=ab(a-b)2.∵(a-b)2=(a+b)2-4ab=25-4×3=13,∴原式=3×13=39.24.(10分)(1)分解下列因式,将结果直接写在横线上:x2-6x+9=(x-3)3 ,25x2+10x+1=(5x+1)2 ,4x2+12x+9=(2x+3)2 .(2)观察上述三个多项式的系数,有(-6)2=4×1×9,102=4×25×1,122=4×4×9,于是小明猜测:若多项式ax2+bx+c(a>0)是完全平方式,那么系数a,b,c之间一定存在某种关系.请你用数学式子表示小明的猜测:b2=4ac .(3)已知代数式(x-a)(x-b)-(x-b)(c-x)+(a-x)(c-x)是一个完全平方式,试问以a,b,c为边的三角形是什么三角形?解:原式=x2-(a+b)x+ab+x2-(b+c)x+bc+x2-(a+c)x+ac=3x2-(2a+2b+2c)x+ab+bc+ac.∵结果为完全平方式,即(2a+2b+2c)2=4×3(ab+bc+ac),∴a2+b2+c2-ab-bc-ac=0,即2a2+2b2+2c2-2ab-2bc-2ac=0,∴(a-b)2+(b-c)2+(a-c)2=0,即a=b=c.∴以a,b,c为边的三角形是等边三角形.华师大版八年级数学上册第13章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状和大小的玻璃.那么最省事的办法是带(C)A.带①去B.带②去C.带③去D.带①②去第1题图第2题图第7题图2.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为(A)A.70°B.75°C.60°D.80°3.在△ABC中,AB=AC,∠A=36°,BD⊥AC于D,则∠DBC的度数是(D)A.36°B.30°C.24°D.18°4.下列语句中不是命题的是(B)A.对顶角相等B.过A,B两点作直线C.两点之间线段最短D.内错角相等5.下列命题中的真命题是(D)①相等的角是对顶角②在△ABC和△A′B′C′中,若AB=A′B′,BC=B′C′,∠C=∠C′=90°,则△ABC≌△A′B′C′③如果一个命题是定理,那么它的逆命题也是真命题④在一个三角形中,任意两边之差小于第三边A.①②B.②③C.③④D.②④6.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是( C )A .①B .②C .③D .④7.如图,在△ABC 中,AD 为∠BAC 的平分线,AB =2,AC =3,则△ABD 与△ADC 的面积之比为( B )A .3 ∶2B .2 ∶3C .2 ∶5D .3 ∶58.★已知等边△ABC 的边长为12,D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E 作EF ⊥BC 于点F ,过F 作FG ⊥AB 于点G .当G 与D 重合时,AD 的长是( C )A .3B .4C .8D .9第Ⅱ卷(非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.命题“等腰三角形两腰上的高相等”的逆命题是: 如果一个三角形两边上的高相等,那么这个三角形是等腰三角形 .10.(上海中考)如图,在△ABC 和△DEF 中,点B ,F ,C ,E 在同一直线上,BF =CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是 AC =DF 或∠A =∠D 或∠B =∠E .(只需写一个,不添加辅助线)第10题图 第11题图 第12题图11.如图,在△ABC 中,∠B =30°,∠C =70°,点D 是BC 上一点,DE ⊥AB ,DF ⊥AC ,且DE =DF ,则∠BAD 的度数为 40° .12.★如图,在△ABC 中,AB =AC ,分别以点A 、点B 为圆心,以大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交AC 于点D ,连结BD ,若△BDC 的周长为10,BC =3,则△ABC 的周长为 17 .13.如果△ABC ≌△A ′B ′C ′,AB =24,S △A ′B ′C ′=180,那么△ABC 中AB 边上的高是 15 . 14.如图,已知△ABC 是等边三角形,点B ,C ,D ,E 在同一直线上,且CG =CD ,DF =DE ,则∠E = 15 度.第14题图 第16题图15.★等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为 67.5°或22.5° .16.如图,∠ABC =∠DCB ,AB =DC ,ME 平分∠BMC 交BC 于点E ,结论:①△ABC ≌△DCB ;②ME 垂直平分BC ;③△ABM ≌△EBM ;④△ABM ≌△DCM .其中正确的是 ①②④ .(填序号)三、解答题(本大题共8小题,共72分)17.(6分)如图:已知点A ,E ,F ,B 在一条直线上,AE =BF ,CF =DE ,AC =BD ,求证:GE =GF .证明:∵AE =BF ,∴AF +EF =BE +EF ,即AF =BE.在△ACF 和△BDE 中,⎩⎨⎧CF =DE ,AC =BD ,AE =BE ,∴△ACF ≌△BDE(S.S.S.),∴∠GEF =∠GFE ,∴GE =GF.18.(6分)已知:如图,点D 是△ABC 的BC 边的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为点E ,F ,且DE =DF .求证:△ABC 是等腰三角形.证明:∵DE ⊥AC ,DF ⊥AB , ∴∠BFD =∠CED =90°,∵D 是BC 的中点,∴BD =CD ,在Rt △BDF 与Rt △CDE 中⎩⎨⎧DB =DC ,DE =DF ,∴Rt △BDF ≌Rt △CDE ,∴∠B =∠C ,∴△ABC 是等腰三角形.19.(8分)用直尺和圆规作图,求作一条直线把△ABC 分成两个三角形,使分后的两个三角形都是等腰三角形.(保留作图痕迹)(1)如图①,△ABC 中,∠ABC =90°,AB =BC ; (2)如图②,△ABC 中,∠B =25°,∠C =80°.解:(1)如图,过点B 作BE ⊥AC ,垂足为E ,作直线BE ,则直线BE 就是所求作的直线.(方法不唯一);(2)如图,在∠BAC 内作∠BAF =∠B ,交BC 于点F ,作直线AF ,则直线AF 就是所求作的直线.20.(10分)如图所示,在△ABC 中,∠ACB =90°,点D 是BC 延长线上一点,点E 是AB 上一点,且在BD 的垂直平分线EG 上,DE 交AC 于点F .求证:点E 在AF 的垂直平分线上.证明:∵EG 垂直平分BD ,∴EB =ED ,∴∠B =∠BDE.又∠ACB =90°,∴∠B +∠BAC =90°.又∵∠BDE +CFD =90°,∴∠BAC =∠CFD ,又∠CFD =∠AFE ,∴∠BAC =∠AFE ,∴EA =EF ,即E 在AF 的垂直平分线上.21.(10分)如图:在△ABC ,AB =AC ,BD ⊥AC 于点D ,CE ⊥AB 于点E ,BD ,CE 相交于点F .求证:AF 平分∠BAD .证明:∵BD ⊥AC 于D ,CE ⊥AB 于E , ∴∠AEC =∠ADB =90°.在△ABD 和△ACE 中,⎩⎨⎧∠BAC =∠CAE ,∠ADB =∠AEC ,AB =AC ,∴△ABD ≌△ACE(A.A.S.),∴AE =AD.在Rt △AEF 和Rt △ADF 中,⎩⎨⎧AE =AD ,AF =AF ,∴Rt △AEF ≌Rt △ADF(H.L.),∴∠EAF =∠DAF ,∴AF 平分∠BAD.22.(10分)如图,△ABC 中,BD 是∠ABC 的平分线,CD 是外角∠ACE 的平分线,连结AD ,∠BAC =70°,求∠CAD 的度数.解:过点D 作DM ⊥BC 于点M ,作DN ⊥AC 于点N ,作DP ⊥BF 于点P. ∵BD 是∠ABC 的平分线,∴DP =DM , ∵CD 是∠ACE 的平分线,∴DM =DN ,∴DN =DP.∵DN ⊥AC ,DP ⊥AF ,∴AD 平分∠CAF.∵∠BAC =70°,∴∠CAF =110°,∴∠CAD =55°.23.(10分)如图,△ABC 中,∠1=∠2,∠C =2∠B .求证:AB =AC +CD .证明:在AB 上截取AE =AC ,连结DE ,在△ACD 和△AED 中,∵AE =AC ,∠1=∠2,AD =AD ,∴△ACD ≌△AED(S.A.S.),∴DE =DC ,∠C =∠AED.∵∠C =2∠B ,∴∠AED =2∠B.∵∠AED =∠B +∠BDE ,∴∠B =∠BDE , ∴BE =DE(等角对等边),∴BE =CD. ∵AB =AE +BE ,∴AB =AC +CD.24.(12分)如图,△ABC 是等边三角形,点D 为BC 边上一个动点(点D 与B ,C 均不重合),AD =AE ,∠DAE =60°,连结CE .(1)求证:△ABD ≌△ACE ; (2)求证:CE 平分∠ACF ;(3)若AB =2,当四边形ADCE 的周长取最小值时,求BD 的长.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∠BAC =60°, ∵∠DAE =60°,∴∠BAD +∠DAC =∠CAE +∠DAC , 即∠BAD =∠CAE.在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE ;(2)证明:∵△ABC 是等边三角形,∴∠B =∠BCA =60°,∵△ABD ≌△ACE ,∴∠ACE =∠B =60°,∴∠ECF =180-∠ACE -∠BCA =60°, ∴∠ACE =∠ECF ,∴CE 平分∠ACF ; (3)解:∵△ABD ≌△ACE ,∴CE =BD.∵△ABC 是等边三角形,∴AB =BC =AC =2,∴四边形ADCE 的周长=CE +DC +AD +AE =BD +DC +2AD =2+2AD ,根据垂线段最短,当AD ⊥BC 时,AD 值最小,四边形ADCE 的周长取最小值, ∵AB =AC ,∴BD =12BC =12×2=1.华师大版八年级数学上册期中测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列运算正确的是(B)A.a3·a2=a6B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a22.如图,在数轴上表示15的点可能是(B)A.点P B.点Q C.点M D.点N3.下列各命题的逆命题成立的是(C)A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等4.若a=3-8,b=16,那么a b的值等于(D)A.-8 B.8 C.-16 D.165.下列多项式,能用公式法分解因式的有(A)①x2+y2②-x2+y2③-x2-y2④x2+xy+y2⑤x2+2xy-y2⑥-x2+4xy-4y2A.2个B.3个C.4个D.5个6.已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF的取值为(B) A.3 B.4C.5 D.3或4或57.当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为(A)A.-16 B.-8 C.8 D.168.★如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有(B)A.2个B.3个C.4个D.1个第8题图第13题图第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.-64的立方根是 -4 ,327的平方根为 ± 3 .10.计算:(-a )2·(-a )3= -a 5 .11.分解因式:1-x 2+2xy -y 2= (1+x -y)(1-x +y) . 12.已知x -y =6,则x 2-y 2-12y = 36 .13.如图,已知AB =BC ,要使△ABD ≌△CBD ,还需要添加一个条件,你添加的条件是 ∠ABD =∠CBD 或AD =CD .(只需写一个,不添加辅助线)14.如图,∠ABC =50°,AD 垂直且平分BC 于点D ,∠ABC 的平分线BE 交AD 于点E ,连结EC ,则∠AEC 的度数是 115 度.第14题图 第15题图 第16题图15.★如图,在Rt △ABC 中,∠C =90°,AC =12 cm ,BC =6 cm ,一条线段PQ =AB ,P ,Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QP A 全等,则AP = 6cm 或12cm .16.★如图,C 是△ABE 的BE 边上一点,F 在AE 上,D 是BC 的中点,且AB =AC =CE ,对于下列结论:①AD ⊥BC ;②CF ⊥AE ;③∠1=∠2;④AB +BD =DE .其中正确的结论有 ①④ (填序号).三、解答题(本大题共8小题,共72分) 17.(8分)计算:(1)3125-3216-121;解:原式=5-6-11=-12.(2)(-2a 2b )2·(6ab )÷(-3b 2);解:原式=4a 4b 2·6ab ÷(-3b 2)=[4×6÷(-3)]a 4+1b 2+1-2=-8a 5b.(3)[(x +y )2-(x -y )2]÷2xy ;解:原式=[x 2+2xy +y 2-(x 2-2xy +y 2)]÷2xy =(x 2+2xy +y 2-x 2+2xy -y 2)÷2xy =4xy÷2xy =2.(4)(3x -y )2-(3x +2y )(3x -2y ).解:原式=(9x 2-6xy +y 2)-(9x 2-4y 2)=9x 2-6xy +y 2-9x 2+4y 2=-6xy +5y 2.18.(6分)若a -b +6与|a +b -8|互为相反数,求4a +3b 的算术平方根.解:依题意得⎩⎨⎧a -b +6=0,a +b -8=0,∴⎩⎨⎧a =1,b =7,则4a +3b =25,∴4a +3b =25=5.19.(8分)已知2x =4y +1,27y =3x -1,求x -y 的值.解:∵2x =4y +1,∴2x =22y +2,∴x =2y +2.①又∵27y =3x -1,∴33y =3x -1,∴3y =x -1.② 把①代入②,得y =1,∴x =4,∴x -y =3.20.(8分)如图,已知AB ∥CF ,点E 为DF 的中点,若AB =7 cm ,CF =4 cm ,求BD 的长.解:∵AB ∥FC ,∴∠ADE =∠EFC. ∵E 是DF 的中点,∴DE =EF ,在△ADE 与△CFE 中,⎩⎨⎧∠ADE =∠EFC ,DE =EF ,∠AED =∠CEF ,∴△ADE ≌△CFE(A.S.A.), ∴AD =CF =4 cm ,∴BD =AB -AD =7-4=3 cm.21.(8分)分解因式: (1)m 4-2⎝⎛⎭⎫m 2-12; 解:原式=m 4-2m 2+1=(m 2-1)2=(m +1)2(m -1)2.(2)x 2-9y 2+x +3y .解:原式=(x 2-9y 2)+(x +3y)=(x +3y)(x -3y)+(x +3y)=(x +3y)(x -3y +1).22.(10分)一个开口的长方体盒子,是从一块正方形的马口铁的每个角剪掉一个36 cm 2的正方形后,再把它的边折起来做成的,如图,量得这个盒子的容积是150 cm 3,求原正方形的边长是多少?(1)由题意可知剪掉正方形的边长为________cm ;(2)设原正方形的边长为x cm ,请你用x 表示盒子的容积. 解:(1)因为剪掉一个36 cm 2的正方形, 所以剪掉正方形的边长是6 cm , 故答案为6.(2)因为设原正方形的边长为x cm , 所以盒子的容积为6(x -12)2 cm 3. ∴6(x -12)2=150,解得x =17或7,∵x>12,∴x =7(舍去),则原正方形的边长为17 cm.23.(10分)如图,已知BD 为∠ABC 的平分线,AB =BC ,点P 在BD 上,PM ⊥AD 于点M ,PN ⊥CD 于点N ,求证:PM =PN .证明:∵BD 为∠ABC 的平分线, ∴∠ABD =∠CBD.在△ABD 和△CBD 中,⎩⎨⎧AB =CB ,∠ABD =∠CBD ,BD =BD ,∴△ABD ≌△CBD(S.A.S.).∴∠ADB =∠CDB ,即BD 平分∠ADC. ∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM =PN.24.(14分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点.(1)BF ⊥CE 于点F ,交CD 于点G (如图①).求证:AE =CG ;(2)AH ⊥CE ,垂足为点H ,交CD 的延长线于点M (如图②),找出图中与BE 相等的线段,并证明.(1)证明:∵点D 是AB 中点,AC =BC ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°,∴∠CAD =∠CBD =45°, ∴∠CAE =∠BCG ,又∵BF ⊥CE ,∴∠CBG +∠BCF =90°,又∵∠ACE +∠BCF =90°,∴∠ACE =∠CBG ,在△AEC 和△CGB 中,⎩⎨⎧∠CAE =∠BCG ,AC =BC ,∠ACE =∠CBG ,∴△AEC ≌△CGB(A.S.A.), ∴AE =CG.(2)解:BE =CM.证明:∵CH ⊥HM ,CD ⊥ED ,∴∠CMA +∠MCH =90°,∠BEC +∠MCH =90°, ∴∠CMA =∠BEC ,又∵∠ACM =∠CBE =45°,在△BCE 和△CAM 中,⎩⎨⎧∠BEC =∠CMA ,∠ACM =∠CBE ,BC =AC ,∴△BCE ≌△CAM(A.A.S.), ∴BE =CM.华师大版八年级数学上册第14章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列各组数中,是勾股数的是( D ) A .1,2,3 B .2,3,4 C .1.5,2,2.5 D .6,8,102.用反证法证明“如果在△ABC 中,∠C =90°,那么∠A ,∠B 中至少有一个角不大于45°”时,应先假设( A )A .∠A >45°,∠B >45° B .∠A ≥45°,∠B ≥45°C .∠A <45°,∠B <45°D .∠A ≤45°,∠B ≤45° 3.适合下列条件的△ABC 中,直角三角形的个数为( C )①a =3,b =4,c =5 ②a =6,∠A =45° ③a =2,b =2,c =22 ④∠A =38°,∠B =52°A .1个B .2个C .3个D .4个 4.若△ABC 的三边长分别为a ,b ,c ,且满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( D ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等腰三角形或直角三角形5.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为( C ) A .5 B.7 C .5或7 D .不确定6.如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 的距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.9米,则梯子顶端A 下落了( B )A .0.9米B .1.3米C .1.5米D .2米第6题图第7题图7.如图,由四个边长为1的正方形构成的田字格,只用没有刻度的直尺在田字格中最多可以作长为5的线段(D)A.4条B.6条C.7条D.8条8.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为(C)A.42 B.32C.42或32 D.37或33第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.若一个三角形的三边满足c2-a2=b2,则这个三角形是直角三角形.10.木工师傅要做一个长方形桌面,做好后量得长为80 cm,宽为60 cm,对角线长为100 cm,则这个桌面合格(填“合格”或“不合格”).11.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=a,则图中阴影部分的面积为12a2 .第11题图第12题图第13题图12.如图,△ABC中,∠C=90°,BC=45 cm,CA=60 cm,一只蜗牛从C点出发,以每分钟20 cm的速度沿CA→AB→BC的路径再回到C点,则需要9 分钟.13.如图是由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于10 .14.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于点M,则点M第14题图第15题图第16题图15.如图,一只蚂蚁沿边长为1的正方形表面从顶点A爬到棱的中点B,则它走的最短路程为172.16.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2;…,依照此方法继续作下去,得OP2 018= 2 019 .三、解答题(本大题共8小题,共72分)17.(6分)在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,若a∶b =3 ∶4,c=75 cm,求△ABC的面积.解:∵a ∶b=3 ∶4,则设a=3x,b=4x,在Rt△ABC中,∠C=90°,a2+b2=c2,即(3x)2+(4x)2=752,解得x=15.∴S△ABC=12·3x·4x=12×45×60=1 350 cm2.18.(8分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.求:(1)△ABC的周长;(2)判断△ABC是否是直角三角形?解:(1)在Rt△ABD和Rt△ACD中,根据勾股定理得AB2=AD2+BD2,AC2=AD2+CD2,又AD=12,BD=16,CD=5,所以AB=20,AC=13,△ABC的周长=AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54;(2)因为AB=20,AC=13,BC=21,AB2+AC2≠BC2,所以△ABC不是直角三角形.19.(8分)在一棵树上10米高的点B处有两只猴子,一只猴子爬下树并走到离树底20米处的A处;另一只则爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,问这棵树高多少米?解:设BD为x米,则树高为(x+10)米,在Rt△ADC中,∠C=90°,DC2+AC2=AD2,即(x+10)2+202=(30-x)2,解得x=5,x+10=5+10=15米.答:树高为15米.20.(8分)如图,△ABC中,AD⊥BC于点D,AB=13,AC=8,求BD2-DC2的值.解:在Rt△ADB中,由勾股定理得,BD2=AB2-AD2,在Rt△ADC中,由勾股定理得,DC2=AC2-AD2,所以BD2-DC2=(AB2-AD2)-(AC2-AD2)=AB2-AD2-AC2+AD2=AB2-AC2=132-82=105.21.(8分)用反证法证明:等腰三角形的底角必定是锐角.已知:在△ABC中,AB=AC.求证:∠B,∠C必定是锐角.证明:∵AB=AC,∴∠B=∠C,假设∠B不是锐角,则∠B是直角或钝角.①若∠B是直角,即∠B=90°,则∠C=90°,故∠A+∠B+∠C>180°,这与三角形的内角和定理相矛盾,∴∠B不是直角.②若∠B是钝角,即∠B>90°,则∠C>90°,故∠A+∠B+∠C>180°,这与三角形的内角和定理相矛盾,∴∠B不是钝角.∴综上,∠B既不是直角也不是钝角,即∠B,∠C是锐角.∴等腰三角形的底角必定是锐角.22.(10分)如图所示,已知AD⊥CD于点D,且AD=4,CD=3,AB=12,BC=13.求:(1)四边形ABCD的面积;(2)若∠B=35°,求∠ACB的度数.解:(1)连结AC,∵AD⊥CD于点D,AD=4,CD=3,∴AC=AD2+CD2=42+32=5.在△ABC中,AB=12,BC=13,AC=5,∵52+122=132,即AC2+AB2=BC2,∴△ABC是直角三角形.∴S四边形ABCD=S△ACD+S△ABC=12AD·CD+12AB·AC=12×4×3+12×12×5=6+30=36.(2)由(1)知,△ABC是直角三角形,且AC2+AB2=BC2,∴∠BAC=90°.∵∠B=35°.∴∠ACB=90°-35°=55°.23.(12分)如图,某沿海城市A接到台风警报,在该市正南方向150 km的B处有一台风中心正以20 km/h的速度沿BC方向移动,已知城市A到BC的距离AD=90 km,那么:(1)台风中心经过多长时间从B点移动到D点?(2)如果在距台风中心30 km的圆形区域内都有受到台风破坏的危险,为让D点的游人脱离危险,游人必须在接到台风警报后的几个小时内撤离(撤离速度为6 km/h)?最好选择什么方向?解:(1)在Rt△ABD中,AB=150 km,AD=90 km,所以BD2=AB2-AD2=14 400,所以BD=120 km.120÷20=6 h,故台风中心经过6 h从B点移动到D点.(2)台风从B点到达D点需要6 h,游人从D点沿AD方向撤离到30 km之外需用:30÷6=5 h,6-5=1 h.因此游人必须在接到台风警报后的1 h内撤离.最好选择DA方向或AD 方向.24.(12分)牧童在河边A处放牛,家在河边B处,时近傍晚,牧童驱赶牛群先到河边饮水,然后在天黑前赶回家.如图,A点到河边C的距离为500 m,B点到河边D的距离为700 m,且CD=500 m.(1)请在原图上画出牧童回家的最短路线;(2)求出最短路线的长度.解:(1)作点A关于直线CD的对称点A′,连结A′B交CD于点P,连结AP,则AP -PB即为所求的最短路线,如图所示.(2)由作图可得最短路程为A′B的长度,如图,过A′作A′F⊥BD的延长线于F,则DF =A′C=AC=500 m,A′F=CD=500 m,BF=700+500=1 200 m.根据勾股定理,可得A′B2=1 2002+5002=1 3002,∴A′B=1 300 m.即最短路线的长度为1 300 m.华师大版八年级数学上册第15章测试题(含答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.若要清楚地反映住院部某病人的体温变化情况,则应选用的统计图是(B)A.条形统计图B.折线统计图C.扇形统计图D.以上都可以2.某少数民族自治区中的汉族、苗族、土家族人数的比为2 ∶3 ∶4,若制成一个扇形统计图,则表示苗族人数的圆心角为(A)A.120°B.60°C.90°D.150°3.学校为了解七年级学生参加课外兴趣小组活动的情况,随机调查了40名学生,将结果绘制成了如图所示的条形统计图,则参加绘画兴趣小组的频率是(B)A.20% B.30% C.50% D.60%4.在一次抛硬币游戏中共抛掷50次,其中正面朝上出现了22次,则出现反面朝上的频数、频率分别是(D)A.22,44% B.22,56% C.28,44% D.28,56%5.为了了解某校七年级学生的运算能力,抽取了100名学生进行测试,将所得成绩(单位:分)整理后,列出下表:本次测试这100名学生成绩良好(大于或等于80分为良好)的频数是(D)A.22 B.30 C.60 D.706.在扇形统计图中,如果A部分扇面的面积是B部分扇面面积的2倍,则A部分扇面所对的圆心角是B部分扇面所对圆心角的(A)A.2倍B.1倍到2倍之间C.1.5倍D.无法计算7.如图是某公司在2017年的月营业额,从图中我们可以了解到:(1)夏季的营业额比较高;(2)从6月份开始,营业额缓慢下降;(3)5月是营业额最高的一个月;(4)冬季的营业额偏低主要是因为天气寒冷;其中正确的是(B)A.(1)(2) B.(1)(2)(3)C.(2)(3)(4) D.都是正确的8.某班四个学习小组的学生分布情况如图①②,现通过对四个小组学生寒假期间所读课外书情况进行调查,并制成各小组读书情况的条形统计图(如图③).根据统计图中的信息,这四个小组平均每人读书的本数是(C)A.4 B.5 C.6 D.7第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.在条形统计图上,如果表示180的数据的条形高为4.5 cm,那么表示数据60的条形高是 1.5cm .10.在检测某种品牌奶粉的营养含量的时候,要检验糖、蛋白质、钙、其他物质在奶粉中的百分比含量,已知某次检测的结果是x%,y%,z%,w%,则x+y+z+w=100 .11.如图是各年龄段人群收看某电视剧情况的条形统计图(统计时年龄只取整数).若某村观看此电视剧的观众人数为1 400人,则其中50岁以上(含50岁)的观众约有504 人.12.已知某班的一次语文测验中,有6名同学不及格,不及格率为12.5%,同时也有9名同学优秀,则这个班在这次测验中的优秀率为18.75% .13.我校八年级(1)班对60名学生寒假在家每天做作业的时间进行了统计,并绘制成扇形统计图.发现做作业时间在2~3小时这一组的圆心角为198°,则这一组的频数为33 .14.如图是根据某市2013年至2017年财政收入绘制的折线统计图,观察统计图可得:同上一年相比该市财政收入增长速度最快的年份是2017 年,比它的前一年增加50 亿元.15.则全市视力不良的初中生约有7.2 万人.16.某市某校九年级(1)班学生参加毕业体考的成绩统计如图所示,请根据统计图中提供的信息完成下面各题.(1)该班共有56 名学生;(2)若女生体考成绩在37分及其以上,男生体考成绩在38分及其以上被定为体尖生,则该班共有17 名体尖生.三、解答题(本大题共8小题,共72分)17.(8分)下表是光明中学七年级(5)班的40名学生的出生月份的调查记录:(1)请你重新设计一张统计表,使全班同学在每个月的出生人数情况一目了然;(2)求出10月份出生的学生的频数和频率;(3)现在是1月份,如果你准备为下个月过生日的每一位同学送一份小礼物,那你应该准备几份礼物?解:(1)按生日的月份重新分组可得统计表:(2)读表可得10月份出生的学生的频数是5,频率为540=0.125;(3)2月份有4位同学过生日,因此应准备4份礼物.18.(8分)从某时起,中国电信执行新的电话收费标准,其中本地网营业区内通话话费是:前3分钟为0.2元(不足3分钟按3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟计算).现有一学生调查了A,B,C,D,E共5位同学上星期天打本地网营业区内的通话时间情况,原始数据如表:回答问题:(1)这5位同学共通了10 次电话;(2)这一天通话时间不超过3分钟的频率是20% ,频数是 2 ;(3)这一天通话时间超过4分钟而不超过5分钟的频数是 2 ,频率是20% ;(4)这一天中哪位同学电话费最多?是多少?解:这一天中C同学通话费最多,0.2×3+0.1×4=1元.19.(9分)(杭州中考)杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.解:(1)m%=1-22.39%-0.9%-7.55%-0.15%=69.01%,m=69.01;(2)其中混杂着的玻璃类垃圾的吨数约等于200×0.9%=1.8吨.20.(9分)某班同学参加环保知识竞赛,将学生的成绩(得分取整数)进行整理后分成五组绘成条形统计图如图所示,图中从左到右各小组小长方形的高的比是1 ∶2 ∶6 ∶4 ∶2,最右边一组的人数是6,结合图形提供的信息解答下列问题:(1)该班共有多少名同学参赛?(2)成绩落在哪组数据范围内的人数最多,是多少?(3)求成绩在60分以下(含60分)的人数是多少?解:(1)6÷21+2+6+4+2=45人.答:这个班级一共有45人参赛;(2)这个班70-79.5的参赛人数最多,有18人;(3)45×11+2+6+4+2=3人.答:成绩在60分以下(含60分)的人数是3人.21.(8分)某年级组织学生参加冬令营活动,本次冬令营分为甲、乙、丙三组进行.下面两幅统计图都反映了学生参加冬令营的报名情况.请你根据图中的信息解答下面的问题:(1)该年级报名参加丙组的人数是多少?(2)该年级报名参加本次活动的总人数是多少?解:(1)观察条形图可知报名参加丙组的人数为25人;(2)该年级参加本次活动的总人数为:15+10+25=50人.22.(10分)“校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应的扇形的圆心角的大小.。

湘教版八年级上册数学单元测试题全套(含答案)

湘教版八年级上册数学单元测试题全套(含答案)

湘教版八年级上册数学单元测试题全套(含答案)第一章测试题(含答案)(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间:120分钟,赋分:120分)分数:____________第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分) 1.下列各式中是分式的是( C ) A .y +x2B.x 3C.x x +2D.x +1-22.要使分式4x -3有意义,x 应满足的条件是( D )A .x>3B .x =3C .x<3D .x ≠33.若分式|x|-32x +6的值为零,则x 的值是( A )A .3B .-3C .±3D .44.下列分式中是最简分式的是( A ) A.x 2-1x 2+1B.x +1x 2-1C.x 2-2xy +y 2x 2-xyD.x 2-362x +125.计算x a +1·a 2-12x 的结果正确的是( A )A.a -12B.a +12C.a -12xD.a +12a +26.若a =-22,b =2-2,c =⎝⎛⎭⎫12-2,d =⎝⎛⎭⎫120,则a ,b ,c ,d 的大小关系是( A ) A .a <b <d <c B .a <b <c <dC .b <a <d <cD .a <c <b <d7.(丹江口市期末)下列各式中从左到右的变形一定正确的是( C ) A.0.2a +b a +0.2b =2a +b a +2bB.-a +b c =a +b cC.a 2-4(a -2)2=a +2a -2D.b 2a =bc 2ac8.若关于x 的方程x +4x -3=mx -3+2有增根,则m 的值是( A )A .7B .3C .4D .09.方程12x =2x +3的解为( D )A .x =-1B .x =0C .x =35D .x =110.某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( A )A.30x -361.5x =10B.36x -301.5x =10C.361.5x -30x=10D.30x +361.5x=10 11.若a +b =5,则代数式⎝⎛⎭⎫b 2a -a ÷⎝⎛⎭⎫a -b a 的值为( B ) A .5B .-5C .-15D.1512.已知a ,b 为实数且满足a ≠-1,b ≠-1,设M =a a +1+b b +1,N =1a +1+1b +1. ①若ab =1时,M =N ;②若ab >1时,M >N ;③若ab <1时,M <N ;④若a +b =0时,M ·N ≤0,则上述四个结论中正确的有( B ) A .1个 B .2个C .3个D .4个第Ⅱ卷 (非选择题 共84分) 二、填空题(本大题共6小题,每小题3分,共18分) 13.如图,是我国成功分离的第一株新型冠状病毒电镜照片,该病毒的直径大概是0.000 1毫米,该病毒结构简单、成分简单,但传染性很强,可通过飞沫传播与接触传播,经研究表明佩戴口罩能有效抑制病毒传播.把0.000 1用科学记数法表示为 1×10-4.14.三个分式:1x 2-1,x -1x 2-x ,1x 2+2x +1的最简公分母是 x(x -1)(x +1)2 .15.若分式方程x 2x -5+a5-2x =1的解为x =0,则a 的值为 5 .16.已知x 2n =3,则(-x 3n )4÷4(x 3)2n 的值为274. 17.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设x m 管道,那么根据题意,可得方程120x +300-120(1+20%)x =30或120x +1801.2x=30 .18.已知y 1=1x -1,y 2=11-y 1,y 3=11-y 2,y 4=11-y 3,…,y n =11-y n -1,请计算y 2 020=1x -1.(用含x 的代数式表示)三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题满分10分,每小题5分)计算: (1)0.25×(-2)-2÷16-1-(π-3)0; 解:原式=14×14÷116-1=1-1 =0.(2)(6x 2y -1)-2÷(-4xy -2)-2(结果化为只含正整数指数幂的形式). 解:原式=136x -4y 2÷116x -2y 4=49x -2y -2 =49x 2y 2.20.(本题满分5分)解关于x 的方程:3x -1+2xx +1=2.解:方程两边同乘(x +1)(x -1)得 3(x +1)+2x (x -1)=2(x +1)(x -1) 去括号得3x +3+2x 2-2x =2x 2-2 解得x =-5.经检验,x =-5为原方程的解.21.(本题满分6分)阅读下列计算过程,回答问题:x2x+1-x+1=x2x+1-(x+1)①=x2x+1-(x+1)2x+1②=x2-x2+2x+1x+1③=2x+1 x+1.(1)以上过程有两处关键性错误,分别是①③(填序号);(2)请写出此题的正确解答过程.解:正确的解答为:x2x+1-x+1=x2x+1-(x-1)=x2x+1-(x-1)(x+1)x+1=x2-x2+1 x+1=1 x+1.22.(本题满分8分)已知分式:A=4x2-4,B=1x+2+12-x,其中x≠±2.学生甲说A与B相等,乙说A与B互为倒数,丙说A与B互为相反数,她们三个人谁的结论正确?请说明理由.解:丙的结论正确.理由:∵B=1x+2+1 2-x=1x+2-1x-2=x-2-(x+2)(x+2)(x-2)=-4x2-4,A=4x2-4,比较可知,A与B只是分式本身的符号不同,∴A,B互为相反数,故丙的结论正确.23.(本题满分8分)甲、乙两位采购员同去一家饲料公司买了两次饲料,两次饲料的价格有变化,两位采购员的购货方式也不同.其中,甲每次购买1 000千克,乙每次用去800元,而不管购买多少饲料.谁的购货方式更合算?解:设第一次的单价为x 元,第二次的单价为y 元.则甲的平均价是:1 000x +1 000y 2 000=x +y2,乙的平均价是: 1 600800x +800y =2xyx +y.∵x ≠y 且x >0,y >0. ∴x +y 2-2xy x +y =(x -y )22(x +y )>0.∴乙的购货方式更合算.24.(本题满分8分)化简:⎝ ⎛⎭⎪⎫2x 2+2x x 2-1-x 2-x x 2-2x +1÷x x +1,并解答: (1)当x =3时,求原式的值;(2)原式的值能等于-1吗?请说明理由.解:(1)原式=⎣⎢⎡⎦⎥⎤2x (x +1)(x +1)(x -1)-x (x -1)(x -1)2·x +1x=⎝⎛⎭⎫2x x -1-x x -1·x +1x =x x -1·x +1x =x +1x -1. 当x =3时,原式=42=2.(2)不能,理由:如果 x +1x -1=-1, 即x +1=-x +1, ∴x =0,而当x =0时,除式xx +1=0, ∴原代数式的值不能等于-1. 25.(本题满分11分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①x -1x 2+1;②a -2b a 2-b 2;③x +y x 2-y 2;④a 2-b 2(a +b )2.其中是“和谐分式”是 ② (填写序号即可);(2)若a 为正整数,且x -1x 2+ax +4为“和谐分式”,请写出a 的值;(3)在化简4a 2ab 2-b 3-a b ÷b4时,小东和小强分别进行了如下三步变形: 小东:原式=4a 2ab 2-b 3-a b ×4b =4a 2ab 2-b3-4a b 2 =4a 2b 2-4a (ab 2-b 3)(ab 2-b 3)b 2小强:原式=4a 2ab 2-b 3-a b ×4b=4a 2b 2(a -b )-4a b 2 =4a 2-4a (a -b )(a -b )b 2显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是: 小强通分时,利用和谐分式找到了最简公分母 ,请你接着小强的方法完成化简.解:(1)②分式a -2b a 2-b 2=a -2b (a +b )(a -b ),不可约分,∴分式a -2ba 2-b 2是和谐分式,故答案为②.(2)∵分式x -1x 2+ax +4为和谐分式,且a 为正整数,∴a =4,a =-4(舍),a =5.(3)原式=4a 2-4a 2+4ab(a -b )b 2=4ab(a -b )b 2=4a(a -b )b=4aab -b 2.26.(本题满分10分)多好佳水果店在批发市场购买某种水果销售,第一次用1 500元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1 694元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价45%售完剩余的水果. (1)求第一次购买的水果的进价是每千克多少元;(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?解:(1)设第一次购买的水果的进价是每千克x 元,则第二次购买的水果的进价是每千克1.1x 元,根据题意,得1 6941.1x -1 500x=20, 解得x =2,经检验,x =2是原方程的解,且符合题意. 答:第一次购买的水果的进价是每千克2元. (2)第一次购买水果1 500÷2=750(千克), 第一次利润为750×(9-2)=5 250(元).第二次购买水果750+20=770(千克),第二次利润为100×(10-2.2)+(770-100)×(10×55%-2.2)=2 991(元).5 250+2 991=8 241(元).答:该水果店在这两次销售中,总体上是盈利了,盈利了8 241元.湘教版八年级数学上册第二章测试题(含答案)(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间:120分钟,赋分:120分)分数:____________第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)1.下列长度的三条线段中能构成三角形的是(C)A.3 cm,10 cm,5 cm B.4 cm,8 cm,4 cmC.5 cm,13 cm,12 cm D.2 cm,7 cm,4 cm2.如图,图中∠1的度数为(D)A.40°B.50° C.60° D.70°3.下列命题中是假命题的是(B)A.实数与数轴上的点一一对应B.如果两个数的绝对值相等,那么这两个数必定也相等C.对顶角相等D.三角形的重心是三角形三条中线的交点4.如图,△ABC≌△DEF,点A与点D对应,点C与点F对应,则图中相等的线段有(D)A.1组B.2组C.3组D.4组5.如图,AD∥BC,AC=BC,∠BAD=115°,则∠C的度数是(B)A.55°B.50°C.45°D.40°第5题图第6题图6.如图,AD是△ABC的中线,△ABD比△ACD的周长大6 cm,则AB与AC的差为(C)A.2 cm B.3 cm C.6 cm D.12 cm7.如图,在△ABC和△DEC中,已知AB=DE,还需要添加两个条件才能使△ABC≌△DEC,不能添加的一组是(C)A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D第7题图第8题图8.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D,则∠D的度数为(A)A.15° B.17.5° C.20° D.22.5°9.如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD 翻折得到△AED,则∠CDE=(B)A.10°B.20°C.40°D.60°第9题图第10题图10.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E两点,并连接BD,DE.若∠A=30°,AB=AC,则∠BDE的度数为(C)A.45°B.52.5°C.67.5°D.75°11.如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ的周长是(D)A.8+2aB.8+aC.6+aD.6+2a12.如图,在△ABC中,点D是BC边上一点,AD=AC,过点D作DE⊥BC交AB于E,若△ADE是等腰三角形,则下列判断中正确的是(B)A.∠B=∠CAD B.∠BED=∠CADC.∠ADB=∠AED D.∠BED=∠ADC第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.如图,把手机放在一个支架上面,就可以非常方便使用,这是因为手机支架利用了三角形的稳定性.第13题图第15题图14.“同一平面内,若a⊥b,c⊥b,则a∥c”这个命题的条件是同一平面内,若a⊥b,c⊥b ,结论是a∥c ,这个命题是真命题.15.如图,AC与BD相交于点O,且AB=CD,请添加一个条件,使得△ABO≌△CDO,你添加的条件是∠A=∠C或∠B=∠D或AB∥CD(任一答案即可) .16.用反证法证明“两直线相交,交点只有一个”,第一步假设为两直线相交,交点不止一个.17.如图,△ABC中BC边上的高为h1,△DEF中DE边上的高为h2,则h1和h2的大小关系是h1=h2 .18.如图所示,△ABC,△ADE与△EFG都是等边三角形,D和G分别为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是15 .19.(本题满分10分,每小题5分)把下列命题改写成“如果……那么……”的形式,并写出它的逆命题.(1)不相等的角不是对顶角;(2)等边三角形也是等腰三角形.解:(1)如果两个角不相等,那么它们不是对顶角.逆命题:不是对顶角的两个角不相等.(2)如果一个三角形是等边三角形,那么它也是等腰三角形.逆命题:等腰三角形也是等边三角形.20.(本题满分5分)已知:∠α,线段c,如图所示.求作:Rt△ABC,使∠A=∠α,AB=c,∠C=90°.解:如图,△ABC即为所求.21.(本题满分6分)如图:(1)在△AEC中,AE边上的高是CD;(2)若AB=CD=2 cm,AE=3 cm,求△AEC的面积及CE的长.解:∵AE=3 cm,CD=2 cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).∵S△AEC=12CE·AB=3 cm2,AB=2 cm,∴CE=3 cm.22.(本题满分8分)(东阿县期末)如图,已知∠1与∠2互为补角,且∠3=∠B,(1)求证:EF∥BC;(2)若AC=BC,CE平分∠ACB,求证:AF=CF.证明:(1)∵∠1+∠FDE=180°,∠1与∠2互为补角,∴∠2=∠FDE,∴DF ∥AB , ∴∠3=∠AEF , ∵∠3=∠B , ∴∠B =∠AEF , ∴FE ∥BC . (2)∵FE ∥BC ,∴∠BCE =∠FEC , ∵CE 平分∠ACB , ∴∠ACE =∠BCE , ∴∠FEC =∠ACE , ∴FC =FE , ∵AC =BC , ∴∠A =∠B ,又∵∠B =∠AEF , ∴∠A =∠AEF , ∴AF =FE ,∴AF =CF .23.(本题满分8分)如图,在线段BC 上有两点E ,F ,在线段CB 的异侧有两点A ,D ,满足AB =CD ,AE =DF ,CE =BF ,连接AF .(1)求证:∠B =∠C ;(2)若∠B =40°,∠DFC =30°,当AF 平分∠BAE 时,求∠BAF 的度数.(1)证明:∵CE =BF , ∴CE +EF =BF +EF , ∴BE =CF ,在△ABE 和△DCF 中,⎩⎨⎧AB =CD ,AE =DF ,BE =CF ,∴△ABE ≌△DCF (SSS),∴∠B =∠C . (2)解:由(1)得:△ABE ≌△DCF , ∴∠AEB =∠DFC =30°, ∴∠BAE =180°-∠B -∠AEB =180°-40°-30°=110°, ∵AF 平分∠BAE ,∴∠BAF =12∠BAE =12×110°=55°.24.(本题满分8分)(洛阳期末)如图,在△ABC 中,边AB 的垂直平分线OM 与边AC 的垂直平分线ON 交于点O ,分别交BC 于点D ,E ,已知△ADE 的周长为5 cm.(1)求BC 的长;(2)分别连接OA ,OB ,OC ,若△OBC 的周长为13 cm ,求OA 的长.解:(1)∵DM 是线段AB 的垂直平分线, ∴DA =DB , 同理,EA =EC ,∵△ADE 的周长为5 cm ,∴AD +DE +EA =5, ∴BC =DB +DE +EC =AD +DE +EA =5 cm. (2)∵△OBC 的周长为13, ∴OB +OC +BC =13, ∵BC =5,∴OB +OC =8,∵OM 垂直平分AB ,∴OA =OB ,∴同理,OA =OC ,∴OA =OB =OC =4 cm.25.(本题满分11分)两个大小不同的等腰直角三角板按如图①所示放置,图②是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连接DC .(1)请找出图②中的全等三角形,并说明理由(说明:结论中不得含有未标识的字母);(2)试说明:DC ⊥BE .解:(1)△BAE ≌△CAD . 理由:∵△ABC ,△DAE 是等腰直角三角形, ∴AB =AC ,AD =AE , ∠BAC =∠DAE =90°,∴∠BAE =∠CAD =90°+∠CAE . 在△BAE 和△CAD 中,⎩⎨⎧AB =AC ,∠BAE =∠CAD ,AE =AD ,∴△BAE≌△CAD(SAS).(2)由(1)得△BAE≌△CAD.∴∠DCA=∠B=45°.∵∠BCA=45°,∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.26.(本题满分10分)已知:△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图①,E,F分别是AB,AC上的点,且BE=AF.求证:△DEF为等腰直角三角形;(2)如图②,若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,则△DEF是否仍为等腰直角三角形?证明你的结论.,①) ,②)(1)证明:连接AD.∵AB=AC,∠BAC=90°,D为BC的中点,∴AD⊥BC,BD=AD.∴∠B=∠DAC=45°.又∵BE=AF,∴△BDE≌△ADF(SAS).∴ED=FD,∠BDE=∠ADF.∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°.∴△DEF为等腰直角三角形.(2)解:△DEF仍为等腰直角三角形.证明如下:连接AD.∵AB=AC,∠BAC=90°,D为BC的中点,∴AD=BD,AD⊥BC.∴∠DAC=∠ABD=45°.∴∠DAF=∠DBE=135°.又∵AF=BE,∴△DAF≌△DBE(SAS).∴FD=ED,∠FDA=∠EDB.∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF 仍为等腰直角三角形.湘教版八年级数学上册第三章测试题(含答案)(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间:120分钟,赋分:120分)分数:____________第Ⅰ卷 (选择题 共36分) 一、选择题(本大题共12小题,每小题3分,共36分) 1. 计算25的结果是( C ) A .-5 B .±5 C .5 D .4 2.实数-2的相反数是( A ) A. 2B.22C .- 2D .-2 3.下列实数中是无理数的是( B ) A.23B.3C .0D .-1.010 1014.如图,若用湘教版初中数学教材上使用的某种计算器进行计算,则按键的结果为( D )A .21B .15C .84D .675.在实数0,-π,3,-4中,最小的数是( D ) A .0 B .-πC. 3 D .-46.如图,在数轴上表示实数14的点可能是( C )A .点MB .点NC .点PD .点Q 7.下列说法中正确的是( B ) A .1的平方根是1 B .-1的立方根是-1 C.2是2的平方根D .-3是(-3)2的平方根8.已知31.51=1.147,315.1=2.472,30.151=0.532 5,则31 510的值是( C ) A .24.72 B .53.25 C .11.47 D .114.79.如果±1是b 的平方根,那么b 2 021等于( D ) A .±1 B .-1 C .±2 021 D .110.估算9+11的运算结果应在(D)A.3到4之间B.4到5之间C.5到6之间D.6到7之间11.一个数值转换器的原理如图所示,当输入的x为256时,输出的y是(B)A.16 B.2C. 3D.812.实数a,b在数轴上的位置如图所示,下列各式中正确的是(A)A.a+b>0 B.ab>0C.|a|+b<0 D.a-b>0第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.若a=3,则a=9 .14.如图,根据所示程序计算,若输入x=3,则输出结果为 2 .15.金园小区有一块长为18 m,宽为8 m的长方形草坪,计划在草坪面积不变的情况下,把它改造成正方形,则这个正方形的边长是12 m.16.★若2b+15和3a-1都是5的立方根,则a= 6 ,b= 1 .17.如果a>17,|17-a|18.★如图,在数轴上的点A,点B之间表示整数的点有 4 个.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题满分10分,每小题5分)计算: (1)3-27+(-3)2-3-1+(3-1)0; 解:原式=-3+3-(-1)+1=2.(2)3-8-0-0.25+30.125+31-6364. 解:原式=-2-0-0.5+0.5+14=-74.20.(本题满分5分)(1)求出下列各数:①-27的立方根;②3的平方根;③81的算术平方根;(2)将(1)中求出的每一个数准确地表示在数轴上,并用“<”连接起来.,题图)解:(1)①-27的立方根是-3;②3的平方根是±3; ③81的算术平方根是3.(2)将(1)中求出的每个数表示在数轴上如答图:,答图)用“<”连接为:-3<-3<3<3.21.(本题满分6分)求下列各式中的x 的值: (1)25x 2=36; 解:∵25x 2=36, ∴x 2=3625,∴x =±65.(2)(x +1)3=8.解:∵(x +1)3=8, ∴x +1=2,∴x =1.22.(本题满分8分)把下列各数填入相应的集合内:-6.8,34,3-8,5,-5,9,-π,119,0.21. (1)有理数集合:{…}; (2)无理数集合:{…}. 解:(1)-6.8,3-8,-5,9,119,0.21(2)34,5,-π 23.(本题满分8分)已知5a +2的立方根是3,2a +3b -3的算术平方根是2,c 是91的整数部分,求3a -b +c 的平方根.解:由题意,得⎩⎨⎧5a +2=27,2a +3b -3=4,解得⎩⎪⎨⎪⎧a =5,b =-1.∵c 是91的整数部分, ∴c =9,∴3a -b +c =25,∴3a -b +c 的平方根是±5.24.(本题满分8分)有一个底面积为64π cm 2,高为12 cm 的圆柱形礼盒,小明准备把这个礼盒放在一个容积为2 744 cm 3的正方体纸盒中,请问小明能做到吗?试说明理由.(参考数据:2 744=143)解:不能.理由:∵正方体纸盒的棱长是32 744=14 cm , 设圆柱体的底面半径为R ,则πR 2=64π, 解得R =8 cm ,∴圆柱形礼盒的底面半径为8 cm , 直径为16 cm , ∵16 cm >14 cm ,∴小明做不到.25.(本题满分11分)阅读材料,回答问题:对于实数a ,有:a 2=⎩⎨⎧a (a >0),0(a =0),-a (a <0),例如:32=3,02=0,(-3)2=-(-3).问题:实数a ,b 在数轴上的位置如图,化简:|b -a |+(a +b )2.解:∵b <0<a ,|b |>|a |, ∴b -a <0,a +b <0,∴原式=(a -b )-(a +b ) =a -b -a -b =-2b .26.(本题满分10分)(1)用“<”“>”或“=”填空:(2)由上可知①||1-2②||2-3③||3-4④||4-5 (3)计算(结果保留根号):||1-2+||2-3+||3-4+||4-5+…+||2 020- 2 021.解:原式=2-1+3-2+4-3+…+ 2 021- 2 020 = 2 021-1.湘教版八年级数学上册第四章测试题(含答案)(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间:120分钟,赋分:120分)分数:____________第Ⅰ卷 (选择题 共36分) 一、选择题(本大题共12小题,每小题3分,共36分) 1.下列不等式中是一元一次不等式的是( A ) A .2x -1>0 B .-1<2 C .x -2y ≤-1 D .y 2+3>52.x 的3倍减5的差不大于1,那么列出不等式中正确的是( A ) A .3x -5≤1 B .3x -5≥1 C .3x -5<1 D .3x -5>13.已知a <b ,则下列式子中正确的是( C ) A .a +5>b +5 B .3a >3b C .-5a >-5bD.a 3>b3 4.不等式-4x ≤5的解集是( B ) A .x ≤-12B .x ≥-54C .x ≤-45D .x ≥-455.不等式4(x -2)>2(3x +5)的非负整数解的个数为( A ) A .0个 B .9个 C .2个 D .3个6.不等式组⎩⎪⎨⎪⎧x -1≥0,4-2x >0的解集在数轴上表示为( D )ABC D7.甲种蔬菜保鲜适宜的温度是1 ℃~5 ℃,乙种蔬菜保鲜适宜的温度是3 ℃~8 ℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( B )A .1 ℃~3 ℃B .3 ℃~5 ℃C .5 ℃~8 ℃D .1 ℃~8 ℃8.若关于x 的方程x2+m +1=-m 的解为正数,则m 的取值范围是( D )A .m >0B .m <0C .m >-12D .m <-129.关于x 的不等式-2x +a ≥2的解集是x ≤-1,则a 的值是( A ) A .0 B .2 C .-2 D .-410.为了举行班级晚会,小明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,购买的球拍为x 个,那么x 的最大值是( A )A .7B .8C .9D .1011.若方程组⎩⎪⎨⎪⎧3x +y =k +1,x +3y =3的解x ,y 满足0<x +y <1,则k 的取值范围是( B )A .-1<k <0B .-4<k <0C .0<k <8D .k >-412.数学著作《算术研究》一书中,对于任意实数,通常用[x ]表示不超过x 的最大整数.如[π]=3,[2]=2,[-2.1]=-3,给出以下结论:①[-x ]=-[x ];②若[x ]=n ,则x 的取值得范围是n ≤x <n +1; ③当-1<x <1时,[1+x ]+[1-x ]的值为1或2; ④x =-2.75是方程4x -2[x ]+5=0的唯一一个解. 其中正确的结论是( B ) A .①② B .②③ C .①③ D .③④ 第Ⅱ卷 (非选择题 共84分) 二、填空题(本大题共6小题,每小题3分,共18分) 13.比较大小:a 3-3 > a3-4(选填“>”或“<”).14.已知2a -3x 2+2a>1是关于x 的一元一次不等式,则a = -12.15.当k 满足条件 k <4 时,不等式(k -4)x <4-k 的解集为x >-1.16.若关于x 的不等式组的解表示在数轴上如图所示,则这个不等式组的解为 1<x ≤2 .17.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a >0,5-2x >-1无解,则a 的取值范围是 a ≥3 .18.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题满分10分,每小题5分)解下列不等式(组),并把解集在数轴上表示出来: (1)x -32>3x +12+1;解:去分母,得x -3>3x +1+2, 移项及合并,得-2x >6, 解得x <-3.不等式解集在数轴上表示为:(2)⎩⎪⎨⎪⎧1+x >-2, ①2x -13≤1. ② 解:解不等式①,得x >-3, 解不等式②,得x ≤2,不等式组的解集在数轴上表示为:所以这个不等式组的解集是-3<x ≤2.20.(本题满分5分)x 为何值时,代数式x +32-x -15的值是非负数?解:由题意可得x +32-x -15≥0,去分母,得5(x +3)-2(x -1)≥0,去括号,得5x +15-2x +2≥0, 移项及合并,得3x ≥-17, 解得x ≥-173.故x ≥-173时,代数式x +32-x -15的值是非负数.21.(本题满分6分)关于x ,y 方程组⎩⎪⎨⎪⎧x +y =-7-m ,x -y =1+3m 的解满足x >0,求m 的取值范围.解:⎩⎪⎨⎪⎧x +y =-7-m ,①x -y =1+3m .②由①+②得2x =2m -6, x =m -3, ∵x >0, ∴m -3>0, 故m >3.22.(本题满分8分)若2(x +1)-5<3(x -1)+4的最小整数解是方程13x -mx =5的解,求代数式m 2-2m -11的值.解:解不等式得x >-4, 则最小整数解为-3,将x =-3代入方程得-1+3m =5, 解得m =2,将m =2代入代数式得4-4-11=-11.23.(本题满分8分)若三角形的三边长分别是2,x ,8,且x 是不等式x +22>-1-2x3的正整数解,试求第三边x 的长.解:原不等式可化为3(x +2)>-2(1-2x ), 解得x <8,∵x 是它的正整数解,∴x 可取1,2,3,4,5,6,7,再根据三角形第三边的取值范围,得6<x <10,∴x =7.故第三边x 的长为7.24.(本题满分8分)商场销售A ,B 两种商品,售出1件A 种商品和4件B 种商品所得利润为600元,售出3件A 种商品和5件B 种商品所得利润为1 100元.(1)求每件A 种商品和每件B 种商品售出后所得利润分别为多少元;(2)由于需求量大A ,B 两种商品很快售完,商场决定再次购进A ,B 两种商品共34件,如果将这34件商品全部售完后所得利润不低于4 000元,那么商场至少购进多少件A 种商品?解:(1)设A 种商品售出后所得利润为x 元,B 种商品售出后所得利润为y 元.由题意,得⎩⎨⎧x +4y =600,3x +5y =1 100,解得⎩⎨⎧x =200,y =100,答:A 种商品售出后所得利润为200元,B 种商品售出后所得利润为100元. (2)设购进A 种商品a 件,则购进B 种商品为(34-a)件. 由题意,得200a +100(34-a)≥4 000, 解得a ≥6,答:商场至少需购进6件A 种商品.25.(本题满分11分)阅读材料: 解分式不等式3x +6x -1<0.解:根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①⎩⎪⎨⎪⎧3x +6<0,x -1>0或②⎩⎨⎧3x +6>0,x -1<0, 解①得:无解,解②得:-2<x <1, 所以原不等式的解集是-2<x <1. 请仿照上述方法解下列分式不等式: (1)x -42x +5≤0; (2)x +22x -6>0. 解:(1)根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①⎩⎪⎨⎪⎧x -4≥0,2x +5<0或②⎩⎨⎧x -4≤0,2x +5>0, 解①得:无解,解②得:-2.5<x ≤4,所以原不等式的解集是-2.5<x ≤4.(2)根据实数的除法法则:同号两数相除得正数,异号两数相除得负数,因此,原不等式可转化为:①⎩⎪⎨⎪⎧x +2>0,2x -6>0或②⎩⎨⎧x +2<0,2x -6<0, 解①得:x >3,解②得:x <-2.所以原不等式的解集是x >3或x <-2.26.(本题满分10分)去年暑假,某旅行社组织了一个中学生“夏令营”活动,共有253名中学生报名参加,打算选租甲、乙两种客车载客到指定地点.甲种客车2辆、乙种客车1辆可坐110人,甲种客车3辆、乙种客车2辆可坐180人.旅行前,旅行社每辆车安排了一名带队老师,一共安排了7名带队老师.(1)求甲、乙两种客车各可坐多少人; (2)请帮助旅行社设计租车方案.解:(1)设甲、乙两种客车可分别坐x 人,y 人,根据题意,得⎩⎨⎧2x +y =110,3x +2y =180,解得⎩⎨⎧x =40,y =30,答:甲、乙两种客车分别可坐40人、30人.(2)设租甲种客车a 辆,则租乙种客车(7-a ) 辆, 根据题意得40a +30(7-a )≥253+7, 解得a ≥5, ∴5≤a ≤7, ∵a 为整数, ∴a =5,6,7,有三种租车方案:租甲种客车5辆,租乙种客车2辆; 租甲种客车6辆,租乙种客车1辆; 租甲种客车7辆,租乙种客车0辆.湘教版八年级数学上册第五章测试题(含答案)(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间:120分钟,赋分:120分)分数:____________第Ⅰ卷 (选择题 共36分) 一、选择题(本大题共12小题,每小题3分,共36分) 1.下列式子中不是二次根式的是( C ) A. 5B.0.5C.1xD.23 2.下列各式中属于最简二次根式的是( B ) A.8B. 5C. 4D.133.要使代数式x -2有意义,则x 的取值范围是( B ) A .x ≠2 B .x ≥2 C .x >2D .x ≤24.下列各式中无意义的是( A ) A.-22B.3-22 C.(-2)2D.3(-2)2 5.下列计算中正确的是( C ) A.2+3= 5 B .23-3=2 C.2×3= 6D.12=22 6.计算212-613+8的结果是( A ) A .32-2 3 B .5-2 C .5- 3 D .22 7.等式x -3x +1=x -3x +1成立的x 的取值范围在数轴上可表示为( B )ABC D8.若a =6+1,则a 2-2a +1的值为( A ) A .6 B. 6 C.6-2 D.6+2 9.当a <0,b <0时,把ab化为最简二次根式得( B ) A.1babB .-1b abC .-1b-abD .b ab10.实数a ,b 在数轴上的位置如图所示,且|a |>|b |,则化简a 2-|a +b |的结果为( C )A .2a +bB .-2a +bC .bD .2a -b11.已知m =⎝⎛⎭⎫-33×(-221),则有( A ) A .5<m <6 B .4<m <5C .-5<m <-4D .-6<m <-512.某数学兴趣小组在学习二次根式a 2=|a |后,研究了如下四个问题,其中错误的是( B )A .在a >1的条件下化简代数式a +a 2-2a +1的结果为2a -1B .a +a 2-2a +1的值随a 变化而变化,当a 取某个数值时,上述代数式的值可以为0.6C .当a +a 2-2a +1的值恒为定值时,字母a 的取值范围是a ≤1D .若a 2-2a +1=(a -1)2,则字母a 必须满足a ≥1 第Ⅱ卷 (非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分) 13.计算2a ·8a (a ≥0)的结果是 4a . 14.若x -1-231-x 有意义,则23-x = -13 .15.24×12+3 16.若a <1,化简:(a -1)2-1= -a .17.若28n 是整数,则满足条件的最小正整数n 为 7 .三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题满分10分,每小题5分)化简: (1)⎝⎛⎭⎫312-213+48÷23; 解:原式=312÷23-233÷23+43÷23 =3-13+2=143.(2)(-3)0-27+|1-2|+13+2. 解:原式=1-33+2-1+3-2 =-2 3.20.(本题满分5分)实数a ,b 在数轴上的位置如图,化简:a 2-b 2-(a -b )2.解:由数轴可知a <0,b >0,a -b <0, a 2-b 2-(a -b )2 =-a -b +(a -b ) =-2b .21.(本题满分6分)先化简,再求值:(a +3)(a -3)-a (a -6),其中a =12+12. 解:(a +3)(a -3)-a (a -6) =a 2-3-a 2+6a =6a -3. 当a =12+12=12+22时, 原式=6⎝⎛⎭⎫12+22-3=3+32-3 =3 2.22.(本题满分8分)若x ,y 是实数,且y =4x -1+1-4x +13,求⎝⎛⎭⎫23x 9x +4xy -(x 3+25xy )的值.解:∵x ,y 是实数,且y =4x -1+1-4x +13,∴4x -1≥0且1-4x ≥0, 解得x =14,∴y =13,∴⎝⎛⎭⎫23x 9x +4xy -()x 3+25xy =2x x +2xy -x x -5xy =x x -3xy =1414-314×13=18-12 3.23.(本题满分8分)一个三角形的三边长分别为5x 5,1220x ,54x 45x. (1)求它的周长(要求结果化简);(2)请你给出一个适当的值,使它的周长为整数,并求出此时三角形周长的值. 解:(1)周长=5x 5+1220x +54x 45x=5x +5x +5x 2=55x2. (2)当x =20时,周长=525×20=25.(答案不唯一,只要符合题意即可)24.(本题满分8分)解决下列问题:已知二次根式2x 2+2. (1)当x =3时,求2x 2+2的值;(2)若x 是正数,2x 2+2是整数,求x 的最小值;(3)若2x 2+2和2x 2+x +4是两个最简二次根式,且被开方数相同,求x 的值. 解:(1)当x =3时,2x 2+2=2×32+2=20=2 5. (2)∵x 是正数,2x 2+2是整数,∴2x2+2的最小值是2,解得x=1或x=-1(舍去),即x的最小值是1.(3)∵2x2+2和2x2+x+4是两个最简二次根式,且被开方数相同,∴2x2+2=2x2+x+4,解得x=-2,即x的值是-2.25.(本题满分11分)有如下一串二次根式:①52-42;②172-82;③372-122;④652-162…(1)求①,②,③,④的值;(2)仿照①,②,③,④,写出第⑤个二次根式;(3)仿照①,②,③,④,⑤,写出第n个二次根式,并化简.解:(1)①52-42=(5+4)(5-4)=9×1=3;②172-82=(17+8)(17-8)=25×9=(5×3)2=15;③372-122=(37+12)(37-12)=49×25=(7×5)2=35;④652-162=(65+16)(65-16)=81×49=(9×7)2=63.(2)观察(1)中式子可得第⑤个式子为1012-202.(3)观察、分析前面5个式子可知,上述二次根式化简后所得的二次根式的被开方数可表示为:[(2n+1)(2n-1)]2,∵[(2n+1)(2n-1)]2=(4n2+4n+1)(4n2-4n+1)=(4n2+1)2-(4n)2,∴第n个式子为:(4n2+1)2-(4n)2,化简得(4n2+1)2-(4n)2=(4n2+4n+1)(4n2-4n+1)=[(2n+1)(2n-1)]2=(2n+1)(2n-1).26.(本题满分10分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+22=(1+2)2,善于思考的小明进行了一下探索:设a+b2=(m+n2)2(其中a,b,m,n均为正整数),则有a+b2=m2+2n2+2mn2,∴a=m2+2n2,b=2mn.这样小明就找到一种把部分a +b 2的式子化作平方式的方法. 请仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含有m ,n 的式子分别表示a ,b ,得a =______,b =______;(2)利用所探索的结论,找一组正整数填空:+____3=(____+____3)2.(3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值. 解:(1)m 2+3n 2,2mn .(2)21,12,3,2(答案不唯一).(3)由题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn .∵4=2mn 且m ,n 为正整数,∴m =2,n =1或m =1,n =2. ∴a =22+3×12=7 或a =12+3×22=13.。

人教版八年级数学上册全册单元测试卷(含答案)

人教版八年级数学上册全册单元测试卷(含答案)

人教版八年级数学上册全册单元测试卷(含答案)第十一章三角形是初中数学中的重要概念之一,本章主要介绍三角形的定义、分类、性质以及相关定理。

首先,三角形是由三条线段组成的图形,其中每条线段都是三角形的一条边,而三条边的交点称为三角形的顶点。

根据三角形的边长和角度大小,我们可以将三角形分为不同的类型,如等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等。

其次,全等三角形是指在形状和大小上完全相同的两个三角形,它们的对应边和对应角都相等。

全等三角形有很多应用,比如在证明几何定理时经常会用到。

第十二章轴对称是初中数学中的一个重要概念,它是指一个图形关于某条直线对称后完全重合的情况。

轴对称可以分为水平轴对称和垂直轴对称两种情况,对称轴是指图形中被对称的那条直线。

轴对称有很多应用,比如在绘制图形、证明几何定理和解决实际问题时都会用到。

第十三章整式的乘法与因式分解是初中数学中的一个重要知识点,它涉及到多项式的基本运算和分解。

整式是由常数、变量和它们的乘积以及它们的各项次幂所构成的代数式,而整式的乘法和因式分解则是对多项式进行拆分和组合的过程,能够帮助我们更好地理解和应用代数式。

第十四章分式是初中数学中的一个重要概念,它是指由两个整式相除所得到的代数式。

分式可以分为真分式、带分式和整式三种情况,其中真分式是指分子次数小于分母次数的分式,带分式是指分子次数大于等于分母次数的分式,而整式则是指分母为常数的分式。

分式在数学中有着广泛的应用,比如在解方程、证明定理和计算实际问题时都会用到。

第十五章三角形单元测试是初中数学中的一种测试形式,它主要考察学生对于三角形相关知识和技能的掌握情况。

本测试共有10道选择题,每道题目有4个选项,只有一个选项是正确的。

测试时间为90分钟,满分为100分。

通过三角形单元测试,学生可以了解自己在三角形方面的薄弱环节,并及时进行补充和提高。

二、填空题11.x的取值范围是 1<x<312.可以构成 4 个三角形13.∠A+∠B+∠C+∠D+∠E+∠F等于 540°14.如果一个正多边形的内角和是900°,则这个正多边形是正 10 边形15.n=816.需要安排 3 种不同的车票17.得到的图形是正三角形,它的内角和(按一层计算)是 360°18.∠BOC的度数是 80°三、解答题19.因为BD平分∠ABC,所以∠CBD=∠ABD=40°又因为DA⊥AB,所以∠ADB=90°-∠ABD=50°所以∠C=∠CBD+∠ADB=40°+50°=90°20.(1) 画出△XXX的外角∠BCD后,再画出∠BCD的平分线CE,如图:image.png](/upload/image_hosting/edn2j1v0.png)2) 由于∠A=∠B,所以∠ACB=∠ABC,而∠BCD是△ABC的外角,所以∠BCD=∠ACB+∠ABC又因为CE是∠BCD的平分线,所以∠ECD=∠DCB,所以∠ECD+∠XXX∠BCD即∠ECD+∠XXX∠ACB+∠ABC又因为∠ACB=∠ABC,所以∠ECD=∠DCB所以CE∥AB21.(1) 如图:image.png](/upload/image_hosting/1a0z4h2p.png)ABC+∠ACB=30°+90°=120°XXX∠XXX∠ABC+∠XXX-∠XXX-∠XCB=120°-90°-30°=0°2) ∠ABX+∠ACX的大小不变,因为它们与三角板XYZ 的位置无关,只与△ABC的角度有关,而△XXX的角度没有变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学第十三章《全等三角形》单元试卷考试时间100分钟满分100分一、选择题(每题3分共30分)1、如图1,已知∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件是()A、∠E=∠BB、ED=BCC、AB=EFD、AF=CD2、如图2在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A、15°B、20°C、25°D、30°3、如图3所示,在△ABC中,∠B=∠C,AD为△ABC的中线,那么下列结论错误的是()A、△ABD≌△ACDB、AB=AC、AD是△ACD的高D、△ABC是等边三角形图1 图2 图34、如图4,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A、甲和乙B、乙和丙C、只有乙D、只有丙图45、如图5,AO=BO,CO=DO,AD与BC交于E,则图中全等三角形的对数为()A、2对B、3对C、4对D、5对6、如图6,已知∠1=∠2,欲证△ABD≌△ACD,还必须从下列选项中补选一个,则错误的选项是()A、∠ADB=∠ADCB、∠B=∠CC、BD=CDD、AB=AC图5 图67、下列说法正确的有()①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等A、1个B、2个C、3个D、4个8、如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长()A、13B、3C、4D、69、已知如图7,AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A 、BD+ED=BCB 、DE 平分∠ADBC 、AD 平分∠EDC D 、ED+AC>AD10、如图8,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A 、带①去B 、带②去C 、带③去D 、带①②③去图7 图8二、填空(每题3分,共15分)11、如图9已知△OA`B`是△AOB 绕点O旋转60°得到的,那么△OA`B`与△OAB 的 关系是 ,如果∠AOB=40°,∠B=50°,则∠A`OB`= ∠AOB`= 。

图912、△ABC 中,AD ⊥BC 于D ,要使△ABD ≌△ACD ,若根据“HL”判定,还需要加条件 ,若加条件∠B=∠C ,则可用 判定。

13、如图10,在△ABC 中,∠C=90°AD 平分∠BAC ,BC=12cm ,BD=8cm 则点D 到AB 的距离为 。

14、如图11,∠1=∠2,要使△ABE ≌△ACE 还要添加一个条件是 。

15、如图12,已知相交直线AB 和CD ,及另一直线MN ,如果要在MN 上找出与AB 、CD 距离相等的点,则这样的点至少有 个,最多有 个。

图10 图11图12 三、解答题16、(7分)如图所示,太阳光线AC 和A`C`是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?说明理由。

17、(7分)雨伞的中截面如图所示,伞骨AB=AC ,支撑杆OE=OF ,AE=31AB ,AF=31AC ,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD 有何关系?说明理由。

18、(8分)画图,如图是三条交叉公路,请你设计一个方案,要建一个购物中心,使它到三条公路的距离相等,这样的地址有几处?请你画出来19、(8分)如图,直线a//b ,点A 、B 分别在a 、b 上,连结AB ,O 是AB 中点,过点O 任意画一条直线与a 、b 分别相交于点P 、Q ,观察线段PQ 与点O 的关系,你能发现什么规律吗?证明你的结论20、(8分)如图所示,四边形ABCD 中AB=AD ,AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD ,图中有无和△ABE 全等的三角形?请说明理由。

21、(8分)已知,如图A 、F 、C 、D 四点在一直线上,AF=CD ,AB//DE ,且AB=DE ,求证:(1)△ABC ≌△DEF (2)∠CBF=∠FEC22、(9分)如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接BE 、DG ,(1)观察猜想BE 与DC 之间的大小关系,并证明你的结论。

(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程,若不存在,说明理由。

附加题:如图,在△ABC 中,∠BAC=90°,AB=AC ,若MN 是经过点A 的直线,BD ⊥MN 于 D ,CE ⊥MN 于E ,(1)求证:BD=AE 。

(2)若将MN 绕点A 旋转,使MN 与BC 相交于点O ,其他条件都不变,BD 与AE 边相等吗?为什么?(3)BD 、CE 与DE 有何关系?参考答案一、 选择题1、D2、D3、D4、B5、B6、C7、C8、D 9、B 10、C二、填空11、全等,40°,100° 12、AB=ACAAS13、4cm14、∠B=∠C (或∠BAE=∠CAE 或EB=EC ) 15、1,2三、解答题 16、解:建筑物一样高理由为:由已知可知AB ⊥BC ,A`B`⊥B`C`,BC=B`C`,∴∠ABC=∠A`B`C`=90°,由平行光线知AC//A`C`,∴∠ACB=A`C`B`,在△ABC 和△A`B`C`中⎪⎩⎪⎨⎧∠=∠=∠=∠A`C`B`ACB B`C`BC A`B`C`ABC∴△ACB ≌△A`C`B`(ASA )∴AB=A`B` 故两建筑物一样高。

17、解:∠BAD=∠CAD理由为:∵AE=31AB AF=31AC AB=AC ∴AE=AF 在△AEO 与△AFO 中⎪⎩⎪⎨⎧===AO AO OF OE AF AE∴△AEO ≌△AFO (SSS )∴∠BAD=∠CAD18、有四处(图略) 解:各角平分线的交点19、解:O是PQ的中点证明:∵a//b ∴∠PAB=∠QBA ∵O是AB中点∴AO=OB在△AOP与△BOQ中∴△AOP≌△BOQ(ASA)∴PO=OQ即O是PQ的中点20、解:△ADF和△ABE全等∵AC平分∠BCD,AE⊥BC,AF⊥CD ∴AE=AF,又∵AB=AD ∴Rt△ABE≌Rt△ADF(HL)21、证明:(1)∵AF=CD ∴AF+FC=DC+FC即AC=DF∵DE//AB ∴∠A=∠D在△ABC和△DEF中∴△ABC≌△DEF(2)由(1)得∠ABC=∠DEF又由三角形全等得∠ABF=∠DEC∴∠ABC-∠ABF=∠DEF-∠DEC 即∠CBF=∠FEC22、解:(1)BE=DG证明:在△BCE和△DCG中∵四边形ABCD和四边形ECGF都是正方形∴BC=DC,EC=GC ∠BCE=∠DCG=90°∴△BCE≌△DCG ∴BE=DG(2)存在,由(1)证明过程知是Rt△BCE和Rt△DCG。

将Rt△BCE绕点C顺时针旋转90°,可与Rt△DCG完全重合。

(或将Rt△DCG绕点C逆时针旋转90°,可与Rt△BCE完全重合)附加题:(1)∠BAD+∠CAE=90°∠BAD+∠BDA=90°∴∠DBA=∠EAC在△DBA和△EAC中∴△DBA≌△EAC(AAS)∴BD=AE(2)还相等∵∠1+∠2=90°,∠1+∠3=90°∴∠2=∠3又∵∠BDA=∠AEC=90° AB=AC ∴△ABD≌△CAE ∴BD=AE(3)∵BD=AE=AD+DE=EC+DE ∴BD=CE+DE八年级数学第11章三角形测试题一、填空题.1.三角形的三个外角中,钝角的个数最多有______个,锐角最多_____个.2.造房子时屋顶常用三角结构,从数学角度来看,是应用了_______,而活动挂架则用了四边形的________.3.用长度为8cm,9cm,10cm的三条线段_______构成三角形.(•填“能”或“不能”)4.要使五边形木架不变形,则至少要钉上_______根木条.5.已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=_____,∠C=______.6.如图1所示,AB∥CD,∠A=45°,∠C=29°,则∠E=______.(1) (2) (3)7.如图2所示,∠α=_______.8.正十边形的内角和等于______,每个内角等于_______.9.一个多边形的内角和是外角和的一半,则它的边数是_______.10.把边长相同的正三角形和正方形组合镶嵌,若用2个正方形,则还需要____个正三角形才可以镶嵌.11.等腰三角形的周长为20cm,一边长为6cm,则底边长为______.12.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有_____•条对角线.13.如图3所示,共有_____个三角形,其中以AB为边的三角形有_____,以∠C•为一个内角的三角形有______.14.如图4所示,∠A+∠B+∠C+∠D+∠E=________.(4) (5) (6)二、选择题。

15.下列说法错误的是().A.锐角三角形的三条高线,三条中线,三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线,三条中线,三条角平分线16.在下列正多边形材料中,不能单独用来铺满地面的是().A.正三角形 B.正四边形 C.正五边形 D.正六边形17.如图5所示,在△ABC中,D在AC上,连结BD,且∠ABC=∠C=∠1,∠A=∠3,则∠A 的度数为().A.30° B.36° C.45° D.72°18.D是△ABC内一点,那么,在下列结论中错误的是().A.BD+CD>BC B.∠BDC>∠A C.BD>CD D.AB+AC>BD+CD19.正多边形的一个内角等于144°,则该多边形是正()边形.A.8 B.9 C.10 D.1120.如图6所示,BO,CO分别是∠ABC,∠ACB的两条角平分线,∠A=100°,则∠BOC 的度数为().A.80° B.90° C.120° D.140°21.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是().A.k B.2k+1 C.2k+2 D.2k-222.如图所示,在长为5cm,宽为3cm的长方形内部有一平行四边形,则平行四边形的面积为().A.7cm2 B.8cm2 C.9cm2 D.10cm2三、解答题。

相关文档
最新文档