一次函数与反比例函数综合应用教案
专题五一次函数、反比例函数的综合运用

专题五 一次函数、反比例函数与实际应用教学目标:知识技能:进一步理解掌握一次函数、反比例函数的图象与性质,并能熟练运用其解决一次函数、反比例函数有关的综合题;过程方法:结合图象,分析题意,从函数的图象中获取解题信息解决实际问题,掌握解题方法技巧;情感价值:引导学生分析题意,构建函数模型,运用数形结合思想解决问题,提高学生的综合运用能力。
教学重点:运用数形结合思想从图象中获取解题信息教学难点:根据题意构建函数模型教学过程: 解题策略此专题内容多出在中档题中,主要有以下三种题型:(1)待定系数法求表达式;(2)应用题找等量关系建立函数模型;(3)两种函数的混搭.,重难点突破)一次函数与反比例函数综合题【例1】一次函数y =mx +5的图像与反比例函数y =k x(k≠0)在第一象限的图像交于A(1,n)和B(4,1)两点,过点A 作y 轴的垂线,垂足为M.(1)求一次函数和反比例函数的表达式;(2)求△OAM 的面积S ;(3)在y 轴上求一点P ,使PA +PB 最小.【解析】(1)根据待定系数法分别求出反比例函数与一次函数表达式即可;(2)根据反比例函数的性质,直接求出面积即可;(3)作点A 关于y 轴的对称点N ,连接BN 交y 轴于点P ,则点P 即为所求.【答案】解:(1)将B(4,1)代入y =k x ,得1=k 4.∴k =4,∴y =4x.将B(4,1)代入y =mx +5,得1=4m +5,∴m =-1,∴y =-x +5;(2)在y =4x 中,令x =1,解得y =4,∴A(1,4),∴S =12×1×4=2;(3)作点A 关于y 轴的对称点N ,则N(-1,4),连接BN 交y 轴于点P ,点P 即为所求.设直线BN 的关系式为y =kx +b ,由⎩⎪⎨⎪⎧4k +b =1,-k +b =4,解得⎩⎪⎨⎪⎧k =-35,b =175,y =-35x +175,∴P ⎝ ⎛⎭⎪⎪⎫0,175. 1、一次函数y =kx +b 与反比例函数y =m x的图像相交于A(-1,4),B(2,n)两点,直线AB 交x 轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B 作BC⊥y 轴,垂足为C ,连接AC 交x 轴于点E ,求△AED 的面积S.解:(1)将A(-1,4)代入y =m x ,得4=m -1,∴m =-4,∴y =-4x. 将x =2代入y =-4x,得y =-2, ∴B(2,-2).将A(-1,4),B(2,-2)代入y =kx +b ,得⎩⎪⎨⎪⎧-k +b =4,2k +b =-2,解得:⎩⎪⎨⎪⎧k =-2,b =2, ∴y =-2x +2;(2)∵△AED 的高为4,△ACB 的高为:4+2=6.∵ED∥BC,∴△AED ∽△ACB ,∴S △AED S △ACB =(46)2=49,∴S △AED =49×12×2×6=83. 【方法指导】先综合考虑两者之间的联系,再利用待定系数法求一次函数及反比例函数的表达式.一次函数的实际应用【例2】山地自行车越来越受到中学生的喜爱,各种品牌相继投入市场,某车行经营的A型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%。
《反比例函数与一次函数的综合运用》教学设计

《反比例函数与一次函数的综合运用》教学设计【教材】新人教版数学九年级【课时安排】1 课时【教学对象】九年级【教材分析】学生已经学过反比例函数和一次函数,有了一定的了解,但是综合性有待提高。
本节课的内容结合了七年级下册二元一次方程,八年级上册最短路径问题,八年级下册一次函数以及九年级下册反比例函数的内容,包含着初中数学三年里的部分内容,综合性强。
通过本节课的学习可以使学生思维变得更开阔,也对以后更好的学习各种科学知识有很大的帮助。
本节课的学习渗透数形结合、方法归纳等数学思想,培养学生实践能力、概括能力,也培养学生的合作交流意识和探索精神。
【学情分析】学生对反比例函数和一次函数的概念、图象和性质已经基本掌握,但综合起来,就要考验学生的计算能力、读图能力和分析能力了,这对于我校的学生来说是有待提高的。
因此我选择了从稍微简单的题目入手,进而突破中考 9 分题的第一题函数问题,再利用变式训练进行强化,意在让学生提高能力的同时更能增强学生学习数学,解决综合题,提高中考数学成绩的信心。
【教学目标】✧知识目标(1)理解并掌握用待定系数法确定一次函数、反比例函数的解析式;(2)已知一次函数与反比例函数的解析式,求它们图象的交点坐标;(3)能利用轴对称变化解决最短路径问题;(4)会解决一次函数与反比例函数相结合的综合问题。
✧能力目标(1)通过对一次函数与反比例函数综合问题的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;(2)培养学生数形结合思想、方法归纳思想等。
情感目标通过解题进一步理解数形结合的数学思想在函数中的应用。
【教学重点】灵活掌握求反比例函数的解析式,求一次函数与反比例函数图象的交点坐标。
【教学难点】利用数形结合的思想方法解一次函数、正比例函数的综合题以及最短路径问题。
【教学方法】采用“学案导学、小组合作”的探究式教学方法:以导学案为辅助手段,通过小组合作探讨等方式解一次函数、正比例函数的综合题。
一次函数与反比例函数综合应用教案

一次函数与反比例函数综合应用教案一、教学目标1. 让学生掌握一次函数和反比例函数的基本概念和性质。
2. 培养学生运用一次函数和反比例函数解决实际问题的能力。
3. 引导学生通过合作交流,提高解决问题的策略和思维能力。
二、教学内容1. 一次函数的基本概念和性质。
2. 反比例函数的基本概念和性质。
3. 一次函数和反比例函数的综合应用。
三、教学重点与难点1. 教学重点:一次函数和反比例函数的基本概念、性质和综合应用。
2. 教学难点:一次函数和反比例函数的综合应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究一次函数和反比例函数的性质。
2. 利用案例分析法,让学生通过实际问题体会一次函数和反比例函数的应用价值。
3. 采用合作交流法,培养学生团队协作和沟通能力。
五、教学过程1. 导入新课:通过生活实例引入一次函数和反比例函数的概念。
2. 自主学习:让学生自主探究一次函数和反比例函数的性质。
3. 案例分析:分析实际问题,引导学生运用一次函数和反比例函数解决问题。
4. 合作交流:分组讨论,让学生分享解题策略和心得。
5. 总结提升:总结一次函数和反比例函数的性质及应用,提高学生解决问题的能力。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学活动设计1. 活动一:引入概念通过展示实际生活中的线性关系图片,如直线轨道上列车的运动,引导学生思考线性关系的表现形式。
引导学生提出一次函数的表达式,并解释其含义。
2. 活动二:探索性质学生通过绘制一次函数图像,观察并总结其在坐标系中的性质。
通过实际例子,让学生理解一次函数的斜率和截距对图像的影响。
3. 活动三:反比例函数的引入引导学生从比例关系出发,思考反比例函数的概念。
通过实际问题,如在固定面积内,距离与面积的关系,引入反比例函数。
七、教学评价设计1. 评价目标:学生能理解并应用一次函数和反比例函数解决实际问题。
通过设计具有挑战性的问题,如购物预算问题,让学生应用所学的函数知识。
反比例函数与一次函数综合教案

反比例函数与一次函数的综合
一、定义
一般地,形如 y = x
k ( k 是常数, k = 0 ) 的函数叫做反比例函数。
(1)常数 k 称为比例系数,k 是非零常数;
(2)三种常见的表达形式: y = x
k (k ≠ 0) , xy = k (k ≠ 0) ,y=kx -1(k ≠0) 例1:函数22)2(--=a
x a y 是反比例函数,则a 的值是
T2 提高训练T1
二、图象和性质
1.形状:图象是双曲线。
2.位置:(1)当k>0时,双曲线分别位于第一、三象限内;
(2)当k<0时, 双曲线分别位于第二、四象限内
3.增减性:(1)当k>0时, y 随x 的增大而增大;
(2)当k<0时, y 随x 的增大而减小
4.变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交
5.对称性:对于双曲线本身来说,它的两个分支关于直角坐标系原点对称 T1 T4 T5 提高训练T2 T3
三、用待定系数法求解析式(与一次函数结合)相交问题 面积问题,
T6 提高训练T4 T5
例:如图,在平面直角坐标系中,直线2k y x =+与双曲线k y x
=在第一象限交于点A ,
与x 轴交于点C ,AB ⊥x 轴,垂足为B ,且AOB S Λ=1.求:
(1)求两个函数解析式; (2)求△ABC 的面积.。
《反比例函数与一次函数的交点问题》教学设计

《反比例函数与一次函数的交点问题》教学设计一、教学背景分析【教材内容】人教版第26章反比例函数【课标要求】在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、运算能力、推理能力和模型思想。
为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识.【内容分析】中考常将一次函数和反比例函数放在一个坐标系内,根据所给图像提供的信息求解各函数的解析式、确定自变量取值范围、比较函数大小、图形面积等问题,是这部分内容考查的“高频考点”,题型有填空题、选择题、也有中档的解答题。
【学情分析】学生刚刚学完反比例函数,初步掌握了一次函数和反比例函数的相关知识,但由于中考一般是以综合题型的形式进行考查的,而学生综合应用知识和分析问题能力较弱,因此在本节课中特别准备了一些中考常见题型,帮助学生提升分析问题的能力和灵活应用知识的能力。
二、目标【教学目标】1.会联立方程求反比例函数与一次函数的交点坐标;2.会根据交点情况求参数的值或取值范围.【教学重点】根据交点求参数的值或取值范围.【教学难点】利用数形结合思想进行解题.【教学策略】引导启发式、讨论合作式、多媒体辅助教学,教学中注重数形结合思想的渗透。
【课前准备】多媒体课件、写字板【课的类型】专题课【课时安排】1课时三、教学活动教学环节教学活动设计设计意图教师活动学生活动一、前置作业1.在平面直角坐标系中直线y=2x+2与直线xy=的交点坐标为.2.直线2+-=xy与抛物线2xy=的交点坐标为.3.直线与双曲线的交点坐标为.课前5分钟利用练习题复习求交点坐标.重温如何求两个函数图象的交点坐标.二、例题学习类型一、求直线与双曲线的交点坐标例1.如图,一次函数的图象与反比例函数xky=(k为常数,且0k≠)的图象相交于A(-1,m)和B两点,求点 B 的坐标 .进行求交点坐标的例题来规范书写过程让学生规范联立方程来解题,规范书写过程变式1.已知直线y=mx与双曲线xky=的一个交点坐标为(﹣1,3),则它们的另一个交点坐标是 .变式1 让学生明白还可以通过中心对称来求另一个交点坐标xy4=xy=5y x=+类型二、根据交点情况求参数的值或取值范围例2.如图,将一次函数5y x =+的图象沿y 轴向下平移b 个单位()0b >.使平移后的图象与反比例函数 的图象有且只有一个交点,求b 的值.思考:当平移后的直线与双曲线没有交点时,求b 的取值范围?变式2.如图,在平面直角坐标系中直 线y =x +2与反比例函数 y =−k x的图象有唯一公共点, (1)求k 的值;(2)若直线y =mx +2与反比例函数 y =−kx的图象有2个公共点,请你根据图象写出m 的取值范围.小组合作讨论求b 值.学生合作讨论通过几何画板展示平移,利用判别式来求解.通过思考问题拓展参数的取值范围第(1)问常规求解过程.第(2)问除了利用判别式来求解外,还考究学生的数形结合思想,属于旋转的类型,比平移高了一个难度xy 4-=三、课堂练习A组1.正比例函数y=kx的图象与反比例函数y=mx的图象有一个交点的坐标是(−1,−2),则另一个交点的坐标为()A.(2,1)B.(1,−2)C.(−1,2)D.(1,2)2.已知反比例函数y=kx与一次函数y=x+1的图象没有交点,则k的值可以是()A.12B.14C.−14D.−1B组3.如图,一次函数3+=xy的图象与反比例函数)0(1<-=xxky的图象交于点A),2(m-、点B.(1)求这个反比例函数的表达式;(2)将一次函数3+=xy的图象向下平移m个单位,当平移后的函数图象与反比例函数的图象只有一个交点时,求m的值.课堂分层练习分层课堂作业设计,充分照顾各个层次的学生.四、课堂小结(1)求直线与双曲线的交点坐标;(2)根据交点求参数的值或取值范围.学生进行小结课堂小结五、挑战自我已知一次函数3y mx m=-(0m≠)和反比例函数4yx=的图象如图所示.(1)一次函数3y mx m=-必定经过点________.(写点的坐标)(2)当2m=-时,一次函数与反比例函数图象交于点A,B,与x,y轴分别交于点C,D,连接BO并延长,交反比例另一支于点E,求出此时A,B两点的坐标及ABE的面积.(3)直线3y mx m=-绕点C旋转,直接写出当直线与反比例图象无交点时m的取值范围.提供给学有余力的学生进行挑战提供给学有余力的学生进行挑战。
反比例函数与一次函数的综合运用(优质课教案)

反比例函数与一次函数的综合运用蒲岐中学章青海一、教学目标、重点、难点的确定结合本节课的教学内容和学生现有的学习水平,我确定本节课的教学目标如下:1.知识与技能:通过本节学习,巩固反比例函数和一次函数的图像和性质,并能用它解决相关问题.2.过程与方法:通过观察简单图象入手,步步引入,逐渐掌握解决本节例题的方法,通过动手操作,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想.3.情感、态度与价值观:通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值.教学重点:利用反比例函数和一次函数的图像和性质解决有关问题教学难点:1、综合运用反比例函数和一次函数的图像和性质知识解决创新型问题2、对数形结合思想的理解与深入应用二、教学流程(一) 简单图象导入,温故知新教师:同学们好,请同学们看屏幕.如图,问题1.如图在Rt△ABC中,∠B=90°,AB=2、BC=1,你可以得出哪些结论?设计意图:让学生复习解直角三角形的知识及一般情况三角形会求哪些结论?引出面积为反比例函数的引入作铺垫。
问(2)将Rt△ABC如图放入直角坐标系中;还可以得出什么结论?设计意图:让学生体会当直角坐标系与简单几何图形结合,点线都可以用代数知识来表示,充分理解直角坐标系是数形结合很好的工具。
.借助哪个函数工具可以画出和它面积一样的直角三角形?设计意图:引入反比例函数,复习反比例函数解析式的求法,充分理解掌握k=xy 面积不变性,认识应用的基本图形,为等积法解决原题作铺垫。
问(3) .在平面直角坐标系中找到点D,使得以A 、B 、C 、 D 为顶点的四边形是平行四边形。
设计意图:比较自然的引出(0,-1);(4,1)又可以得出直线y=21x -1,从数学思想看也复习了分类讨论思想。
问(4).如图反比例函数y=x 4 与一次函数y=21x -1交于C,D 两点 你能提出一个新问题吗?并尝试解决.设计意图:预设3副图解决三类常见问题求交点,求三角形面积及大小比较 让学生总结方法技巧问(5). 直线y=21x-1与x 轴交于点B,过点B 作x 轴的垂线交反比例函数y=x4于点C,连接AC 你能判断三角形ABC 的形状吗?(创新型综合问题)设计意图:还是让学生观察图形特征,总结点规律,为解决原题作基础。
一次函数和反比例函数综合教学设计
一次函数和反比例函数综合应用教学设计教学过程教学环节教学活动设计意图情境引入1.复习二元一次方程与一次函数关系。
(1)已知二元一次方程组的解求相应函数图象交点坐标;(2)已知函数图象交点坐标求相应二元一次方程组的解;(3)在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为。
2.提出问题:一次函数的交点可以通过把一次函数相应的方程联立成方程组,方程组的解就是就是直线的交点。
那么一次函数和反比例函数的交点又怎么求?1.复习二元一次方程组的解和一次函数图象交点的坐标关系,回顾所学知识,感悟数形结合思想。
2.求一次函数图象交点的坐标,复习求一次函数交点坐标的过程,为教学求一次函数和反比例函数交点坐标作铺垫。
新知探究1.探究一次函数和反比例函数图象交点求法(1)多媒体展示题目;求反比例函数y=x2与一次函数y=x-1的图象的交点坐标。
(2)学生独立思考教师巡视指导;(3)同学间合作交流;(4)指名板演展示,教师适时点评。
(5)反思、总结求一次函数和反比例函数图象交点的方法,教师提炼板书:联立、转化、求解、写坐标。
2.求一次函数和反比例函数交点坐标例题(1)多媒体展示题目,指导学生读题;【例题1】如图,直线y=x+1与双曲线y=kx的交点为A(1,m)和B.(1)求m的值;(2)求双曲线的解析式;(3)求点B的坐标.(2)学生独立思考;(3)同学间合作交流;1.学生在复习求一次函数交点坐标的基础上,利用类比的方法学习一次函数和反比例函数的交点,总结求一次函数和反比例函数的交点的步骤。
2.通过求一次函数和反比例函数的交点的例题,进一步巩固求一次函数和反比例函数的交点知识。
3.学生通过独立思考,学生间的合作交流,探究利用数形结合的方法确定自变量的取值范围,感受数形结合解决问题的好处,发展学生几何直观。
(4)多媒体展示学生完成的练习,学生互评,教师适时点评。
3.利用数形结合确定自变量的取值范围 (1)多媒体展示题目,学生读题理解题意; 【例题2】如图所示,反比例函数的图象y 1=xk 1与正比例函数y₂=k 2x 的图象交于点(2,1),则使y 1>y 2的x 的取值范围是( ) A .0<x <2B .x >2C .x >2或-2<x <0D .x <-2或0<x <2(2)学生独立思考; (3)学生合作探究;(4)学生说解题思路,教师适时点评;(5)反思、总结根据一次函数和反比例函数图象交点确定自变量的取值范围的“三步法”:找交点写坐标,作垂线分区域,定区域写范围。
反比例函数与一次函数综合应用教案
反比例函数与一次函数的综合应用一、学情分析1. 学生:学生已经学过了反比例函数和一次函数,有了一定的了解,但是综合性有待提高;2. 教材:这是初三复习内容;3. 课程:本课程针对中考反比例函数与一次函数结合的题目进行复习练习。
二、教学目标:1、知识目标:(1)一次函数、正比例函数、反比例函数的概念。
(2)一次函数、正比例函数、反比例函数的图象及性质。
2、能力目标:(1)用待定系数法求一次函数、正比例函数、反比例函数的解析式。
(2)会用作出一次函数、正比例函数、反比例函数的图象。
(3)能够应用一次函数与反比例函数的图象与性质分析解决一次函数与反比例函数的综合题。
3、情感态度与价值观:通过解题进一步理解数形结合的数学思想在函数中的应用。
三、教学重点:1.一次函数、正比例函数、反比例函数的图象及性质。
2.用待定系数法求一次函数、正比例函数、反比例函数的解析式。
3.熟练应用一次函数与反比例函数的图象与性质进行解题。
四、教学难点:1.灵活运用一次函数、正比例函数、反比例函数的有关知识解综合题。
2.进一步利用数形结合的思想方法进行解题。
五、教学方法:讲练结合六、学情分析:学生已经基本掌握反比例函数和一次函数的概念、图象和性质,但我校学生计算能力、试图能力和分析能力都有待提高,因此我选择了稍微简单的综合题,意在让学生提高能力的同时增强学习数学的自信心。
七、教学过程(一)源于中考,以点展面(导入)一个函数具有下列性质:①它的图象经过(-1,4);②在每个象限内,函数y 的值随自变量x 的值增大而增大;请你写出一个符合上述条件的函数关系式: .【设计意图:本题属于开放性试题,答案可以是反比例函数(一般学生)也可以是一次函数(好学生),由此引出本节课的内容,反比例函数与一次函数综合应用】(二)综合应用,提升能力(新授课)1.例题分析若xy 4-=的图象与正比例函数y =kx (k ≠0)的图象在第二象限的交点为A (-1,n ),如图.(1)求正比例函数的解析式;(中等学生回答)(2)确定该函数的图象与正比例函数y =kx 的图象另一个交点B 的坐标;(全体学生回答)(3)过点A 、B 向x 轴作垂线,垂足为M 、N ,求S △AOM 、S △BON . (全体学生回答)(4)①若C (2,m ) 为该正比例函数图象上一点,比较m 与n 的大小;(中等学生回答)②若E (-2,m ) 为该正比例函数图象上一点,比较m 与n 的大小;(全体学生回答) ③若反比例函数值大于正比例函数值,确定 x 的取值范围. (中等学生回答)【说明:本题是由4道学生熟悉的小题综合在一起的,难度不大,让学生体验一部分综合题就是由几个有关联的小题放在一起,消除学生抵触心理,为后面难点打基础】2. 方法总结解决函数问题方法总结:(师生共同总结,学生在学案中填写)解决问题 求函数解析式 确定交点坐标 求几何图形面积 比较函数值大小 3. 针对练习:回归中考,能力检测4(学生独立完成,大屏幕展示学生解题过程)(三)变式延伸,拓展思维:1. 例题分析若直线()041>+=k kx y 与反比例函数()02≠=m m xm y 为常数,的图象一个交点为A (-3,1),如图.(1)=1y ;=2y (全体学生)(2)直接写出两函数的另一个交点坐标;(全体学生)(3)当x 取何值时,21y y >;(中等学生)(4)求△OAB 的面积; (较好学生)(5)过点A 作x 轴的垂线,过点B 作y 轴的垂线,两线交于点C .(课外延伸)①若反比例函数()02≠=m m xm y 为常数,的图象与△ABC 有公共点,请直接写出m 的取值范围;②若一次函数y =ax +b 的图象平行于直线 AB ,若直线y =ax +b 与△ABC 有公共点,求b 的取值范围;【说明:本题是本节课的难点,一次函数与反比例函数的结合,以及割补法求面积,利用多媒体教学的优势,用动画展示割补的过程,从而突破难点】2. 方法总结一次函数与反比例函数综合应用方法总结:(师生共同总结,学生在学案中填写)3. 针对练习:回归中考,能力检测5(学生独立完成,大屏幕展示学生解题过程)(四)课堂小结:本节课讲的解决函数问题以及函数综合题的方法,强调交点的重要性.(五)课堂反馈:回归中考,能力检测6八、板书设计策 略 方 法八、教学反思本节课学生基本掌握反比例函数和一次函数的概念、图象和性质以及掌握利用这些知识解较简单的综合题的方法,但是对于数形结合的思想运用、与几何知识的结合、坐标与线段的转化还不是很熟练,需要进一步练习提高。
《一次函数与反比例函数的综合应用》教学设计
(一)、知识与技能:
1、理解和掌握一次函数与反比例函数的表达式,图象及其性质。
2、能熟练运用待定系数法求函数的表达式;利用联立方程组思想求交点坐标;数形结合的思想求变量取值范围,转化思想等方法解决函数综合应用题。
(二)、过程与方法:
1、通过对零散知识点运用思维导图进行系统梳理,让学生对一次函数、反比例函数的知识体系结构化。
2、广东省近几年数学中考中一次函数与反比例函数综合题的考查情况表:
年份2012年2013年2014年
题号第17题第10题第23题
1、学生听
1、教师在此 活 动中,要重点关注的是:
(1)问题的提出是否引起了学生的兴趣;
(2)学生
是否高度重视,有主动积极参与到活动中来, 有种跃跃欲试的感觉。
教师对本
节课内容
1、(2011年湖南怀化中考题)正比例函数
y2x与反比例函数y1在同一坐标系中的
x
大致图像是( B)
2、(2017湖南张家界中考题)在同一平面直角坐标系中,函数y=mx+m(m≠0)与ym
x
m≠0)的图象可能是(D)
针对引例题 2 类型的变式训练题:
3、(2011年浙江杭州中考题)函数y1x1和
引例 2:(2011 年贵州贵阳中考题)如图,反
k1
比例函数y1=x和正比例函数y2=k2x的图象
k1
交于A(-1,-3)、B(1,3)两点,若x>k2x,
则x的取值范围是(C)A、-1<x<0
B、-1<x<1
C、x<-1或0<x<1D、-1<x<0或x>1
k1
解析:根据题意,若x>k2x,则只须y1>y2,
(2)并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。
《一次函数和反比例函数的综合运用》教学设计
《一次函数和反比例函数的综合运用》教学设计一、教学内容分析教学内容:一次函数和反比例函数的综合运用内容分析:一次函数和反比例函数是在初中阶段比较重要的两个函数问题,是二次函数的基础,学生不仅要掌握函数知识,还应该掌握解决问题的常规方法,利用“方程思想”“数形结合”思想及“转化”的数学思想解决问题。
在教学中要注重类比教学和启发式教学,通过对知识的传授与运用,让学生达到举一反三,触类旁通的目的。
同时也要注重“数形结合”思想的运用,数学是研究现实世界数量关系和空间形式的科学,而“数形结合”就是通过数与形之间的对应和转化来解决问题,以形助数和以数解行两个方面,利用它可使复杂问题简单化,抽象问题具体化。
本节课主要是让学生掌握一次函数和反比例函数的综合运用,近几年的中考也有涉及一次函数和反比例函数的综合运用等相关问题,解决一次函数和反比例函数的综合运用主要是一次函数和反比例函数的相交问题和围成图像的面积计算问题,解决此类问题,主要要熟练一次函数和反比例函数的解析式和性质,借助图像,运用知识,利用“方程思想”“数形结合”思想及“转化”的数学思想解决问题。
二、教学目标:1、知识与技能:理解和掌握一次函数与反比例函数的概念、图像、性质,会运用知识分析解决一次函数与反比例的综合题,培养学生的发散思维能力。
2、过程与方法:让学生经历一次函数与反比例函数的复习过程,进一步领会“方程思想”“数形结合”思想及“转化”的数学思想,遵循“优化”原则。
3、情感、态度、价值观:通过全班互动,小组探究合作学习,培养学生的合作意识,增进学生的感情,培养沟通能力,通过方法探索,培养学生的探索钻研精神。
三、教学重难点重点:熟练应用一次函数与反比例函数的图像和性质进行解题。
难点:利用“数形结合”以及转化思想解决问题。
三、工具、教法和学法1、教学工具:多媒体2、教学方法:本节课根据学生的认识水平采用启发式,练习法等教学方法,讲练结合,在学生和教师共同分析,合作探究,小组讨论,展示交流,互相启发的过程中,教师适时适当地点拨、肯定、表扬学生,给学生提供展示的机会,激发学生的学习积极性,使学生主动参与学习的全过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、教案内容
1、正比例函数和一次函数的概念
一般地,如果b
kx
y+
=(k,b是常数,k≠0),那么y叫做x的一次函数。
特别地,当一次函数b
kx
y+
=中的b为0时,kx
y=(k为常数,k≠0)。
这时,y叫做x的正比例函数。
2、一次函数、正比例函数图像的主要特征:
一次函数b
kx
y+
=的图像是经过点(0,b)的直线;正比例函数kx
y=的图像是经过原点(0,0)的直线。
k的符号b的符
号
函数图像图像特征
k>0 b>0
y
0 x
图像经过一、二、三象限,y随x的增大
而增大。
b<0
y
0 x
图像经过一、三、四象限,y随x的增大
而增大。
K<0 b>0
y
0 x
图像经过一、二、四象限,y随x的
增大而减小
b<0
y
0 x
图像经过二、三、四象限,y随x的
增大而减小。
注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
3、一次函数的性质
一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。
确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b 。
解这类问题的一般方法是待定系数法。
考点五、反比例函数 1、反比例函数的概念
一般地,函数x
k
y =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写
成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质
反比例
函数 )0(≠=k x k y
k 的符
号
k>0 k<0
图像 y O x
y
O
x
性质
①x 的取值范围是x ≠0,
y 的取值范围是y ≠0;
②当k>0时,函数图像的两个分支分别 在第一、三象限。
在每个象限内,y 随x 的增大而减小。
①x 的取值范围是x ≠0, y 的取值范围是y ≠0;
②当k<0时,函数图像的两个分支分别 在第二、四象限。
在每个象限内,y 随x 的增大而增大。
4、反比例函数解析式的确定
确定及诶是的方法仍是待定系数法。
由于在反比例函数x
k
y =
中,只有一个待定系数,因
此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义
如下图,过反比例函数)0(≠=k x
k
y 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得
的矩形PMON 的面积S=PM ∙PN=xy x y =∙。
k S k xy x
k
y ==∴=
,, 。
例1.已知一次函数y=x+m 与反比例函数y=1m x
+的图象在第一象限内的交点为P (x 0,3). (1)求x 0的值;(2)求一次函数和反比例函数的解析式.
二、练习
1.如图,点A 是直线2y x =与曲线
1
m y x -=
(m 为常数)一支的交点.过
点A 作x 轴的垂线,垂足为B ,且OB =2.求点A 的坐标及m 的值.
2. 已知反比例函数k
y x
=
的图象经过点A ,若一次函数x y = 的图象平移后经过该反比例函数图象上的点),4(m B , (1)试确定反比例函数和m 的值; (2)平移后的一次函数的表达式;
(3)根据图象回答,在第一象限内,当x 取何值时,反比例
函数的值大于一次函数的值?
17题图
3.已知:如图,直线b kx y +=与反比例函数)0(<=
x x
k
y 的图象相交于点A 和点B ,与x 轴交于点C ,其中A 点的坐标为(-2,4),点B 的横坐标为-4. (1)试确定反比例函数的解析式; (2)求AOC ∆的面积。
4.如图,将直线x y 4=沿y 轴向下平移后,得到的直线与x 轴交于点A (0,4
9
),与双曲
线k y x
=(0x >)交于点B .
(1)求直线AB 的解析式; (2)若点B 的纵坐标为m , 求k 的值(用含m
的代数式表示).
三、检测
一、选择题
1.在反比例函数y=2x
的图象上的一个点的坐标是( )
A .(2,1)
B .(-2,1)
C .(2,12
) D .(12
,2)
2.函数y=(a-1)x a 是反比例函数,则此函数图象位于( )
x
y O
A
6
2
4
6 -2 -2
-6 2
-8
-4 4
A.第一、三象限; B.第二、四象限;
C.第一、四象限; D.第二、三象限
3.已知正比例函数y=(3k-1)x,y随着x的增大而增大,则k的取值范围是()
A.k<0 B.k>0 C.k<1
3
D.k>
1
3
4.直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有()个
A.4 B.5 C.7 D.8
5.在函数y=k
x
(k>0)的图象上有三点A1(x1,y1),A2(x2,y2),A3(x3,y3),已知x1<x2<0<x3,则下列各式中,正确的是()
A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2
6.下列说法不正确的是()
A.一次函数不一定是正比例函数
B.不是一次函数就一定不是正比例函数
C.正比例函数是特殊的一次函数
D.不是正比例函数就一定不是一次函数
7.在同一平面直角坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,下列说法正确的是()
A.通过点(-1,0)的是①③ B.交点在y轴上的是②④
C.相互平行的是①③ D.关于x轴对称的是②④
8.在直线y=1
2x+1
2
上,到x轴或y轴的距离为1的点有()个
A.1 B.2 C.3 D.4
9.无论m、n为何实数,直线y=-3x+1与y=mx+n的交点不可能在() A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.一次函数y=kx+(k-3)的函数图象不可能是()。