静电场中的电介质

合集下载

静电场中的电介质

静电场中的电介质
r0
在国际单位制中,ε的单位为法拉每米(F·m–1)。
3.电介质的击穿
如果外电场足够大,电介质分子就会摆脱分子的束缚成为 自由电子,电介质的绝缘性被破坏而成为导体,这个过程称为 电介质的击穿,这个外电场的场强称为击穿场强。下表所示为 几种电介质的相对电容率和击穿场强。
1.3 电介质中的高斯定理
1.2 电介质的极化
电介质的极化是指在外电场作用下电介质表面产生极化电 荷的现象。其中,极化电荷又称束缚电荷,是指在外电场中, 均匀介质内部各处仍成电中性,但在介质表面出现的不能离开 电介质到其他带电体,也不能在电介质内部自由移动的电荷。
1.电介质极化的机理
由于组成电介质的分子结构不同,所以在外电场中极化 的微观机理也有所不同。对于无极分子,在外电场E0的作用 下,正、负电荷的中心被电场力拉开,使得正、负电荷中心 产生相对位移(这种极化称为位移极化),形成电偶极子。
由于受到外电场E0的作用,这些电偶极子的电偶极矩P 的方向将转向与外电场E0的方向一致。这样,在垂直E0方向 的介质两端表面就会出现正负电荷,如下图所示。
无外点场时,无极分子 正负电荷中心重合
外电场作用下,正负电荷 中心分离,形成电偶极子
电介质在垂直于外电场的 两端表面出现极化电荷
对于有极分子,无外电场时,虽然每个分子都有一定的电 偶极矩,但由于分子作无规则的热运动,所以各电偶极子的电 偶极矩的取向是杂乱无章的,对外不呈现出电性,如左图所示 但有外电场E0时,每个分子都受到一个力偶矩的作用。在此力 偶矩的作用下,有极分子的电偶极矩方向将转向与外电场基本 一致的方向,这种极化称为转向极化,其结果是电介质的两端 出现等量异号的电荷,如中图和右图所示。
物理学
静电场中的电介质

23. 静电场中的电介质

23. 静电场中的电介质

1 E dS 0S1 S2
S

P dS P dS PS2 S 2
S S2
0
1 1 E dS 0 S1
S

S
0 E P dS q0
0

0
四、电极化强度与极化电荷的关系 在均匀介质中, 极化电荷只出现在介质表面 或两种介质的分界面上。 设一均匀电介质薄片(S、l)置于电场(E) 中,表面将出现极化电荷。
p ql p ql P P V Sl 一般情形: P e P cos P n n
的q’为多少?
介质被均匀极化,介质内无净极化电荷。
介质内的场强: E E0 E
极化电荷产生的附加电场 实验表明: 对于各向同性的电介质,在E0不太大的 情况下,有:
P ( r 1) 0 E
上式表明P,E的简单比例关系,将比例系数写 成稍复杂的形式,是为了以后相对更重要的式子 表达方便。
en为薄片表面外法向单位矢量
例:
n
θ - - - - - + + + + +
- - - - - - + + + + +P +
P
思考:将介质从中分开,能否分离正、负
极化电荷?
§7-9 有电介质时的高斯定理 电位移
1 真空中的高斯定理: E dS qi
S
0
1 介质中的高斯定理: E dS
极化面电荷: P ·en
介质内表面(r =R1)处:
( r 1) q0 er P 0 ( r 1) E 2 4r r
1 P r R

静电场中的电介质

静电场中的电介质
由定义
C 与 d S 0 有关
S
C ; d C
插入介质
0S q C u A uB d
C
0 r S
d
C
(2)球形电容器 已知
设+q、-q 场强分布: E 电势差:
RB
RA RB
q
r q
B A
RA
q 4 0 r 2
q q
RB
1 1 u A uB dr ( ) 2 4 0 RA RB R A 4 0 r
f
pe
pe
3;
+ E + 外 + + + +
在外电场中有极分子的固有电 矩要受到一个力矩作用,电矩方 向趋于外电场方向。但由于热运 动的存在,不会完全一致。
有极分子的取向极化!
+ E + 外 + + + +
+
两端面出现极化电荷层
电介质被极化的宏观效果
①外电场越强,极化电荷越多; ②电介质不均匀,则不仅在电介质表面会出现极 化电荷,在电介质内部也会出现极化电荷; ③对均匀电介质,在其内部任一小区域内,正负 电荷数量仍然相等,因而仍然表现出电中性。
二、电极化强度和极化电荷
单位体积内分子电偶极矩的矢量和 P
1、电极化强度(矢量)

pi
V
物理意义:描述了电介质极化强弱,反映了电介质 内分子电偶极矩排列的有序或无序程度。
在各向同性的电介质中,P 0 E

称为电介质的电极化率,它取决于电介质的性质。
2、极化电荷和自由电荷 极化电荷
E E0
++++++ r + ------- C

第10章 静电场中的电介质

第10章 静电场中的电介质

R2
解:1.场的分布 R1
r <R 0
导体内部
E1 ? 0
P? 0
?0
?r1
?r2
R0
? ? R0< r< R1
?r1 内
? E2 ?
Q
4??0?r1r 2
r^
? P2 ?
?0
?r1 ? 1
Q
4??0?r1r 2
^r
R1< r< R2
?r2 内
? E3
?
Q
4??0?r2r 2
^r
? P3 ?
?0
??r
分子中的正负电荷束缚的很紧,介质内部 几乎没有自由电荷。
电介质对电场的影响
实验表明 ,当在真空电场中放入电介质时 ,电场将 会发生变化 .
例: 在已达到静电平衡的两平行带电金属板引 入电介质
?Q
? Q 相对介电常数 ? Q
?Q
U ? U0 /?r ,?r ? 1 E ? E0 / ?r
10.2 电介质及其极化
极化电荷带负电
电极化强度通过任意封闭曲面的通量:
??
?SP ?d S ? ?SP cos? d S ? ?S? ??d S
??
? ? P S
?d
S
?
? qi?
(S内)
例1. 平行板电容器自由电荷面密度为 ó0
? 充满相对介电常数为 r 的均匀各向同
性线性电介质 , 求:板内的电场强度。
解:介质将均匀极化 ,其表面出现束缚电荷
-+
Eo
? p
+
F
F
-
Eo
?
外电场: E0
?

(大学物理ppt)第 4 章 静电场中的电介质

(大学物理ppt)第 4 章 静电场中的电介质
第 4 章
静电场中的电介质
一、电介质对电场的影响 二、电介质的极化 三、电极化强度
四、极化电荷
五、D 的高斯定律
六、电容器和它的电容
七、电容器的能量
一、电介质对电场的影响
电介质也即绝缘体
特点是分子中正负电荷束缚得很紧,内
部几乎没有自由电荷,不导电,但在电场中会
受到电场的影响,反过来也会影响原有电场的
P

pi
V
P np
其中 n 表示电介质单位体积内的分子数。
三、电极化强度
2. 电极化强度与电场的关系
对 各向同性 的电介质,当电场不太强时, 试验表明:
P 0 ( r 1) E 0 E
其中 r 1 叫做电介质的电极化率。
四、极化电荷
1. 面束缚电荷
在介质中取一斜柱,长为 l ,则穿过 dS 面 的总正电荷为
dq qndV qnldScos
而 故 p ql, np P dq PcosdS
-q
e n
l
dS +q
面束缚电荷密度 dq P cos P e n dS
E
四、极化电荷
2. 体束缚电荷
穿过 dS面的总正电荷为 PcosdS P dS dqout 穿过整个封闭面 S 向外的 电荷应为 d qout P dS qout
S S
-q
e n
l
S
dS +q
E
留在封闭面 S 内的体束缚电荷应为 q in - q out P dS
二、电介质的极化 在电介质内部的宏观微小的区域内,正负电

大学物理 4.7 静电场中的电介质

大学物理  4.7 静电场中的电介质
4.7 静电场中的电介质
电介质 ( 绝缘体 ) 和导体的主要区别是:导体中有 可以自由移动的电子,而电介质中正、负电荷束缚 很紧,没有可以自由运动的电荷 。
一、电介质的极化
电介质分为两类:有极分子电介质和无极分子电 介质。
无极分子
H

有极分子

H


C



+

H


H
1040

H
p 0 CH
σ '
E ' E

0

实验ቤተ መጻሕፍቲ ባይዱ明:
E E0 E' E0
σ '

E
一、有介质时的高斯定理
1.极化强度
体积V中分子 电矩的矢量和 i P V 体积V
p ei
实验证明,对于各向同性的电介质:
2
r1
Q0
(r R0 )
( R0 r R1 ) ( R1 r R2 ) ( R2 r )
E D
1

例题
如图金属球半径为R1 、带电量+Q;均匀、各 向同性介质层外半径R2 、相对介电常数 r ;
求: D、E、U
R1
分布 解(1)对称性分析确定E、D沿矢径方向 (2)大小




束缚电荷´
束缚电荷´
(分子) 取向极化
结果:无论是有极分子电介质还是无极分子电介质,
在外电场的作用下,电介质表面附近的电荷会越过介 质表面而在均匀电介质的表面上出现一层束缚(极化) 电荷。这种现象称为电介质的极化。

静电场中电介质(共10张PPT)


自由电荷Q0和介质均呈球对称分
O--
-q
= 讨论: (1) 平板电容器(±Q)中充有均匀介质( r ),求 D与 的关系;
(1)电介质内正负电荷处于束缚状态, 在外电场作用下,束缚电荷只作微观的相对位移
H 自由电荷Q0和介质均呈球对+称分
布, 故 也为球对称分布
+
H+
+q
H O 布, 故 也为球对称分布
2、有极分子的取向极化
有极分子在外场中发生偏转而 产生的极化称为取向极化。
F
- + Eo
+
F
- p Eo
第六页,共10页。
三、静电场中的电介质
小结: (1)电介质极化现象∶在外电场作用下,介质表面 产生极化(束缚)电荷的现象。 (2)不论是有极分子还是无极分子的极化,微观 机理虽然不相同,但在宏观上表现相同。
在外电场的作用下,介质表面产生电荷的2现象称为电介质的极化。
(3)电介质内的电场强度。
(2)、无极分子: + + + + +
-----------
分子的正、负电荷中心在无外场时重

与各种因素均有关
合。不存在固有分子电偶极矩。 在外电场的作用下,介质表面产生电荷的现象称为电介质的极化。
+++++++++++
静电场中电介质
第一页,共10页。
电介质对电场的影响
B
+ + + + +
在平板电容器之间插 入一块介质板
E0
-- ---
实验发现:

静电场中的电介质

故,可用介质中的高斯定理求解
SD dS Q0
选半径为r,长度为L的高斯圆柱 面
r
R2 R1
SD dS l
D2 π rl l D
2πr
E D
ε0εr 2 π ε0εrr
(R1 r R2 )
P
0 E
( r
1) 0 E
r 1 2 πrr
r
R2 R1
(2) E

0
r
r
E1 2 π 0 r R1 (r R1)
q0 有关.
s内
特例: 真空——特别介质
特例: 真空——特别介质
q' 0 , P 0 , D 0E P 0E
回到:
1
E
s
dS
0
(
q0
S内 )
3. 如何求解介质中电场?
本课程只要 求特殊情况
各向同性电介质 q0 ,q' 分布具有某些对称性
(1)各向同性电介质:
P
0E
为常数
D 0E P 0E 0E 0(1 )E
模型 “电子气”
与电场的 相互作用
静电感应
电偶极子
无极分子电介质: 位移极化 有极分子电介质: 转向极化
宏观 效果
静电平衡
导体内 E 导体表面
0, 0 E表面
内部:分子偶极矩矢量
和不为零
pi 0
i
感应电荷 0E 出现束缚电荷(极化电荷)
4.极化现象的描述
1) 从分子偶极矩角度
单位体积内分子偶极矩矢量和——极化强度.
R2的薄导体圆筒组成,其间充
以相对电容率为r的电介质. 设
直导体和圆筒单位长度上的电
荷分别为+和- . 求(1)电介 质中的电场强度、电位移矢量

电介质


高斯定理的应用
∫∫ D ⋅ dS = ∑ q
(S) ( S内 )
0
D= ε r ε 0 E
v v v D= ε 0 E + P
D = ε 0 E0
r r r D ⇒ E ⇒ P ⇒ σ ′ ⇒ q′
D P
+σ0 -σ'
E = E0 − E '
E E 0
+σ' -σ0
[例] 例
r r r 请画 D, E , P 线。

dq
A + +Q + + +
B -Q -
1 1 1 Q2 2 We = U c Q = CU c = 2 2 2 C
二 、电场的能量和能量密度
1、静电场的能量 、
以平行板电容器为例 1 1 W e = Q0 U = ( DS )( Ed ) 2 2
We = 1 D EV 2
2、电场的能量密度
定义: 定义:单位体积内的能量
−q
q
q
E=
q 4πε 0 r 2
r
R1 E1
R2
电场的能量密度为
E2
dWe = ω e dV =
R1
1 q2 ω e = ε 0 E 2= 2 32π 2ε 0 r 4
q2
2 4
32π ε 0 r
4πr 2 dr =
q2 8πε 0 r
2
dr
q2 1 1 − We = ∫ dr = 2 r R 8πε 0 r 8πε 0 1 r q2
位移极化
E0
E0
取向极化
在外电场作用下, 在外电场作用下,电介质表面出现正负电荷层的 现象叫做电介质的极化 电介质的极化。 现象叫做电介质的极化。

6-静电场中的电介质


v v 1 q E⋅ dS = ∑ = 1 ( ∫
S
ε0
S内
ε0
∑q +∑q′)
0 S内 S内
式中的 ∑q 为闭合曲面内一切正、负电荷的代数和 为闭合曲面内一切正、 即自由电荷q 极化电荷q (即自由电荷q0、极化电荷q’)
v v 1 ∫ E⋅dS = (∑q0 +∑q′)
S
ε0
------ 有源场
分析电场所具有的对称性质 巧作高斯面, 巧作高斯面,即选择适当形状的闭合曲面为高斯面 计算通过高斯面的电位移通量
v v dS ΦD = ∫ D⋅ dS = ∫ D
S
计算高斯面内所包围的自由电荷的代数和 由电介质中的高斯定理求出电位移 D
∑q0
D∫dS = ∑q0
D=
∑q0
∫dS
由电位移 D 求出场强 E
4 0εr1r2 πε r r Br r ∞r r ∞ UA = ∫ E⋅ dl = ∫ E⋅ dl +∫ E⋅ dl Q A B A A r r E3 = ∞ 2 4 0εr2r πε =UAB +∫ E4 ⋅ dr
S内
S内
v v 1 Q∫ E0 ⋅ dS = ∑q0
S
v v ∴∫ ε0E0 ⋅ dS = ∑ 0 q
S S内
ε0 S内
v v ∴∫ ε0εr E⋅ dS = ∑ 0 q
S S内
v v v 令 D=ε ε E =εE ----电位移矢量 ----电位移矢量 0 r v v 自由电荷 电位移通量 ∴ D⋅ d = ∑ 0 S q ∫
§2
静电场中的电介质
H+ H C−+ H −
电介质:内部几乎没有可以自由运动电荷的物体, 电介质:内部几乎没有可以自由运动电荷的物体,又称为 绝缘体 电偶极子模型 正负电荷
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
rБайду номын сангаас
U U0 / d
d
r
E E0 / r
为什么插入电介质 会使电场减弱?
2 电场对电介质的极化
电介质这类物质中,没有自由电子, 不导电, 也称为绝缘体。
电介质分子可分为有极和无极两类:
(1)分子中的正电荷等效中心 与负电荷等效中心 重合的称为无极分子(如H2、 CH4、CO2)
无极分子在电场中, 无极分子
正负电荷中心会被 拉开一段距离,产生 感应电偶极矩,这 称为位移极化。
l
q q
p ql
感应电偶极矩
(2)分子中的正电荷等效中心 与负电荷等效中心 不重合的称为有极分子(如 HCl、H2O、NH3 )
有极分子在电场中, 固有电偶极矩会转向 电场的方向,这称为 转向极化。
说明:
有极分子 q
q 固有电偶极矩
1电介质对电场的影响
实验:插入电介质后,电压变小
U U0
r
r>1……介质的
相对介电常数 (相对电容率)
r 随介质种类和
状态而改变,无量纲, 可实验测定。
Q Q
d U0
Q Q
r
U
例如:
空气 r=1, 云母 r=4~7
水(20℃, 1atm) r=80, 钛酸钡 r=103—104。
U U0
l
q q
(1)静电场中,有极分子也有位移极化,
但主要是转向极化;
(2)由于热运动,P分子不是都平行于
E。
电场越强, P分子 的排列越整齐。
总之,不管哪种电介质,极化机制虽然不同,
放到电场中都有极化现象,都会出现极化电荷
(也叫束缚电荷)。
例如左图的左右表面
上就有极化电荷。
正是这些极化电荷 的电场削弱了电介 质中的电场。
如何描述电介质的极化状态? 电介质的极化有什么规律?
相关文档
最新文档