新北师大版八年级下册数学期末考试模拟试题

合集下载

北师大版八年级下册数学期末考试试卷含答案

北师大版八年级下册数学期末考试试卷含答案

北师大版八年级下册数学期末考试试题一、单选题1.下列垃圾分类标识中,是中心对称图形的是( )A .B .C .D . 2.如果x y <,那么下列不等式正确的是( )A .22x y <B .22x y -<-C .11x y ->-D .11x y +>+3.若分式242x x -+的值为0,则x 的值为( ) A .-2 B .0 C .2 D .±24.如图,在平行四边形ABCD 中,∠A =40°,则∠C 大小为( )A .40°B .80°C .140°D .180°5.下列各式从左到右的变形一定正确的是( )A .n m =11n m ++B .22x y x y --=x ﹣yC .b a =22b aD .b a =2ab a 6.下列多项式能直接用完全平方公式进行因式分解的是( )A .x 2+2x ﹣1B .x 2﹣x +14C .x 2+xy +y 2D .9+x 2﹣3x 7.下列命题不正确的是( )A .等腰三角形的两底角相等B .平行四边形的对角线互相平分C .角平分线上的点到角两边的距离相等D .三个角分别对应相等的两个三角形全等8.下列条件不能判定四边形ABCD 是平行四边形的是( )A .,AD BC AB CD == B .,AC BD ∠=∠∠=∠C .//,AB CD BC AD = D .//,AD BC B D ∠=∠9.如图,一次函数1y kx b =+的图象与直线2y m =相交于点P (-1,3),则关于x 的不等式0kx b m +->的解集为( )A .3x >B .1x <-C .1x >-D .3x <10.如图,已知∠ABC ,小彬借助一把没有刻度且等宽的直尺,按如图的方法画出了∠ABC 的平分线BP .他这样做的依据是( )A .在一个角的内部,且到角两边的距离相等的点在这个角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .测量垂直平分线上的点到这条线段的距离相等二、填空题11.若一个多边形的每一个外角都等于30,则这个多边形的边数为_________. 12.如图,在∠ABC 中,BC =8cm ,D 是BC 的中点,将∠ABC 沿BC 向右平移得∠A′DC′,则点A 平移的距离AA′=___cm .13.计算:223211a a a +-=--______________. 14.实验初中初二(1)班同学参加社会实践活动,几名同学打算包租一辆车前往,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费.设参加实践活动的学生原有x 人,则可列方程为_______.15.如图,四边形ABCD 中,∠B +∠D =180°,AC 平分∠DAB ,CM∠AB 于点M ,若AM =4cm ,BC =2.5cm ,则四边形ABCD 的周长为_____cm .16.如图,∠ABCD 中,∠ABC =45°,EF 是BC 的垂直平分线,EB =AB ,若BD =6,则AB =_______.三、解答题17.分解因式:(1) 2242x x -+(2)22()9()a x y b y x -+-18.利用数轴求出不等式组的解集.3212125x x x x <+⎧⎪++⎨>⎪⎩.19.先化简:(7211a a a +--+)÷2231a a a +-,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a 的值代入求值.20.解分式方程:21133x x x x -=++21.如图所示,在平面直角坐标系中,已知∠ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣2,1),C (﹣1,3).(1)若∠ABC 经过平移后得到∠A 1B 1C 1,已知点C 1的坐标为(4,0),画出∠A 1B 1C 1; (2)将∠ABC 绕着点O 按顺时针方向旋转90°得到∠A 2B 2C 2,则点A 2的坐标为 ,点C 2的坐标为 .(3)点D是平面直角坐标系内一点,若以A、B、C、D为顶点的四边形为平行四边形,直接写出满足条件的D点坐标.22.如图,在∠ABCD中,对角线AC、BD相交于点O,E、F为直线BD上的两个动点(点E、F始终在∠ABCD的外面),且DE=12OD,BF=12OB,连接AE、CE、CF、AF.(1)求证:四边形AFCE为平行四边形.(2)若AC=6,EF=10,AF=4,则平行四边形AFCE的周长为.23.某网店预测一种时尚T恤衫能畅销,用4800元购进这种T恤衫,很快售完,接着又用6600元购进第二批这种T恤衫,第二批T恤衫数量是第一批T恤衫数量的1.5倍,且每件T恤衫的进价第二批比第一批的少5元.(1)求第一批T恤衫每件的进价是多少元?(2)若第一批T恤衫的售价是80元/件,老板想让这两批T恤衫售完后的总利润不低于4060元,则第二批T恤衫每件至少要售多少元?(T恤衫的售价为整数元)24.如图,在四边形ABCD中,∠B=60°,AB=DC=4,AD=BC=8,延长BC到E,使CE =4,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 运动的时间为t 秒(t >0).(1)当t =3时,BP = ;(2)当t = 时,点P 运动到∠B 的角平分线上;(3)当0<t <6时,请用含t 的代数式表示∠ABP 的面积S ;(4)当0<t <6时,直接写出点P 到四边形ABED 相邻两边距离相等时t 的值.25.如图,四边形ABCD 中,45ABC ADC ∠=∠=︒,将BCD ∆绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE ∆.(1)请求出旋转角的度数;(2)请判断AE 与BD 的位置关系,并说明理由;(3)若2AD =,3CD =,试求出四边形ABCD 的对角线BD 的长.26.思维启迪(1)如图,∠ABC 中,AB =4,AC =2,点在AB 上,AD =AC ,AE∠CD 垂足为E ,点F 是BC 中点,则EF 的长度为 .思维探索(2)如图2,等边三角形ABC 的边长为4,AD∠BC 垂足为D ,点E 是AC 的中点,点M 是AD 的中点,点N 是BE 的中点,求MN 的长.(3)将(2)中的∠CDE 绕C 点旋转,其他条件不变,当点D 落在直线AC 上时,画出图形,并直接写出MN长.参考答案1.B【分析】利用中心对称图形的定义进行解答即可.【详解】解:A.不是中心对称图形,故此选项不合题意;B.是中心对称图形,故此选项符合题意;C.不是中心对称图形,故此选项不合题意;D.不是中心对称图形,故此选项不合题意;故选:B.【点睛】此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.A【解析】【分析】根据不等式的性质对各选项分析判断后利用排除法求解.【详解】解:A 、由x <y 可得:22x y <,故选项成立;B 、由x <y 可得:22x y ->-,故选项不成立;C 、由x <y 可得:11x y -<-,故选项不成立;D 、由x <y 可得:11x y +<+,故选项不成立;故选A.【点睛】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.C【解析】【详解】由题意可知:24020x x =⎧-⎨+≠⎩, 解得:x=2,故选C.4.A【解析】【分析】由平行四边形的性质:对角相等,得出∠C=∠A .【详解】解:∠四边形ABCD 是平行四边形,∠∠C=∠A=40°,故选A .【点睛】本题考查了平行四边形的性质,解答本题的关键是掌握平行四边形的对角相等. 5.D【解析】【分析】根据分式的基本性质(分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变)逐个判断即可.【详解】解:A.11n m m n ++≠,故本选项不符合题意; B.22x y x y --=()()x y x y x y +--=x +y ,故本选项不符合题意; C.当b =﹣2,a =1时,22b b a a ≠,故本选项不符合题意; D.2b ab a a =,故本选项符合题意; 故选:D .【点睛】本题考查了分式的基本性质,解题的关键是正确理解并运用分式的基本性质.6.B【解析】【分析】根据能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍进行分析即可.【详解】解:A 、x 2+2x ﹣1不能直接用完全平方公式进行因式分解,故此选项不合题意;B 、x 2﹣x +14=(x ﹣12)2,能直接用完全平方公式进行因式分解,故此选项符合题意; C 、x 2+xy +y 2不能直接用完全平方公式进行因式分解,故此选项不合题意;D 、9+x 2﹣3x 不能直接用完全平方公式进行因式分解,故此选项不合题意;故选:B .【点睛】本题考查了公式法分解因式,解题的关键是掌握完全平方公式:()2222a ab b a b ±+=±. 7.D【解析】【分析】利用等腰三角形的性、平行四边形的性质、角平分线的性质及全等三角形的判定分别判断后即可确定正确的选项.【详解】解:A、等腰三角形的两底角相等,正确,不符合题意;B、平行四边形的对角线互相平分,正确,不符合题意;C、角平分线上的点到角两边的距离相等,正确,不符合题意;D、三个角分别对应相等的两个三角形不一定全等,故错误,符合题意,故选:D.【点睛】本题考查了判断命题的正误,等腰三角形的性、平行四边形的性质、角平分线的性质及全等三角形的判定,掌握相关的性质定理是解题的关键.8.C【解析】【分析】根据平行四边形的判定逐一判断即可.【详解】解:A.由AD=BC,AB=CD可根据两组对边分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;B.由∠A=∠C,∠B=∠D可根据两组对角分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;C.由AB∠CD,BC=AD不能判定四边形ABCD是平行四边形,此选项符合题意;D.由AD∠BC知∠A+∠B=180°,结合∠B=∠D知∠A+∠D=180°,所以AB∠CD,此时可根据两组对边分别平行的四边形是平行四边形知四边形ABCD是平行四边形,此选项不符合题意;故选:C.【点睛】本题主要考查平行四边形的判定,解题的关键是掌握两组对边分别平行的四边形是平行四边形、两组对边分别相等的四边形是平行四边形、一组对边平行且相等的四边形是平行四边形.9.B【解析】【分析】把点P (-1,3)与点(0,1)求出一次函数1y kx b =+与2y m =的解析式,然后利用解不等式的方法求解即可;也可以通过观察图象,比较函数值大小来确定x 的的取值范围.【详解】解法一:依据题意有点P (-1,3)与点(0,1)在一次函数1y kx b =+的图象上, ∠13b x b=⎧⎨=-+⎩, 解得12b k =⎧⎨=-⎩, 点P (-1,3)在直线2y m =的图象上,∠m=3,∠0kx b m +->即为220x -->,解得1x <-.解法二:∠0kx b m +->,∠kx b m +>,∠1y kx b =+,2y m =,∠12y y >,即一次函数1y kx b =+的图象在直线2y m =的上面部分,观察图象,这部分图象对应的x 的取值范围是:1x <-.故选:B .【点睛】本题主要考查了一次函数与一元一次不等式,数形结合是解题关键.10.A【解析】【分析】根据角平分线判定得出BP 平分∠DPE ,根据平行线的性质推出∠DBP =∠EBP ,即可得出答案.【详解】解:∠∠M =∠N =90°,BM =BN ,∠BP 平分∠DPE ,∠∠DPB =∠EPB ,∠DP∠BC,PE∠BD,∠∠DPB=∠PBE,∠EPB=∠DBP,∠∠DBP=∠EBC,即在一个角的内部,到角的两边距离相等的点在角的平分线上,故选:A.【点睛】本题主要考查了角平分线的判定,平行线的性质的应用,注意:角的内部到角的两边距离相等得点在角的平分线上.11.12【解析】【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】解:∠360°÷30°=12,∠这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的外角,关键是明确多边形的外角和为360°.12.4【解析】【分析】利用平移的性质(平移前后两图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点;连接各组对应点的线段平行且相等)解决问题即可.【详解】解:∠D 是BC 的中点,∠BD =12BC =4(cm),由平移的性质可知,AA′∠BD ,AA′=BD ,∠AA′=4(cm),故答案为:4.【点睛】本题考查了平移的性质,解题的关键是熟练掌握平移的性质.13.11a a -+【解析】【分析】先通分,再进行分式的加减即可得到答案.【详解】 解:223211a a a +---=()()()()()22131111a a a a a a ++-+-+-=()()232211a a a a +--+-=()()()2111a a a -+- =11a a -+ 故答案为:11a a -+.【点睛】此题考查的是分式的加减运算,掌握其运算法则是解决此题关键.14.18018032x x -=+【解析】【分析】设原参加游览的同学共x人,则原有的几名同学每人分担的车费为:180x元,出发时每名同学分担的车费为:180x2+,根据每个同学比原来少摊了3元钱车费即可得到等量关系.【详解】解:设原参加游览的同学共x人,根据题意得:1801803 x x2-=+,故答案为:1801803 x x2-=+.【点睛】本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数.15.13【解析】【分析】过C作CE∠AD的延长线于点E,由条件可证∠AEC∠∠AMC,得到AE=AM.证明∠ECD∠∠MBC,由全等的性质可得DE=MB,BC=CD,则问题可得解.【详解】解:如图,过C作CE∠AD的延长线于点E,∠AC平分∠BAD,∠∠EAC=∠MAC,∠CE∠AD,CM∠AB,∠∠AEC=∠AMC=90°,CE=CM,在Rt∠AEC和Rt∠AMC中,AC=AC,CE=CM,∠Rt∠AEC∠Rt∠AMC(HL),∠AE=AM=4cm,∠∠ADC +∠B =180°,∠ADC +∠EDC =180°,∠∠EDC =∠MBC ,在∠EDC 和∠MBC 中,DEC CMB EDC MBC CE CM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠EDC∠∠MBC (AAS ),∠ED =BM ,BC =CD =2.5cm ,∠四边形ABCD 的周长为AB +AD +BC +CD =AM +BM +AE ﹣DE +2BC =2AM +2BC =8+5=13(cm ),故答案为:13.【点睛】本题考查全等三角形的判定与性质,掌握常用的判定方法是解题的关键.16.3【解析】【分析】连接CE ,过C 作CG∠DE 于G ,由线段垂直平分线的性质得EB =EC ,则∠EBC =∠ECB ,再证EC =CD ,则∠CED =∠CDE ,设∠EBC =∠ECB =α,则∠CDE =∠CED =∠EBC +∠ECB =2α,然后由三角形内角和定理求出α=15°,则∠CDE =∠CED =30°,设AB =EB =EC =CD =x ,则DE =BD ﹣EB =6﹣x ,最后由含30°角的直角三角形的性质和等腰三角形的性质得EG,EG =12DE =12(6﹣x )=12(6﹣x ),解方程即可. 【详解】解:连接CE ,过C 作CG∠DE 于G ,如图所示:∠四边形ABCD 是平行四边形,∠AB =CD ,AB∠CD ,∠∠ABC +∠BCD =180°,∠∠BCD =180°﹣45°=135°,∠EF 是BC 的垂直平分线,∠EB =EC ,∠∠EBC =∠ECB ,∠EB =AB ,∠EC =CD ,∠∠CED =∠CDE ,设∠EBC =∠ECB =α,则∠CDE =∠CED =∠EBC +∠ECB =2α,在∠BCD 中,∠DBC +∠CDB =180°﹣135°=45°,即α+2α=45°,解得:α=15°,∠∠CDE =∠CED =30°,设AB =EB =EC =CD =x ,则DE =BD ﹣EB =6﹣x ,∠CG∠DE ,∠CG =12EC =12x ,EG , 又∠EC =DC ,CG∠DE ,∠EG =DG =12DE =12(6﹣x ),=12(6﹣x ),解得:x =3,即AB =3,故答案为:3.【点睛】此题主要考查了平行四边形、直角三角形以及等腰三角形的有关性质,熟练掌握相关基础知识是解题的关键.17.(1)22(1)x -;(2)()(3)(3)x y a b a b -+-【解析】【分析】(1)先提公因式,再由完全平方公式进行因式分解,即可得到答案;(2)先整理,然后提公因式,再由平方差公式进行分解因式,即可得到答案.解:(1)2242x x -+=22(21)x x -+=22(1)x -;(2)22()9()a x y b y x -+-=22()9()a x y b x y ---=22()(9)x y a b --=()(3)(3)x y a b a b -+-.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握分解因式的方法进行解题. 18.﹣3<x <1【解析】【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【详解】 解:3212125x x x x <+⎧⎪⎨++>⎪⎩①②,解不等式∠得:x <1,解不等式∠得:x >﹣3,在数轴上表示不等式∠、∠的解集,得:,∠不等式组的解集是:﹣3<x <1.【点睛】本题主要考查了解一元一次不等式组,解题的关键是要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.19.3a a+;12-. 【解析】先把括号内的两项通分后利用同分母分式的加减法法则进行计算,同时把除法转化为乘法,最后约分化成最简分式,根据分式有意义的条件选择一个a 值代入求值即可.【详解】 解:22723111a a aa a a ++⎛⎫-÷ ⎪-+-⎝⎭=()()()()()()()()712111113a a a a a a a a a ++--+-⋅-++=()2693a a a a +++=()()233a a a ++ =3a a +当a=-3、-1、1、0时,原式没有意义,舍去,当a=-2时,原式=23122-+=--.【点睛】本题考查分式的化简求值,熟练掌握分式的基本性质及分式有意义的条件是解题关键.20.32x =-【解析】【分析】先将分式方程化为整式方程,然后解整式方程并验根即可.【详解】解:方程两边都乘以()31x +,得:()3312x x x -+=, 解得:32x =-, 经检验,32x =-是原方程的解.【点睛】此题考查的是解分式方程,掌握分式方程的解法是解题关键.21.(1)见解析;(2)(5,3),(3,1);(3)(﹣4,3),(﹣2,7),(0,1).【解析】【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)利用旋转变换的性质分别作出A ,B ,C 的对应点A 2,B 2,C 2即可.(3)根据平行四边形的判定画出图形,可得结论.【详解】解:(1)∠C (﹣1,3),C 1的坐标为(4,0)∠∠ABC 向右平移了五个单位,向下平移了三个单位,∠A 1(2,2),B 1(3,-2),C 1(4,0)如图,∠A 1B 1C 1即为所求.(2)如图,∠A 2B 2C 2即为所求,点A 2的坐标为(5,3),点C 2的坐标为(3,1). 故答案为:(5,3),(3,1).(3)分别过、、A B C 作BC AC AB 、、的平行线,分别相交于点D D D '''、、,如上图所示,∠A (﹣3,5),C (﹣1,3)∠点B 向左移动两个单位,向上移动两个单位,可得点D又∠B (﹣2,1),∠D 点坐标为(﹣4,3),同理可以求得1)(0D ',,27)(D ''﹣, 满足条件的D 点坐标(﹣4,3),(﹣2,7),(0,1).故答案为:(﹣4,3),(﹣2,7),(0,1).【点睛】此题主要考查了图形的变换,涉及了平移变换、旋转变换以及平行四边形的性质,熟练掌握相关基础知识是解题的关键.22.(1)见解析;(2)8+【解析】【分析】(1)由平行四边形的性质得OA =OC ,OB =OD .再证OE =OF ,即可得出结论;(2)由勾股定理的逆定理证明∠AOF 是直角三角形,∠OAF =90°,再由勾股定理得CF =【详解】(1)证明:∠四边形ABCD 是平行四边形,∠OA =OC ,OB =OD .∠DE =12OD ,BF =12OB , ∠DE =BF ,∠OD +DE =OB +BF ,即OE =OF ,∠四边形AFCE 为平行四边形;(2)解:如图所示:由(1)得:OA =OC =12AC =3,OE =OF =12EF =5,∠AF =4,∠OA 2+AF 2=OF 2,∠∠AOF是直角三角形,∠OAF=90°,∠CF∠四边形AFCE是平行四边形,∠CE=AF=4,AE=CF=∠平行四边形AFCE的周长=2(AF+CF)=8+故答案为:8+【点睛】本题主要考查了平行四边形的判定和性质、勾股定理和勾股定理逆定理的应用;熟练掌握平行四边形的判定和性质及勾股定理及逆定理是解题的关键.23.(1)60元;(2)76元【解析】【分析】(1)已知金额设出进价,表示出数量,根据数量关系列出方程;(2)在(1)的基础上,根据求出的两次进价求出两次进货数量,列出关于总利润的不等式.【详解】解:(1)设第一批T恤衫每件的进价为x元,根据题意得:480066001.55x x⨯=-,解得x=60,经检验,x=60是原方程的解,答:第一批T恤衫的进价为60元.(2)设第二批T恤衫的售价为y元,根据题意,得。

2022-2023学年北师大版数学八年级下册 期末模拟检测卷(无答案)

2022-2023学年北师大版数学八年级下册 期末模拟检测卷(无答案)

数学八年级下册 期末模拟检测卷一、单选题(共10题;共30分)1.在式子中,分式的个数有( )A .2B .3C .4D .52.多项式 因式分解为( )A .B .C .D .3.若a <b ,则下面可能错误的变形是( )A .6a <6bB .a+3<b+4C .ac+3<bc+3D .﹣ >- 4.由线段a ,b ,c 组成的三角形是直角三角形的是( )A .,,B .,,C .,,D .,,5.如图,△ABC 中,AC=BC ,点D,E ,F 分别在边AC ,AB ,BC 上,且满足AD=BE ,AE=BF ,∠DEF=40°,则∠C 的度数是( )A .90°B .100°C .120°D .140°6.下列各组数中,不能构成直角三角形的一组是( )A .1,2,B . ,2,C .3,4,5D .6,8,127.如图,在△ABC 中,AB =AC =10,BC =12,AD 平分∠BAC ,则AD 等于( )31203510,,,,,9π4678y ab c x y x a x y+++32242x x x -+()221x x -()221x x +()221x x -()221x x +2a 2b 2a =4b =5c =a =b =c =3a =4b =5c =5a =13b =14c =3252A .6B .7C .8D .98.老张从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )A .a >bB .a <bC .a =bD .与a 和b 的大小无关9.若 的值为 ,则 的值是( ) A .B .C .D .10.如图,六边形ABCDEF 的内角都相等,∠DAB=60°,AB=DE ,则下列结论成立的个数是( )①AB ∥DE ;②EF ∥AD ∥BC ;③AF=CD ;④四边形ACDF 是平行四边形;⑤六边形ABCDEF 既是中心对称图形,又是轴对称图形.A .2B .3C .4D .5二、填空题(共5题;共15分)11.把多项式 分解因式的结果为 .2a b +21237y y ++1821469y y +-12-117-17-1724x -12. 的解集是 13.如果分式的值为零,那么则x 的值是 .14.如图,在Rt △ABC 中,∠C=90°,AC=4,将△ABC 沿CB 向右平移得到△DEF ,若平移距离为2,则四边形ABED 的面积等于 .15.在△ABC 中,∠ABC =60°,BC =8,点 D 是 BC 边的中点,点 E 是边 AC 上一点,过点D 作 ED 的垂线交边 AC 于点 F ,若 AC =7CF ,且 DE 恰好平分△ABC 的周长,则△ABC 的面积为 .三、计算题(共1题;共10分)16.(1)解方程: ;(2)解不等式组: 四、解答题(共6题;共65分)17.(6分)如图,BD 、CE 分别是△ABC 的边AC 和边AB 上的高,如果BD =CE .试证明:AB =AC .2335122x x x -≥⎧⎪⎨+>-⎪⎩242x x -+21133x x x-=---212143x x x -≤⎧⎪-⎨<⎪⎩18.(8分)已知实数a ,b ,c 满足 , ,求 的值.19.(10分)“一带一路”国际合作高峰论坛在北京举行.本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?20.(10分)如图,∠A=90°,∠AOB=30°,AB=2,△A ′OB ′可以看作是由△AOB 绕点O 逆时针旋转60°得到的,求点A ′与点B的距离0a b c ++=2221a b c ++=()555a b c abc ++÷21.(15分)已知某项工程,乙工程队单独完成所需天数是甲工程队单独完成所需天数的两倍,若甲工程队单独做10天后,再由乙工程队单独做15天,恰好完成该工程的,共需施工费用85万元,甲工程队每天的施工费用比乙工程队每天的施工费用多1万元.(1)单独完成此项工程,甲、乙两工程对各需要多少天?(2)甲、乙两工程队每天的施工费各为多少万元?(3)若要完成全部工程的施工费用不超过116万元,且乙工程队的施工天数大于10天,求甲工程队施工天数的取值范围?22.(16分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.710(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB//CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD.(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求AE的长.。

北师大版初中数学八年级下册期末试卷及答案

北师大版初中数学八年级下册期末试卷及答案

北师版初中数学八年级下册期末试卷一、选择题(本大题共小题,共分)下列图形中是中心对称图形的是()A B C D如图,在A B C D 中,E 为C D 上一点,连接A E 、B D ,且A E 、B D 交于点F ,D E A B =,则D F B F 等于()AB C D 如果a <b ,那么下列各式中,一定成立的是()A a >bB a c<b c C a -<b -D a>b 下列各式从左到右的变形中,是因式分解的为().A ()()x y x x y -+=+-+B ()()x x x -=+-C ()x a b a x b x -=-D ()ax b x c x a b c ++=++如图,R t △A B C 中,∠C =D ,A C =,B C =,D E 是A C 边的中垂线,分别交A C ,A B 于点E ,D ,则△D B C 的周长为()A B C D 如果关于x 的方程a x x +=-的解为非负数,且关于x,y 的二元一次方程组x y a x y +=+ìí+=î解满足x y +>-,则满足条件的整数a 有()个.A B C D 在正三角形,正方形,正五边形,正六边形这几个图形中,单独选用一种图形不能进行平面镶嵌的图形是()A 正三角形B 正方形C 正五边形D 正六边形“a 是正数”用不等式表示为()A a 5B a 6C a <D a >下列计算正确的是().A a a a ¸=B -=C -=D a b a b¸´=能判定四边形是平行四边形的是()A 对角线互相垂直B 对角线相等C 对角线互相垂直且相等D 对角线互相平分二、填空题(本大题共小题,共分)当x ___时,分式xx +-的值为零如下表,从左到右在每个小格子中都填入一个整数,使得其中任意四个相邻格子中所填的整数之和都相等,则第个格子中的数为_____________.-ab c-…若a b a b a b -+++=,则a b +=______.如图,A B C是边长为的等边三角形,取B C边中点E,作E D A B,E F A C,得到四边形E D A F,它的面积记作S;取B E中点E;作E D F B,E F E F,得到四边形E D F F,它的面积记作S.照此规律作下去,S=_______.(第题)(第题)如图,在等边△ABC中,AD平分∠BAC交BC与点D,点E为AC边的中点,BC=8;在AD上有一动点Q,则QC+QE的最小值为_______.三、解答题(本大题共小题,共分)判断命题“一组对边平行另一组对边相等的四边形是平行四边形”真假,若是真命题,请给出证明;若是假命题,请修改其中一个条件使其变成真命题(一个即可)并请写出证明过程.(要求:画出图形,写出已知,求证和证明过程)下列运算正确吗?如果不正确,请改正.()a b a b m m m++=;()a ax y y x-=--;()a a+=;()x yx y x y+=++.如图,正方形网格中,每个小正方形的边长均为,每个小正方形的顶点叫格点.()在图①中,以格点为端点,画线段M N;()在图②中,以格点为顶点,画正方形A B C D,使它的面积为.已知:如图,A B C为等边三角形,B D为中线,延长B C至E,使C E=C D,连接D E.()证明:B D E是等腰三角形;()若A B=,求D E的长度.东东在完成一项“社会调查”作业时,调查了城市送餐员的收入情况,他了解到劳务公司为了鼓励送餐员的工作积极性,实行“月总收入=基本工资(固定)+计单奖金”的方法计算薪资,并获得如下信息:营业员小李小杨月送餐单数单月总收入元送餐每单奖金为a元,送餐员月基本工资为b元.()求a、b的值;()若月送餐单数超过单时,超过部分每单奖金增加元,假设月送餐单数为x单,月总收入为y元,请写出y与x之间的函数关系式,并求出送餐员小李计划月总收入不低于元时,小李每月至少要送餐多少单?如图,在边长为的正方形A B C D中,动点E以每秒个单位长度的速度从点A开始沿边A B向点B运动,动点F以每秒个单位长度的速度从点B开始沿折线B C﹣C D向点D运动,动点E比动点F先出发秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.()点F在边B C上.①如图,连接D E,A F,若D E⊥A F,求t的值;②如图,连结E F,D F,当t为何值时,△E B F与△D C F相似?()如图,若点G是边A D的中点,B G,E F相交于点O,试探究:是否存在在某一时刻t,使得B OO G=?若存在,求出t的值;若不存在,请说明理由.上海“迪士尼”于今年“”开园,准备在暑假期间推出学生门票优惠价如下:票价种类(A)夜场票(B)日通票(C)节假日通票单价(元)我市某慈善单位欲购买三种类型的票共张奖励品学兼优的留守学生,其中购买的A种票x张,B种票数是A种票数的倍少张,C种票y张.()请求出y与x之间的函数关系式;()设购票总费用为w元,求w(元)与x(张)之间的函数关系式;()为方便学生游玩,计划购买的每种票至少购买张,则有几种购票方案?并指出哪种方案费用最少?参考答案一、选择题:C A C B CD C D C D二、填空题-三、解答题假命题.改为:两组对边分别相等的四边形是平行四边形.已知:如图,在四边形A B C D 中,A B C D =,A D B C =.求证:四边形A B C D 是平行四边形.证明:连接A C,如图所示:在A B C 和C D A 中,A B C D A D C B A C C A =ìï=íï=î∴()A B C C D A SS S ≌.∴B A C D C A Ð=Ð,A C B C A D Ð=Ð,∴A B C D ,B C A D ,∴四边形A B C D 是平行四边形.()a b a bm m m++=,故原题计算错误;()a a a a a x y y x x y x y x y -=+=-----,故原题计算错误;()a a a aa a+=++=,故原题计算错误;()x y x y x y x y x y++==+++,故原题计算正确.()如图①所示:()如图②所示.()证明:A B C 为等边三角形,D C B \Ð=°C E CD = ,CE D C D E \Ð=Ð,D C B CE D C D E Ð=Ð+Ð=° ,C ED C DE \Ð=Ð=°,B D Q 为中线D BC \Ð=°,D B C CE D \Ð=Ð,B D D E \=,B D E \是等腰三角形;()解:B D Q 为中线,A D A C \==,B D A C ^,A DB \Ð=°,在R t A B D △中,由勾股定理得:B D =D E B D \==.()由题意得:a b a b +=ìí+=î,解得,a =,b =,答:a =,b =.()①当x ££时,y x =+,②x >时,()y x x =´+-+=+,y \与x 的函数关系式为:()x x y x x ì+££=í+>î,´+=< ,x \>,当x +³时,x ³,因此每月至少要送单,答:月总收入不低于元时,每月至少要送餐单.()①如图∵D E ⊥A F ,∴∠A O E D ,∴∠B A F ∠A E O D ,∵∠A D E ∠A E O D ,∴∠B A E ∠A D E ,又∵四边形A B C D 是正方形,∴A E A D ,∠A B F ∠D A E D ,在△A B F 和△D A E 中,{B A E A D E A E A D A B F D A EÐ=Ð=Ð=Ð∴△A B F≌△D A E(A S A)∴A E B F,∴t t,解得t.②如图∵△E B F∽△D C F∴E B B FD C F C=,∵B F t,A E t,∴F C﹣t,B E﹣﹣t﹣t,∴t tt -=-,解得:t=,t=(舍去),故t-=.()①<t5时如图,以点B为原点B C为x轴,B A为y轴建立坐标系,A的坐标(,),G的坐标(,),F点的坐标(t,),E的坐标(,﹣t)E F所在的直线函数关系式是:y tt-x﹣t,B G所在的直线函数关系式是:y x,∵B G=∵B OO G =,∴B O,O G,设O 的坐标为(a ,b ),{a b b a+==解得{a b ==∴O 的坐标为(,)把O 的坐标为(,)代入y t t -x ﹣t ,得t t -F ﹣t ,解得,t+(舍去),t-,②当6t >时如图,以点B 为原点B C 为x 轴,B A 为y轴建立坐标系,A 的坐标(,),G 的坐标(,),F 点的坐标(,t ﹣),E 的坐标(,﹣t )E F 所在的直线函数关系式是:y t -x ﹣t ,B G 所在的直线函数关系式是:y x ,∵B G =∵B OO G =,∴B O,O G,设O 的坐标为(a ,b ),{a b b a+==解得{a b ==∴O 的坐标为(,)把O 的坐标为(,)代入y t -x ﹣t ,得t -F ﹣t ,解得:t .综上所述,存在t-或t ,使得B O O G =.() 购买的A 种票x 张,\购买的B 种票为()x -张,x x y \+-+=,y x \=-;()()()w x x x =+-+-x =-+;()依题意得x x x ³ìï-³íï-³î,解得x ££,x 为整数,x \=、、,\共有种购票方案,方案一:A 种票张,B 种票张,C 种票张;方案二:A种票张,B种票张,C种票张;方案三:A种票张,B种票张,C种票张,=-+中,k=-<,在w x\随x的增大而减小,w´-+=元,\当x=时,w最小,最小值为()即当A种票为张,B种票张,C种票为张时,费用最少,最少费用为元。

新北师大版八年级下册数学期末考试测试题

新北师大版八年级下册数学期末考试测试题

新北师大版八年级下册数学期末考试测试题八年级下数学期末测试第一套一、填空1、分解因式:ab-2ab+a= -ab+a2、宽与长的比等于黄金比的矩形也称为黄金矩形,若一黄金矩形的长为2 cm,则其宽为 1.236 cm.3、若 2/4x+= 345.则 x+y+z= 1384.若 x+2(m-3)x+16 是完全平方式,则 m 的值是5.5.某超市从厂家以每件21元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过 25.2 元.6.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠C;②DF=CF;③△ADE∽△FDB;④∠BFD=∠CAF.其中正确的结论是(填写所有正确结论的序号): ①②③④.7.如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是 (2.5.1.5).8.如图,Rt△ABC中,∠ACB=90°直线EF∥BD,交AB于点E,交AC于点G,交AD于点F,若,1/CF=3/AD,则S△AEG= S四边形EBCG。

3/5.9.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是 2.10、若不等式(m-2)x>2的解集是x<2/(m-2)。

则x 的取值范围是 (2/(m-2)。

+∞).11、化简的结果为 2a+2b,12、如果x<-2,则(x+2)·(25abx-y)= (2x+4)·(25abx-y);13、已知一个样本1、3、2、5、x,它的平均数是3,则这个样本的标准差为√2.二、选择题:1、如果a>b,那么下列各式中正确的是()A、a-3-b答案:A2、下列各式:(1-x)/(5π-3x^2),其中分式共有()个。

北师大版八年级下册数学期末试题及答案

北师大版八年级下册数学期末试题及答案

北师大版八年级下册数学期末试卷一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是A .B .C .D .2.a 、b 都是实数,且a<b ,则下列不等式正确的是A .a+x >b+xB .1-a<1-bC .5a <5bD .2a >2b 3.在平面直角坐标系内,将点M (3,1)先向上平移2个单位长度,再向右平移3个单位长度,则移动后的点的坐标是A .(6,3)B .(6,﹣1)C .(0,3)D .(0,﹣1)4.若()234a m a +-+能用完全平方公式进行因式分解,则常数m 的值是A .1或5B .1C .-1D .7或1-5.如图,l ∥m ,等边三角形ABC 的顶点B 在直线m 上,∠1=20°,则∠2的度数为A .60°B .45°C .40°D .30°6.化简22a b a b a b---的结果为A .-a b B .a b +C .a b a b+-D .a b a b-+7.函数y kx b =+的图象如图所示,则关于x 的不等式0kx b +≥的解集是A .2x ≤B .2x ≥C .0x ≤D .0x ≥8.如图,点P 在∠AOB 的平分线上,PC ⊥OA 于点C,∠AOB=30°,点D 在边OB 上,且OD=DP=2.则线段PC 的长度为()A .3B .2C .1D .129.若正多边形的一个外角是72 ,则该正多边形的内角和为()A .360B .540C .720D .900 10.下面式子从左边到右边的变形是因式分解的是()A .x 2﹣x ﹣2=x (x ﹣1)﹣2B .x 2﹣4x+4=(x ﹣2)2C .(x+1)(x ﹣1)=x 2﹣1D .x ﹣1=x (1﹣1x)11.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是()A .AB//DC ,AD//BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB//DC ,AD=BC12.甲队修路120m 与乙队修路100m 所用天数相同,已知甲队比乙队每天多修10m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=-B .120100x x 10=+C .120100x 10x=-D .120100x 10x=+二、填空题13.一个纳米粒子的直径是0.000000035米,用科学记数法表示为______米.14.分式方程231xx =-的解是_____.15.当x =_________时,分式242x x -+的值为0.16.将直线5y x =--向上平移2个单位,得到直线_____,将直线3y x =-向左平移2个单位,得到直线_____;17.矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形周长的和是86cm ,矩形的对角线长是13cm ,那么该矩形的周长为_____.18.如图,菱形ABCD 的周长为16,面积为12,P 是对角线BD 上一点,分别作P 点到直线AB 、AD 的垂线段PE 、PF ,则PE +PF 等于____.19.将3x 2﹣27分解因式的结果是_______________________.20.关于x 的不等式3x m -<的解集中只有三个正整数,则m 的取值范围是_______.三、解答题21.解不等式组并把解集在数轴上表示出来.()32123232x x x ⎧--≥⎪⎨++>⎪⎩22.求下列分式的值:2224xx x x x x ⎛⎫+÷ ⎪-+-⎝⎭,并从x =0,﹣1,﹣2中选一个适当的值,计算分式的值.23.已知关于x 的方程233x k x x-=--(1)当3k =时,求x 的值?(2)若原方程的解是正数.求k 的取值范围?24.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A 、B ,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P 的位置.(作图不写作法,但要求保留作图痕迹.)25.如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:(1)ABC ∆的顶点都在方格纸的格点上,先将ABC ∆向右平移2个单位,再向上平移3个单位,得到111A B C ∆,其中点1A 、1B 、1C 分别是A 、B 、C 的对应点,试画出111A B C ∆;(2)连接11AA BB 、,则线段11AA BB 、的位置关系为____,线段11AA BB 、的数量关系为___;(3)平移过程中,线段AB 扫过部分的面积_____.(平方单位)26.如图,已知CAE ∠是ABC 外角,若①12∠=∠,②//AD BC ,③AB AC =,在这三个条件中任选两个作为已知条件,第三个作为结论进行证明.(1)已知12∠=∠,//AD BC ,求证:AB AC =.(请完成证明)(2)除上述方案,请再选一种方案加以证明.27.如图,在ABCD 中,点E ,F 分别在AD 、BC 上,且AE CF =,连接EF ,AC 交于点O .求证:OE OF =.28.已知:如图,AB CD =,DE AC ⊥,BF AC ⊥,E ,F 是垂足,DE BF =.(1)直接写出图中所有的全等三角形(不需要说明理由);(2)选取一组对第三问有帮助的全等进行证明;(3)证明四边形ABCD是平行四边形.参考答案1.C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、既是轴对称图形,又是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形(不考虑颜色),故本选项不符合题意;故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C根据不等式的基本性质:(1)若a>b ,则a±c>b±c ,(2)若a>b ,c>0,则ac>bc ,a b c c>;(3)若a>b ,c<0,则ac<bc ,a b c c <;逐一判断得到答案即可【详解】解:A .∵a <b ,∴a+x <b+x ,计算错误;B .∵a <b ,∴-a >-b ,∴1-a >1-b ,计算错误;C .∵a <b ,∴5a <5b ,计算正确;D .∵a <b ,∴22ab <,计算错误.故答案为:C .【点睛】本题主要考查不等式的基本性质,熟练掌握不等式得基本性质是解题的关键.3.A 【解析】【分析】横坐标右移加,左移减;纵坐标上移加,下移减;依此即可求解.【详解】解:3+3=6,1+2=3.故点M 平移后的坐标为(6,3).故选:A .【点睛】本题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.D 【解析】【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:∵a 2+(m-3)a+4能用完全平方公式进行因式分解,∴m-3=±4,解得:m=-1或7.【点睛】本题考查了公式法分解因式,熟练掌握完全平方公式的结构特点是解题的关键.5.C【解析】【分析】过C作CM∥直线l,根据等边三角形性质求出∠ACB=60°,根据平行线的性质求出∠1=∠MCB,∠2=∠ACM,即可求出答案.【详解】解:过C作CM∥直线l,∵△ABC是等边三角形,∴∠ACB=60°,过C作CM∥直线l,∵直线l∥直线m,∴直线l∥直线m∥CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB-∠MCB=60°-20°=40°.故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.6.B【解析】【分析】根据同分母的分式减法法则进行化简即可得到结果.【详解】解:22a b a b a b---22a b a b-=-()()a b a b a b+-=-a b =+,故选:B .【点睛】此题主要考查同分母分式的减法,熟练掌握运算法则是解答此题的关键.7.A 【解析】【分析】根据函数图象,找出图象在x 轴上方的部分的x 的取值范围即可得解.【详解】解:由图可知,当x≤2时,kx+b≥0.故选:A .【点睛】本题考查了一次函数与一元一次不等式,关键在于准确识图,找出符合不等式的图象的部分.8.C 【解析】【分析】过点P 作PE ⊥OB 于E ,根据角平分线上的点到角的两边距离相等可得PE=PC ,再根据直角三角形30°所对的边等于斜边的一半可得.【详解】解:如图,过点P 作PE ⊥OB 于E ,∵∠AOB=30°,点P 在∠AOB 的平分线上,∴∠AOP=∠POB=15°,∵OD=DP=2,∴∠OPD=∠POB=15°,∴∠PDE=30°,∴PE=12PD=1,∵OP 平分∠AOB ,PC ⊥OA ,PE ⊥OB ,∴PC=PE=1,故选:C .【点睛】此题考查的是角平分线的性质和直角三角形30°所对的边等于斜边的一半的应用、等腰三角形的性质,掌握角平分线上的点到角的两边距离相等和直角三角形30°所对的边是斜边的一半是解题关键.9.B 【解析】【分析】先根据正多边形的外角和为360°求出边数,然后再运用多边形的内角和公式解答即可.【详解】解:多边形的边数为360°÷72°=5则多边形的内角和为:(5-2)×180°=540°.故答案为B .【点睛】本题考查了正多边形的每一个外角都相等、多边形的外角和为360°以及多边形的内角和公式,求得正多边形的边数和掌握多边形内角和公式是解答本题的关键.10.B 【解析】【分析】根据因式分解的定义即可判断.【详解】A.()2212x x x x --=--右边含有加减,不是因式分解;B.()22442x x x -+=-是因式分解;C.()()2111x x x -+=-是整式的运算,不是因式分解;D.111x x x ⎛⎫-=- ⎪⎝⎭右边含有分式,不是因式分解.故选B 【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的乘积形式.11.D 【解析】【详解】A 、由“AB//DC ,AD//BC”可知,四边形ABCD 的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B 、由“AB=DC ,AD=BC”可知,四边形ABCD 的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C 、由“AO=CO ,BO=DO”可知,四边形ABCD 的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D 、由“AB//DC ,AD=BC”可知,四边形ABCD 的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D .12.A 【解析】【详解】甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100x x 10=-.故选A.13.3.5×10-8.【解析】【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n ,与绝对值大于1数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000035=3.5×10-8.故答案为3.5×10-8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数所决定.14.x=3【解析】【分析】首先去掉分母,观察可得最简公分母是x﹣1,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.【详解】解:23 1xx= -2=33x x-3x=.经检验x=3是分式方程的解,故答案为:x=3.【点睛】题目主要考查解分式方程,熟练掌握解分式方程的步骤是解题关键.15.2【解析】【分析】直接利用分式的值为零则分子为零,分母不为零,进而得出答案.【详解】∵242xx-+分式的值为0,∴x2-4=0,x+2≠0,解得:x=2.故答案为2.【点睛】此题主要考查了分式的值为零的条件,正确把握相关性质是解题关键.16.y=-x-3y=-3x-6【解析】【分析】由题意直接根据平移后解析式的变化规律横坐标右移减,左移加;纵坐标上移加,下移减进行分析即可.【详解】解:将直线y=−x−5向上平移2个单位,得到直线y=-x-3;将直线y=−3x 向左平移2个单位,得到直线y=-3(x+2)=-3x-6.故答案为:y=-x-3;y=-3x-6.【点睛】本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.17.34cm【解析】【分析】根据四个小三角形的周长和为86cm ,列式得AD AO DO DC DO CO ++++++BC BO ++86CO AB AO BO +++=cm ,再由矩形的对角线相等解题即可.【详解】解:如图,矩形ABCD 中,13AC BD ==cm ,由题意得,86AOD DOC BOC AOB C C C C +++= cm ,86AD AO DO DC DO CO BC BO CO AB AO BO ∴+++++++++++=cm∴2286AD AC DB DC BC AB +++++=cm21321386AD DC BC AB ∴+⨯+⨯+++=cm8626234AD DC BC AB ∴+++=-⨯=cm故答案为:34cm .【点睛】本题考查矩形的性质,是重要考点,掌握相关知识是解题关键.18.3【解析】【分析】直接利用菱形的性质得出AB=AD=4,S △ABD=6,进而利用三角形面积求法得出答案.【详解】解:连接AP ,如图,∵菱形ABCD 的周长为16,∴AB=AD=4,∴S 菱形ABCD=2S △ABD ,∴S △ABD=12×12=6,而S △ABD=S △APB+S △APD ,PE ⊥AB ,PF ⊥AD ,∴12•PE•AB+12•PF•AD=6,∴2PE+2PF=6,∴PE+PF=3,故答案为:3.【点睛】本题考查了菱形的性质:菱形的对边分别平行,四条边都相等,两条对角线互相垂直平分,并且分别平分两组内角.也考查了三角形的面积公式.19.3(x-3)(x+3)【解析】先提取公因式3,再利用平方差公式进行因式分解.【详解】3x 2﹣27=3(x 2-9)=3(x-3)(x+3).故答案为:3(x-3)(x+3).【点睛】考查了综合因式分解,解题关键是先提取公式后再利用平方差公式进行因式分解.20.01m <≤【解析】【分析】根据不等式只有三个正整数解列出关于m 的不等式求解即可;【详解】解不等式3x m -<得3x m <+,∵只有三个正整数,∴334m <+≤,∴01m <≤.故答案是:01m <≤.【点睛】本题主要考查了根据一元一次不等式的整数解求参数,准确计算是解题的关键.21.-1<x≤3,把解集在数轴上表示见解析.【解析】【分析】分别解出不等式组中不等式的解集,然后在坐标轴上表示它们的公共部分,公共部分就是不等式的解集.【详解】解不等式3-(2x -1)≥-2,得x≤3;解不等式3232x x ++>,得x >-1.所以原不等式组的解集为-1<x≤3.把解集在数轴上表示如图.本题考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.22.-2【解析】【分析】根据分式的加法和除法可以化简题目中的式子,然后从0,-1,-2中选一个使得原分式有意义的值代入即可解答本题【详解】解:2224x x x x x x ⎛⎫+÷⎪-+-⎝⎭=(2)(2)(2)(2)(2)(2)x x x x x x x x x++-+-+- =(x+2)+(x ﹣2)=x+2+x ﹣2=2x ,当x =﹣1时,原式=2×(﹣1)=﹣2.【点睛】此题考查分式的化简求值,掌握运算法则是解题关键23.(1)9x =是原方程的根;(2)6k >-且3k ≠-.【解析】【分析】(1)将3k =代入分式方程,再根据分式方程的求解方法,求解即可;(2)用k 表示出分式方程的解,再根据解为正数,列不等式求解即可,注意到3x ≠.【详解】解:(1)将3k =代入得3233x x x-=--两边同乘以()3x -,去分母得:()233x x --=-解得:9x =经检验9x =是原方程的根(2)两边同乘以()3x -,去分母得()23x x k--=-解得:6x k=+由原方程解是正数,易知60k +>得6k >-考虑分式方程产生增根3x =的情况,3x ≠即63k +≠,综上所述:6k >-且3k ≠-【点睛】此题考查了分式方程的求解方法,以及分式方程增根的情况,熟练掌握分式方程的求解方法是解题的关键.24.作图见解析.【解析】【分析】先画角的平分线,再画出线段AB 的垂直平分线,两线的交点就是P .【详解】解:作图如下:∴点P 为所求作.【点睛】本题主要考查了以下知识点:1.线段垂直平分线的性质;2.角平分线的性质.25.(1)见解析;(2)平行,相等;(3)15.【解析】【分析】(1)直接利用平移的性质分别得出对应点位置进而得出答案;(2)利用平移的性质得出线段AA 1、BB 1的位置与数量关系;(3)利用三角形面积求法进而得出答案.【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)线段AA1、BB1的位置关系为平行,线段AA1、BB1的数量关系为:相等.故答案为:平行,相等;×3×5=15.(3)平移过程中,线段AB扫过部分的面积为:2×12故答案为:15.【点睛】此题考查平移变换以及三角形面积求法,正确得出对应点位置是解题关键.26.(1)证明过程见解析;(2)见解析.【解析】【分析】(1)根据两直线平行,同位角相等、内错角相等,得到∠B=∠C相等,再利用等角对等边即可求解;(2)可以选择①和③作为条件,②作为结论证明;根据等腰三角形的性质得到∠B=∠C,根据三角形外角的性质得到∠1=∠B,根据平行线的判定定理即可得到AD∥BC.【详解】证明:(1)//AD BC,∠=∠,∴,2C∠=∠1B∠=∠,12∴∠=∠,B C∴=.AB AC(2)选择①和③作为条件,②作为结论加以证明.∵AB AC=,∴∠=∠,B C∵EAC ∠是ABC 的一个外角,∴2EAC B C B ∠=∠+∠=∠,又12EAC ∠=∠+∠,且12∠=∠,∴21EAC ∠=∠,∴1B ∠=∠,∴//AD BC .【总结】本题考查了平行线的性质和判定,等腰三角形的性质,三角形外角定理等知识点,熟练掌握各图形的性质及判定是解题的关键.27.见解析【解析】【分析】利用AAS 证得AOE COF ≅ 后即可证得结论.【详解】证明: 四边形ABCD 是平行四边形,//AD BC ∴,AEO CFO\Ð=Ð在AOE △和COF 中AOE COF AEO CFO AE CF ∠=∠⎧⎪∴∠=∠⎨⎪=⎩AOE COF∴≅ OE OF ∴=.【点睛】本题考查了平行四边形的性质及全等三角形的判定与性质,解题的关键是证得△AOE 和△COF 全等,难度不大.28.(1)△ABF ≌△CDE ,△ADE ≌△CBF ,△ADC ≌△CBA ;(2)见解析;(3)见解析.【解析】【分析】(1)根据全等三角形的判定方法,结合图形得出即可;(2)根据HL 证明三角形全等解答即可;(3)根据全等三角形的性质和平行四边形的判定解答即可.【详解】解:(1)图中所有全等的三角形为:△ABF ≌△CDE ,△ADE ≌△CBF ,△ADC ≌△CBA ;(2)DE AC ⊥ ,BF AC⊥90DEC AFB ∴∠=∠=o .在Rt ABF 和Rt CDE △中,AB CD DE BF=⎧⎨=⎩,()Rt ABF Rt CDE HL ∴≌△△;(3)由(2)知Rt Rt ABF CDE ≌△△,BAF DCE ∴∠=∠,//AB CD ∴,又AB CD = ,∴四边形ABCD 是平行四边形.【点睛】本题考查了全等三角形的判定和性质,平行四边形的判定方法等,熟练掌握各图形的性质和判定是解决此类题的关键.。

北师大版八年级下册数学《期末》考试及答案【必考题】

北师大版八年级下册数学《期末》考试及答案【必考题】

北师大版八年级下册数学《期末》考试及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠25.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x-+|x-5|=________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、D5、D6、C7、C8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、13、如果两个角互为对顶角,那么这两个角相等4、a+c5、36、6三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、11a-,1.3、(1)略(2)1或24、(1)略;(2)4.5、CD的长为3cm.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

北师大版八年级下册数学期末考试试题含答案

北师大版八年级下册数学期末考试试卷一、单选题1.若m n >,则下列不等式中不成立...的是()A .22m n +>+B .22m n->-C .2>2m n --D .22m n>2.下列图形:平行四边形、等腰三角形、线段、正六边形、圆,其中既是中心对称图形又是轴对称图形的有()A .1个B .2个C .3个D .4个3.下列各式从左到右的变形中,是因式分解的是()A .()()2339a a a +-=-B .()()2211a b a b a b -+=+-+C .()()2422m m m -=+-D .2211m m m m ⎛⎫+=+ ⎪⎝⎭4.下列各式中x 、y 的值均扩大为原来的2倍,则分式的值一定保持不变的是()A .2x y B .1x x y-+C .2x y-D .y x y+5.若关于x 的分式方程311-=-m x 的解为2x =,则m 的值为()A .5B .4C .3D .26.如图,在ABC 中,AB AC =,AD AB ⊥交BC 于点D ,120BAC ∠=︒,4=AD ,则BC 的长()A .8B .10C .11D .127.如图,将ABC 绕点A 按逆时针方向旋转80°,得到ADE ,连接BE ,若//AD BE ,CAE ∠的度数为()A .20°B .30°C .25°D .35°8.如图,一次函数1y kx b =+图象经过点()2,0A ,与正比例函数22y x =的图象交于点B ,则不等式02kx b x <+<的解集为()A .0x >B .1x >C .01x <<D .12x <<9.如图,在ABC 中,AB AC =,46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF ,将C ∠沿EF 折叠,点C 与点O 恰好重合时,则OEC ∠的度数()A .90°B .92°C .95°D .98°二、填空题10x 的取值范围是______.11.已知一个正多边形的一个内角是120º,则这个多边形的边数是_______.12.若1n m -=,则22242m mn n -+的值为______.13.如图:在ABC 中,90ACB ∠=︒,AD 平分CAB ∠交BC 于点D ,且2BD CD =,9BC cm =,则点D 到AB 的距离为______.14.不等式5132x x -+>-的正整数解为______.15.如图,ABC ∆,D 、E 分别是BC 、AC 的中点,BF 平分ABC ∠,交DE 于点F ,若10AB =,8BC =,则EF 的长是______.16.关于x 的分式方程2433x m mx x++=--的解为非负数,则实数m 的取值范围______.17.如图,四边形ABCD 中,//AB DC ,6DC =cm ,9AB =cm ,点P 以1cm/s 的速度由A 点向B 点运动,同时点Q 以2cm/s 的速度由C 点向D 点运动,其中一点到达终点时,另一点也停止运动,当线段PQ 将四边形ABCD 截出一个平行四边形时,此时的运动时间为______s .18.如图,BD 是ABC 的内角平分线,CE 是ABC 的外角平分线,过A 分别作AF BD ⊥、AG CE ⊥,垂足分别为F 、G ,连接FG ,若6AB =,5AC =,4BC =,则FG 的长度为____三、解答题19.(1)因式分解:32231212x x y xy -+(2)解不等式组:()3241213x x x x ⎧--<⎪⎨+>-⎪⎩,并把解集表示在数轴上.20.(1)先化简,再求值:236214422m m m m m m+-÷++++-,其中5m =.(2)解方:2231111x x x +=+--21.如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,ABC 的顶点均落在格点上.(1)将ABC 先向右平移6个单位长度再向下平移1个单位长度,得到111A B C △,在网格中画出111A B C △;(2)作ABC 关于x 轴的轴对称图形,得到222A B C △,在网格中画出222A B C △.22.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,E 、F 分别是AB ,AC 上的点,且BE AF =,连接AD 、DE 、DF 、EF .求证:①BED ≌AFD V ②DE DF⊥23.某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,求该厂原来每天加工多少套运动服.24.如图,在ABCD 中,过点B 作BM AC ⊥,交AC 于点E ,交CD 于点M ,过点D 作DN AC ⊥,交AC 于点F ,交AB 于点N .(1)求证:四边形BMDN 是平行四边形;(2)已知125AF EM ==,,求AN 的长.25.甲、乙两家商场以相同的价格出售同样的商品,为了吸引顾客各自推出不同的优惠方案:在甲商场购买商品超过300元之后,超过部分按8折优惠;在乙商场购买商品超过200元之后,超过部分按8.5折优惠,设甲商场实际付费为1y 元,乙商场实际付费为2y 元,顾客购买商品金额为x 元()300x >.(1)分别求出1y ,2y 与x 的函数关系式;(2)比较顾客到哪个商场更优惠,并说明理由.26.在ABC 中,5AB BC ==,6AC =,将ABC 沿BC 方向平移得到DCE ,A ,C 的对应点分别是D 、E ,连接BD 交AC 于点O .(1)如图1,将直线BD 绕点B 顺时针旋转,与AC 、DC 、DE 分别相交于点I 、F 、G ,过点C 作//CH BG 交DE 于点H .①求证:IBC ≌HCE ②若DF CF =,求DG 的长;(2)如图2,将直线BD 绕点O 逆时针旋转()90αα<︒,与线段AD 、BC 分别交于点P 、Q ,在旋转过程中,四边形ABQP 的面积是否发生变化?若不变,求出四边形ABQP 的面积,若变化,请说明理由;(3)在(2)的旋转过程中,AOP 能否为等腰三角形,若能,请直接写出PQ 的长,若不能,请说明理由.参考答案1.B 【详解】解:A .∵m n >,不等式两边同时加2,不等号方向不变,∴22m n +>+,故A 不符合题意;B .∵m n >,不等式两边同时乘以-2,-2<0,不等号方向改变,∴22m n -<-,故B 符合题意;C .∵m n >,不等式两边同时加-2,不等号方向不变,∴22m n ->-,故C 不符合题意;D .∵m n >,不等式两边同时乘以12,12>0,不等号方向不变,∴22m n>,故D 不符合题意;故选B .2.C 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:平行四边形不是轴对称图形,但是中心对称图形;等腰三角形是轴对称图形,不是中心对称图形;线段、正六边形、圆既是中心对称图形又是轴对称图形,所以既是中心对称图形又是轴对称图形的有3个.故选:C .3.C 【分析】将多项式写成几个整式的积的形式,叫做将多项式分解因式,也叫因式分解,根据定义解答.【详解】解:A 、()()2339a a a +-=-不是因式分解;B 、()()2211a b a b a b -+=+-+不是因式分解;C 、()()2422m m m -=+-是因式分解;D 、2211m m m m ⎛⎫+=+ ⎪⎝⎭不是因式分解;故选:C .【点睛】此题考查因式分解,掌握因式分解的定义及因式分解的方法是解题的关键.4.D 【解析】【分析】根据分式的基本性质,分子分母同时乘除同一个不为零的数或式,分式的值不发生改变进行变形即可求解.【详解】解:根据题意,将x 变成2x,y 变成2y 化简求解:A.2x y 变成22222(2)4x x xy y y =≠,该选项不符合题意,B.1x x y -+变成21122x x x y x y --≠++,该选项不符合题意,C.2x y -变成2222x y x y ≠--,该选项不符合题意,D.yx y+变成22()y y x y x y =++,该选项符合题意,【点睛】本题考查了分式的基本性质,属于基础题,掌握分式的性质是解题关键. 5.B【解析】【详解】分析:直接解分式方程进而得出答案.详解:解分式方程311mx-=-得,x=m-2,∵关于x的分式方程311mx-=-的解为x=2,∴m-2=2,解得:m=4.故选B.点睛:此题主要考查了分式方程的解,正确解方程是解题关键.6.D【解析】【分析】依据等腰三角形的内角和,即可得到∠C=∠B=30°,依据AD⊥AB交BC于点D,即可得到BD=2AD=8,∠CAD=30°=∠B,CD=AD=4,进而得出BC的长.【详解】解:∵△ABC中,AB=AC,∠BAC=120°,∴∠C=∠B=30°,∵AD⊥AB交BC于点D,∴BD=2AD=8,∠CAD=30°=∠B,∴CD=AD=4,∴BC=BD+CD=8+4=12.故选:D.【点睛】本题主要考查了含30°角的直角三角形的性质以及等腰三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.【解析】【分析】由旋转的性质可知AB AE =,CAD BAE ∠=∠,即可求出50AEB ABE ∠=∠=︒.再由平行线的性质可知EAD AEB ∠=∠,最后由CAE CAD EAD ∠=∠-∠,即可求出CAE ∠的大小.【详解】∵ADE 是由ABC 绕点A 按逆时针方向旋转80︒得到,∴AB AE =,80CAD BAE ∠=∠=︒,∴1(180)502AEB ABE BAE ∠=∠=︒-∠=︒.∵//AD BE ,∴50EAD AEB ∠=∠=︒,∴805030CAE CAD EAD ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查旋转的性质,等腰三角形的判定和性质,平行线的性质.利用数形结合的思想是解答本题的关键.8.D 【解析】【分析】当x >1时,直线y=2x 都在直线y=kx+b 的上方,当x <2时,直线y=kx+b 在x 轴上方,于是可得到不等式0<kx+b <2x 的解集.【详解】解:当x >1时,2x >kx+b ,∵函数y=kx+b (k≠0)的图象经过点B (2,0),∴x <2时,kx+b >0,∴不等式0<kx+b <2x 的解集为1<x <2.故选D .【点睛】本题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.9.B 【解析】【分析】连接OB 、OC .由角平分线和垂直平分线的性质可求出1232ABO BAC ∠=∠=︒,再由等腰三角形的性质可求出67ABC ACB ∠=∠=︒,由OBC ABC ABO ∠=∠-∠,即可求出OBC ∠的大小.在AOB 和AOC △中,利用“SAS”易证AOB AOC ≅ ,即得出OB=OC ,从而可求出44OBC OCB ∠=∠=︒.再由题意折叠可知OE=CE ,即得出44EOC ECO ∠=∠=︒,最后由180OEC EOC ECO ∠=︒-∠-∠,即可求出OEC ∠的大小.【详解】如图,连接OB 、OC.∵46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,∴1232OAB OAC ABO BAC ∠=∠=∠=∠=︒.∵AB=AC ,∴1(180)672ABC ACB BAC ∠=∠=︒-∠=︒,∴44OBC ABC ABO ∠=∠-∠=︒.在AOB 和AOC △中,AB AC OAB OAC AO AO =⎧⎪∠=∠⎨⎪=⎩,∴()AOB AOC SAS ≅ ,∴OB=OC ,∴44OBC OCB ∠=∠=︒.由题意将C ∠沿EF 折叠,点C 与点O 恰好重合,∴OE=CE ,∴44EOC ECO ∠=∠=︒,∴18092OEC EOC ECO ∠=︒-∠-∠=︒.故选:B .【点睛】本题考查角平分线、线段垂直平分线的性质,等腰三角形的性质,全等三角形的判定和性质,折叠的性质.作出辅助线构造等腰三角形是解答本题的关键.综合性强,较难.10.1≥x 且3x ≠【解析】【分析】直接利用二次根式有意义被开方数是非负数、分式有意义则分母不为零,进而得出答案.【详解】由题意知:x−1≥0且x−3≠0,解得:x≥1且x≠3.故答案为:x≥1且x≠3.【点睛】此题主要考查了二次根式有意义、分式有意义,正确掌握相关有意义的条件是解题关键.11.6【解析】【详解】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:外角是180-120=60度,360÷60=6,则这个多边形是六边形.故答案为六.12.2【解析】先把所求式子的前三项分解因式得到()2222422m mn n m n -+=-,然后整体代入计算即得答案.【详解】解:∵1m n -=,∴()22222422212m mn n m n -+=-=⨯=.故答案为:2.【点睛】本题考查了多项式的因式分解和代数式求值,属于常考题型,熟练掌握分解因式的方法和整体的数学思想是解题的关键.13.3cm【解析】【分析】先求出CD 的长,再根据角平分线的性质证得DE=CD 即可.【详解】解:∵2BD CD =,9BC cm =,∴133CD BC ==cm ,过点D 作DE ⊥AB 于E ,∵AD 平分CAB ∠交BC 于点D ,90ACB ∠=︒,∴DE=CD=3cm ,故答案为:3cm .【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等,熟记性质定理是解题的关键.14.1,2【解析】【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.解:去分母得:x−5+2>2x−6,移项得:x−2x >−6+5−2,合并同类项得:−x >−3,系数化为1得:x <3.故不等式的正整数解是1,2,故答案为1,2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.1.【解析】【分析】根据三角形中位线定理得到DE ∥AB ,DE=0.5AB=5,根据平行线的性质、角平分线的定义求出DF ,计算即可.【详解】解:D Q 、E 分别是BC 、AC 的中点,152DE AB ∴==,//DE AB ,142BD BC ==,ABF DFB ∴∠=∠,BF 平分ABC ∠,ABF DBF ∴∠=∠,DBF DFB ∠=∠,4DF DB ∴==,1EF DE DF ∴=-=,故答案为1.【点睛】本题考查的是角平分线的定义、三角形中位线定理,掌握平行线的性质、角平分线的定义是解题的关键.16.12m ≤且3m ≠【分析】先解得分式方程的解为43m x =-,再由题意可得43m -≥0,又由x≠3,即可求m 的取值范围.【详解】解:2433x m m x x ++=--,方程两边同时乘以x−3,得x +m−2m =4(x−3),去括号得,x−m =4x−12,移项、合并同类项得,3x =12−m ,解得:43m x =-,∵解为非负数,∴43m -≥0,∴m≤12,∵x≠3,∴m≠3,∴m 的取值范围为m≤12且m≠3,故答案为为:m≤12且m≠3.【点睛】本题考查分式方程的解,熟练掌握分式方程的解法,注意增根的情况是解题的关键.17.2或3【解析】【分析】设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,然后分当四边形APQD 是平行四边形时,DQ=AP 和当四边形BPQC 是平行四边形时,CQ=BP ,进行求解即可.【详解】解:设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,∵AB ∥CD∴当四边形APQD 是平行四边形时,DQ=AP ,解得t=2;当四边形BPQC 是平行四边形时,CQ=BP ,∴9-t=2t ,解得t=3,∴当t=2或3时,线段PQ 将四边形ABCD 截出一个平行四边形,故答案为:2或3.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握相关知识进行求解.18.32【解析】【分析】延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,由BD 平分∠ABC ,AF ⊥BF ,可得∠CBF=∠ABF ,∠HFB=∠AFB=90°,可证△HBF ≌△ABF (ASA ),可得BH=BA=6,HF=AF ,由CE 平分∠ACI ,AG ⊥CE ,可得∠ICG=∠ACG ,∠IGC=∠AGC=90°,可证△ICG ≌△ACG (ASA ),可得CI=CA=5,IG=AG,可证FG 为△AHI 的中位线即可.【详解】解:延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,∵BD 平分∠ABC ,AF ⊥BF ,∴∠CBF=∠ABF ,∠HFB=∠AFB=90°,在△HBF 和△ABF 中,HBF ABF BF BF HFB AFB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HBF ≌△ABF (ASA ),∴BH=BA=6,HF=AF ,∵CE 平分∠ACI ,AG ⊥CE ,∴∠ICG=∠ACG ,∠IGC=∠AGC=90°,在△ICG 和△ACG 中,ICG ACG CG CG IGC AGC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ICG ≌△ACG (ASA ),∴CI=CA=5,IG=AG ,∴IH=BC+CI-BH=4+5-6=3,∵HF=AF ,IG=AG ,∴FG 为△AHI 的中位线,∴FG=1133222HI =⨯=.故答案为32.【点睛】本题考查角平分线定义,垂线定义,三角形全等判定与性质,三角形中位线性质,线段和差,本题难度不大,训练画图构思能力,通过辅助线画出准确图形是解题关键.19.(1)()232x x y -;(2)14x <<,图见解析【解析】【分析】(1)先提公因式3x ,再利用完全平方公式进行因式分解即可;(2)先分别求出每一个不等式的解集,进而求出其公共解即可.【详解】解:(1)原式2223(44)3(2)x x xy y x x y =-+=-;(2)()3241213x x x x ⎧--<⎪⎨+>-⎪⎩①②解不等式①,得1x >,解不等式②,得4x <,在同一数轴上表示不等式①②的解集如下:∴不等式组的解集为:14x <<.【点睛】本题考查提公因式法、公式法分解因式,解一元一次不等式组,熟练掌握因式分解的方法以及解一元一次不等式组的基本步骤是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(1)22m -,23;(2)0x =【解析】【分析】(1)先利用完全平方公式和分式混合运算法则进行化简,然后代值计算即可;(2)先把方程两边同时乘以()()11x x +-化为整式方程,然后求解即可.【详解】解:(1)236214422m m m m m m+-÷++++-()()23221222m m m m m ++=⨯---+3122m m =---22m =-,当5x =时,原式22523==-.(2)2231111x x x +=+--方程两边同时乘以()()11x x +-得()()21311x x -++=,整理得22331x x -++=,解得0x =.检验:将0x =代入原方程,左边1=-=右边,∴原方程的根是0x .【点睛】本题主要考查了分式的化简求值,解分式方程,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)见解析;(2)见解析【解析】【分析】(1)利用点平移的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可;(2)利用关于x 轴对称的点的坐标特征写出A 2、B 2、C 2的坐标,然后描点即可.【详解】解:(1)由图可得:A (-4,5)、B (-5,2)、C (-3,1)∴平移后的坐标:A 1(2,4)、B 1(1,1)、C 1(3,0)如图,111A B C △即为所求.(2)对称后的坐标:A 2(-4,-5)、B 2(-5,-2)、C 2(-3,-1)如图,222A B C △即为所求.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22.①见解析;②见解析【解析】【分析】①证明:根据等腰直角三角形的性质推出1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,BD AD =,即可证得结论;②根据全等的性质证得BDE ADF ∠=∠,利用AD BC ⊥证得结论.【详解】解:①证明:在ABC 中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,∴1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,∵B DAB ∠=∠,∴BD AD =,∵B DAF ∠=∠,BE AF =,∴BED ≌AFD V ;②证明:由①可知,BED ≌AFD V ,∴BDE ADF ∠=∠,∵AB AC =,点D 是BC 的中点,∴AD BC ⊥,∴90ADB ∠=︒,∴90ADE BDE ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定及性质,熟记等腰直角三角形的性质及全等三角形的判定定理是解题的关键.23.该厂原来每天加工20套运动服.【解析】【分析】设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服,由题意:某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,列出分式方程,解方程即可.【详解】解:设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服.根据题意得:602606082x x-+=解这个方程得20x =,经检验:20x =是原方程的根.答:该厂原来每天加工20套运动服.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(1)见解析;(2)13【解析】【分析】(1)只要证明DN ∥BM ,DM ∥BN 即可;(2)只要证明△CEM ≌△AFN ,可得FN =EM =5,在Rt △AFN 中,根据勾股定理AN =.【详解】(1)∵四边形ABCD 是平行四边形,∴CD AB .∵BM AC DN AC ⊥⊥,,∴DN BM ,∴四边形BMDN 是平行四边形.(2)∵四边形ABCD ,BMDN 都是平行四边形,∴AB CD DM BN CD AB ==,,∥,∴CM AN MCE NAF =∠=∠,.又∵90CEM AFN ∠=∠=︒,∴()CEM AFN AAS ≌,∴5FN EM ==.在Rt AFN 中,13AN =.【点睛】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(1)10.860y x =+,20.8530y x =+;(2)当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【解析】【分析】(1)在甲超市购物所付的费用:300元+0.8×超过300元的部分,在乙超市购物所付的费用:200+0.85×超过200元的部分;(2)根据(1)中解析式的费用分类讨论即可.【详解】(1)由题意得,()13000.8300y x =+-,即10.860y x =+,22000.85(200)y x =+-,即20.8530y x =+(2)当300x >时,由12y y <得:0.8600.8530x x +<+,解得:x 600>,由12y y =得:0.8600.8530x x +=+,解得:600x =,由12y y >得:0.8600.8530x x +>+,解得:600x <.∴当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【点睛】本题考查了一次函数以及一元一次不等式的应用,根据题意列出正确的甲、乙两家商场的实际费用与购买商品金额x 之间的函数关系式是本题的关键.26.(1)①见解析;②2;(2)不变,12;(3)能,5PQ =或6【解析】【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ;②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得IC =GH ,再证明△DFG ≌△CFI ,得DG =IC ,于是得DG =GH =HE =13DE =13AC ,可求出DG 的长;(2)由平行四边形的性质可证明线段相等和角相等,证明△AOP ≌△COQ ,将四边形ABQP 的面积转化为△ABC 的面积,说明四边形ABQP 的面积不变,求出△ABC 的面积即可;(3)按OP =OA 、PA =OA 、OP =AP 分类讨论,分别求出相应的PQ 的长,其中,当PA =OA 时,作OL ⊥AP 于点L ,构造直角三角形,用面积等式列方程求OL 的长,再用勾股定理求出OP 的长即可.【详解】(1)证明:①如图1,∵DCE 是由ABC 平移得到的,∴//AC DE BC CE =,∴ACB DEC ∠=∠,∵//CH BG ,∴GBC HCE∠=∠∴IBC ≌HCE②如图1,由①可知:IBC ≌HCE ,∴IC HE =,∵//AC DE ,//CH BG ,∴CI //GH ,CH //GH ,∴四边形ICHG 是平行四边形,∴IC GH =,∵//AC DE ,∴CDG DCI∠=∠∵CFI DFG ∠=∠,DF CF =,∴DFG ≌CFI △,∴DG IC =,∴DG GH HE ==,∴11233DG DE AC ===.(2)面积不变;如图2:由平移可知//AB CD ,AB CD =,∴四边形ABCD 是平行四边形,∴OA OC =,∵//AD BC ,∴APO CQO ∠=∠,∵AOP COQ ∠=∠,∴APO △≌CQO ,∴APO CQO S S =△△,APO CQO ABC ABQP AOQB AOQB S S S S S S =+=+=四边形四边形四边形△△△,∴四边形ABQP 的面积不变.∵5AB BC ==132OA OC AC ===,∴OB AC ⊥,∴90AOB ∠=︒,在Rt BOC 中222OB OC BC +=∴4OB ==,∴11641222ABC S AC OB ==⨯⨯= ,∴12ABQP S =四边形(3)如图3,OP =OA =3,由(2)得,△AOP ≌△COQ ,∴OQ =OP =3,∴PQ =3+3=6;如图4,PA =OA =3,作OL ⊥AP 于点L ,则∠OLA =∠OLP =90°,由(2)得,四边形ABCD是平行四边形,OA=3,∠AOB=90°,∴OD=OB=4,∠AOD=180°−∠AOB=90°,∵AO⊥BD,OD=OB,∴AO垂直平分BD,∴AD=AB=5,由12AD•OL=12OA•OD=AODS得,1 2×5OL=12×3×4,解得,OL=12 5,∴2222129355 AL OA OL⎛⎫=-=-=⎪⎝⎭,∴96355 PL=-=,∴222212665555OP OL PL⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭,∴PQ=2OP 125 5如图5,OP=AP,∵AD=AB,AC⊥BD,∴∠DAC=∠BAC,∴∠POA =∠DAC =∠BAC ,∴PQ //AB ,∵AP //BQ ,∴四边形ABQP 是平行四边形,∴PQ =AB =5,综上所述,5PQ 或6或5.【点睛】此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理以及根据面积等式列方程求线段的长度等知识与方法,解第(3)题时要进行分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题.。

北师大版八年级下册数学期末试卷8套

A.
120°
B.
90°
C.
60°
D.
30°
6.(3分)如图,Rt△ABC中,∠C=90°,AB的垂直平分线DE交AC于点E,连接BE.若∠A=35°,则∠CBE的度数是( )
A.
20°
B.
25°
C.
30°
D.
35°
第6题第8题第9题
7.(3分)计算 的结果是( )
A.
B.
C.
y
D.
x
8.(3分)如图,已知△ABC中,AB=AC,D为BC中点,DE⊥AB于E,且DE=3,F是AC上一动点,则DF的最小值为( )
C.
平行四边形的对角线相等
D.
三角形的三条角平分线相交于一点,并且这一点到三角形三条边的距离相等
11.(3分)周末,小亮和同学去书店买书,他们先用30元买一种文学书,又用60元买一种艺术书.已知艺术书的价格比文学书高出一半,他们所买的艺术书比所买的文学书多1本.如果设文学书的价格为x元/本,那么依题意可列方程为( )
A. B. C. D.
10.如图, 中, 边的垂直平分线交 于点 ,交 于点 ,已知 cm, 的周长为 cm,则 的长为
A. cmB. cmC. cmD. cm
11.已知关于 的不等式组 的整数解共有6个,则 的取值范围是
A. B. C. D.
12.如图1,在平面直角坐标系中,将□ 放置在第一象限,且 轴.直线 从原点出发沿 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度 与直线在 轴上平移的距离 的函数图象如图2,那么□ 的面积为
(1)当 =2s时,四边形 的面积为 cm2;
(2)若以 、 、 、 为顶点的四边形是平行四边形,求 的值;

北师大版八年级下册数学期末考试试题及答案

北师大版八年级下册数学期末考试试卷一、单选题1.在下列四个标志中,既是中心对称又是轴对称图形的是()A .B .C .D .2.下列多边形中,不能够单独铺满地面的是()A .正三角形B .正方形C .正五边形D .正六边形3.多项式225a -与25a a -的公因式是()A .5a +B .5a -C .25a +D .25a -4.不等式组1{1x x >-≤的解集在数轴上可表示为()A .B .C .D .5.下列命题正确的是().A .在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的B .两个全等的图形之间必有平移关系C .三角形经过旋转,对应线段平行且相等D .将一个封闭图形旋转,旋转中心只能在图形内部6.如图所示,在ABC 中,AB AC =,点D 是边AC 上一点,BC BD AD ==,则A ∠的大小是()A .72°B .54°C .38°D .36°7.将分式24xx y-中的x ,y 的值同时扩大为原来的2019倍,则变化后分式的值()A .扩大为原来的2019倍B .缩小为原来的12019C .保持不变D .以上都不正确8.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x 个,则可列方程()A .90606x x=+B .90606x x=-C .90606x x =-D .90606x x =+9.平行四边形ABCD 的一边长为10,则它的两条对角线长可以是()A .10和12B .12和32C .6和8D .8和1010.如图,在平行四边形ABCD 中,120C ∠=︒,4=AD ,2AB =,点E 是折线BC CD DA --上的一个动点(不与A 、B 重合).则ABE △的面积的最大值是()A .2B .1C .D .二、填空题11.若分式33x x -+的值为0,则x 的值为_________;12.分解因式2242xy xy x ++=___________13.若一个多边形的每一个外角都等于30°,则这个多边形的边数为_________.14.若a 2﹣5ab ﹣b 2=0,则a bb a-的值为_____.15.如图,A 、B 、C 三点在同一条直线上,∠A =50°,BD 垂直平分AE ,垂足为D ,则∠EBC 的度数为_____.16.在平面直角坐标系中点A 、B 分别是x 轴、y 轴上的点且B 点的坐标是()0,3-,30OAB ∠=︒.点C 在线段AB 上,是靠近点A 的三等分点.点P 是y 轴上的点,当OCP △是等腰三角形时,点P 的坐标是__________.三、解答题17.因式分解:()2221x y xy ++-18.解不等式组:()2532121035x x x ⎧+≤+⎪⎨-+>⎪⎩19.解方程:214111x x x ++=--.20.ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:(1)画出ABC 关于原点O 的中心对称图形111A B C △;(2)画出将ABC 绕点O 顺时针方向旋转90°得到的222A B C △.(3)设(),P a b 为ABC 边上一点,在222A B C △上与点P 对应的点是1P .则点1P 坐标为_______21.先化简,再求值:226939393m m m m m m -+-⎛⎫÷-- ⎪-+⎝⎭,其中3m =22.如图,已知E 是平行四边形ABCD 中BC 边的中点,AC 是对角线,连结AE 并延长AE 交DC 的延长线于点F ,连结BF .求证:四边形ABFC 是平行四边形.23.利用我们学过的知识,可以导出下面这个等式:()()()12222222a b c ab bc ac a b b c c a ⎡⎤++---=-+-+-⎣⎦.该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.(1)请你展开右边检验这个等式的正确性;(2)利用上面的式子计算:222201820192020201820192019202020182020++-⨯-⨯-⨯.24.某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.25.(1)如图①所示,将ABC 绕顶点A 按逆时针方向旋转()090a a <<︒角,得到ADE ,90BAC DAE ∠=∠=︒,ED 分别与AC 、BC 交于点F 、G ,BC 与AD 相交于点H .求证:AH AF =;(2)如图②所示,ABC 和ADE 是全等的等腰直角三角形,90BAC D ∠=∠=︒,BC 与AD 、AE 分别交于点F 、G ,请说明BF ,FG ,GC 之间的数量关系.参考答案1.C【详解】解:A、不是中心对称图形,是轴对称图形,故本选项不合题意;B、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;C、既是中心对称图形又是轴对称图形,故本选项符合题意;D、不是中心对称图形,是轴对称图形,故本选项不合题意.故选:C.2.C【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C .3.B 【分析】直接将原式分别分解因式,进而得出公因式即可.【详解】解:∵a2-25=(a+5)(a-5),a2-5a=a (a-5),∴多项式a2-25与a2-5a 的公因式是a-5.故选:B .4.D 【分析】先解不等式组11x x >-⎧⎨≤⎩可求得不等式组的解集是11x -<≤,再根据在数轴上表示不等式解集的方法进行表示.【详解】解不等式组11x x >-⎧⎨≤⎩可求得:不等式组的解集是11x -<≤,故选D.【点睛】本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.5.A 【解析】【分析】根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.【详解】解:A 、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;B 、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;C 、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;D 、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误.故选A.【点睛】本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.6.D 【解析】【分析】由BD=BC=AD ,设∠A=∠ABD=x ,则∠C=∠CDB=2x ,又由AB=AC ,则∠ABC=∠C=2x ,在△ABC 中,根据三角形的内角和定理列方程求解.【详解】解:∵BD=BC=AD ,∴设∠A=∠ABD=x ,则∠C=∠CDB=2x ,又∵AB=AC ,∴∠ABC=∠C=2x ,在△ABC 中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得x=36°,即∠A=36°.故选:D .【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的等边对等角的性质,三角形外角的性质,三角形内角和定理列方程求解.7.C 【解析】【分析】将分式24xx y中的x ,y 的值同时扩大为原来的2019倍,则x 、2x-4y 的值都扩大为原来的2019倍,所以根据分式的基本性质可得,变化后分式的值保持不变.【详解】解:∵将分式24xx y-中的x ,y 的值同时扩大为原来的2019倍,则201920192422019420192019(24)24x x x xx y x y x y x y===-⨯-⨯--,∴变化后分式的值保持不变.故选:C .【点睛】此题主要考查了分式的基本性质,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.8.A 【解析】【分析】设乙每小时做x 个零件,则甲每小时做(6)x +个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【详解】解:设乙每小时做x 个零件,则甲每小时做(6)x +个零件,由题意得:90606x x=+,故选:A .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.9.A 【解析】【分析】根据平行四边形的性质推出OA=OC=12AC ,OB=OD=12BD ,求出每个选项中OA 和OB 的值,再判断OA 、OB 、AD 的值是否能组成三角形即可.【详解】解:∵四边形ABCD 是平行四边形,∴OA=OC=12AC ,OB=OD=12BD ,A、∵AC=10,BD=12,∴OA=5,OD=6,∵6-5<10<6+5,∴此时能组成三角形,故本选项符合题意;B、∵AC=12,BD=32,∴OA=6,OD=16,∵16-6=10,∴此时不能组成三角形,故本选项不符合题意;C、∵AC=6,BD=8,∴OA=3,OD=4,∵3+4<10,∴此时不能组成三角形,故本选项不符合题意;D、∵AC=8,BD=10,∴OA=4,OD=5,∵4+5<10,∴此时不能组成三角形,故本选项不符合题意;故选:A.【点睛】本题考查了三角形的三边关系定理和平行四边形的性质,关键是判断OA、OB、AD的值是否符合三角形的三边关系定理.10.D【解析】【分析】分三种情况讨论:①当点E在BC上时,高一定,底边BE最大时面积最大;②当E在CD 上时,△ABE的面积不变;③当E在AD上时,E与D重合时,△ABE的面积最大,根据三角形的面积公式可得结论.【详解】解:分三种情况:①当点E在BC上时,E与C重合时,△ABE的面积最大,如图1,过A作AF⊥BC于F,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠C+∠B=180°,∵∠C=120°,∴∠B=60°,Rt △ABF 中,∠BAF=30°,∴BF=12AB=1,∴此时△ABE 的最大面积为:12②当E 在CD 上时,如图2,此时,△ABE 的面积=12S ▱ABCD =12③当E 在AD 上时,E 与D 重合时,△ABE 的面积最大,此时,△ABE 的面积综上,△ABE 的面积的最大值是故选:D .【点睛】本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.11.3【解析】【详解】根据分式的值为0,分子为0,分母不为0,可得x-3=0且x+3≠0,即可得x=3.故答案为:x=3.12.22(1)x y 【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.原式=2x (y 2+2y +1)=2x (y +1)2,故答案为2x (y +1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.12【解析】【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的外角,关键是明确多边形的外角和为360°.14.5【解析】【分析】由已知条件易得225a b ab -=,22a b a b b a ab --=,两者结合即可求得所求式子的值了.【详解】∵2250a ab b --=,∴225a b ab -=,∵22a b a b b a ab--=,∴2255a b a b ab b a ab ab--===.故答案为:5.【点睛】本题考查了分式的化简求值,“能由已知条件得到225a b ab -=和22a b a b b a ab --=是解答本题的关键.【解析】【分析】根据线段垂直平分线的性质,得BE BA =,根据等腰三角形的性质,得50E A ∠=∠=︒,再根据三角形外角的性质即可求解.【详解】∵BD 垂直平分AE ,∴BE BA =,∴50E A ∠=∠=︒,∴100EBC E A ∠=∠+∠=︒,故答案为100°.【点睛】考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.16.(0)或(0,0,-132)或(0,-2)【解析】【分析】根据条件可得AC=2,过点C 作CD ⊥OA ,由勾股定理得到再分以下三种情况求解:①当OP=OC 时,可直接得出点P 的坐标为(00,;②当PO=PC 时,点P 在OC 的垂直平分线PE 上,先求出直线OC 的解析式,从而可求出直线PE 的解析式,最后可求得P (0,-132);③当CO=CP 时,根据OP=2|y C |=2×1=2,求得P (0,-2).【详解】解:∵点B 坐标是(0,-3),∠OAB=30°,∴AB=2×3=6,∵点C 在线段AB 上,是靠近点A 的三等分点,∴AC=2,过点C 作CD ⊥OA 于D ,∴CD=12AC =1,∴33∴333∴2222(23)113OD CD +=+=∵△OCP 为等腰三角形,分以下三种情况:①当13P 的坐标为(0130,13;②当PO=PC 时,点P 在OC 的垂直平分线PE 上,其中E 为OC 的中点,∴点E 的坐标为3-12),设直线OC 的解析式为y=k 1x ,将点C (3-1)代入得k 13则可设直线PE 的解析式为y=k 2x+b ,则k 1·k 2=-1,∴k 23∴将点3-12)代入3,得b=-132,∴P(0,−132),③当CO=CP 时,OP=2|y C |=2×1=2,∴P (0,-2),综上所述,当△OCP 为等腰三角形时,点P 的坐标为(0,13)或(0,13或(0,-132)或(0,-2),故答案为:(0130,130,-132)或(0,-2).【点睛】本题考查了等腰三角形的判定和性质,含30°的直角三角形的性质,勾股定理以及一次函数解析式的求法等知识,正确作出辅助线是解题的关键.17.(x+y-1)(x+y+1)【解析】【分析】将前三项先利用完全平方公式分解因式,进而结合平方差公式分解因式得出即可.【详解】解:(x2+y2+2xy)-1=(x+y)2-1=(x+y-1)(x+y+1).【点睛】此题主要考查了分组分解法以及公式法分解因式,熟练利用公式法分解因式是解题关键.18.-1≤x<4 5【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:() 2532 121035x xx⎧+≤+⎪⎨-+>⎪⎩①②,解不等式①得x≥-1,解不等式②得x<4 5,∴不等式组的解集为-1≤x<4 5.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.x=﹣3【解析】【分析】通过去分母,把分式方程化成整式方程,求解整式方程,再把解代入最简公分母检验即可.【详解】解:方程两边乘以(x+1)(x ﹣1)得:2(1)4(1)(1)x x x ++=+-解这个方程得:x=﹣3检验:当x=﹣3时,(x+1)(x ﹣1)≠0∴x=﹣3是原方程的解∴原方程的解是:x=﹣3.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤是解题的关键.20.(1)见解析;(2)见解析;(3)(b ,-a ).【解析】【分析】(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点,顺次连接即可;(2)利用网格特点和旋转的性质画出A 、B 、C 的对应点A2、B2、C2,从而得到△A2B2C2;(3)利用A 与A2、B 与B2、C 与C2的坐标特征确定对应点的坐标变换规律,从而写出点P1坐标.【详解】解:(1)如图,△A1B1C1即为所作;(2)如图,△A2B2C2即为所作;(3)点P1坐标为(b ,-a ).故答案为:(b ,-a ).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.13m ,【解析】【分析】先将括号里面的进行通分运算,再计算分式的除法运算,最后将m 的值代入即可得出答案.【详解】解:原式=2(3)(3)(3)3(3)(3)(3)3m m m m m m m -+---÷-++333(3)m m m m m -+=⨯+-=1m ,当=3.【点睛】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.见解析【解析】【分析】先证明△ABE 与△FCE 全等,根据全等三角形的对应边相等得到AB=CF ;再由AB 与CF 平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC 为平行四边形.【详解】证明:∵四边形ABCD 为平行四边形,∴AB ∥DC ,∴∠ABE=∠ECF ,又∵E 为BC 的中点,∴BE=CE ,在△ABE 和△FCE 中,ABE ECF BE CE AEB FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△FCE (ASA ),∴AB=CF ,又∵四边形ABCD 为平行四边形,∴AB∥CF,∴四边形ABFC为平行四边形.【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,熟练掌握基本判定与性质是解本题的关键.23.(1)见解析;(2)3.【解析】【分析】(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;(2)根据题目中的等式可以求得所求式子的值.【详解】解:(1)12[(a-b)2+(b-c)2+(c-a)2]=12(a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)=12×(2a2+2b2+2c2-2ab-2bc-2ac)=a2+b2+c2-ab-bc-ac,故a2+b2+c2-ab-bc-ac=12[(a-b)2+(b-c)2+(c-a)2]正确;(2)20182+20192+20202-2018×2019-2019×2020-2018×2020=12×[(2018-2019)2+(2019-2020)2+(2020-2018)2]=12×(1+1+4)=12×6=3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.24.(1)甲、乙工程队每天分别能铺设70米和50米.(2)所以分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米;方案二:分配给甲工程队600米,分配给乙工程队400米;方案三:分配给甲工程队700米,分配给乙工程队300米.【解析】【分析】(1)设甲工程队每天能铺设x 米.根据甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同,列方程求解;(2)设分配给甲工程队y 米,则分配给乙工程队(1000-y )米.根据完成该项工程的工期不超过10天,列不等式组进行分析.【详解】(1)解:设甲工程队每天能铺设x 米,则乙工程队每天能铺设(20x -)米.根据题意得:35025020x x =-.解得70x =.检验:70x =是原分式方程的解.答:甲、乙工程队每天分别能铺设70米和50米.(2)解:设分配给甲工程队y 米,则分配给乙工程队(1000y -)米.由题意,得107010001050y y ⎧≤⎪⎪⎨-⎪≤⎪⎩解得500700y ≤≤.所以分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米;方案二:分配给甲工程队600米,分配给乙工程队400米;方案三:分配给甲工程队700米,分配给乙工程队300米.25.(1)见解析;(2)FG2=BF2+GC2.理由见解析【解析】【分析】(1)利用ASA 证明△EAF ≌△BAH ,再利用全等三角形的性质证明即可;(2)结论:FG2=BF2+GC2.把△ABF 旋转至△ACP ,得△ABF ≌△ACP ,再利用三角形全等的知识证明∠ACP+∠ACB=90°,根据勾股定理进而可以证明BF 、FG 、GC 之间的关系.【详解】(1)证明:如图①中,∵AB=AC=AD=AE,∠CAB=∠EAD=90°,∴∠EAF=∠BAH,∠E=∠B=45°,∴△EAF≌△BAH(ASA),∴AH=AF;(2)解:结论:GF2=BF2+GC2.理由如下:如图②中,把△ABF旋转至△ACP,得△ABF≌△ACP,∵∠1=∠4,AF=AP,CP=BF,∠ACP=∠B,∵∠DAE=45°∴∠1+∠3=45°,∴∠4+∠3=45°,∴∠2=∠4+∠3=45°,∵AG=AG,AF=AP,∴△AFG≌△AGP(SAS),∴FG=GP,∵∠ACP+∠ACB=90°,∴∠PCG=90°,在Rt△PGC中,∵GP2=CG2+CP2,又∵BF=PC,GP=FG,∴FG2=BF2+GC2.【点睛】本题考查旋转变换,等腰直角三角形的性质,全等三角形的判定和性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。

北师大版八年级下册数学期末考试试题及答案

北师大版八年级下册数学期末考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是()A .B .C .D .2.若a b >,则下列四个不等式中正确的是()A .33a b >B .55a b +<+C .55a b ->-D .22a b -<-3.下列式子:①2x ;②5x y +;③12a -;④x π,其中是分式的有()A .①②B .①③④C .①③D .①②④4.不等式5x 1>2x 5-+的解集在数轴上表示正确的是()A .B .C .D .5.已知实数x ,y 满足()2670x y -+-=,则以x ,y 的值为两边的等腰三角形的周长为()A .19B .20C .19或20D .以上答案都不对6.平面直角坐标系中,点P (2,0)平移后对应的点为Q (5,4),则平移的距离为()A .3B .4C .5D .77.下列分式的运算正确的是()A .111x y xy-=B .2211(1)1x x x x -+=--C .22142x x x -=-+D .313x x ÷=8.在四边形ABCD 中,下列说法正确的是()A .当AD=BC ,AB ∥DC 时,四边形ABCD 是平行四边形B .当AD=BC ,AB=DC 时,四边形ABCD 是平行四边形C .当AC=BD ,AC 平分BD 时,四边形ABCD 是平行四边形D .当AC=BD ,AC ⊥BD 时,四边形ABCD 是平行四边形9.如图,直线11y k x b =+与x 轴交于点(-4,0),直线22y k x b =+与x 轴交于点(3,0),则不等式组112200k x b k x b +>⎧⎨+>⎩的解集是()A .4x >-B .3x <C .-43x <<D .43x x <->或10.如图,在ABC 中,AB AC 10==,BAC 120∠= ,AD 是ABC 的中线,AE 是BAD ∠的角平分线,DF //AB 交AE 的延长线于点F ,则DF 的长是()A .2B .4C .5D .5211.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是AC 上的两点,当E 、F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形()A .∠ADE=∠CBFB .∠ABE=∠CDFC .DE=BFD .OE=OF 12.在平面直角坐标系中,将点(1,2)A -向左平移2个单位长度,再向下平移3个单位长度得到的点坐标为()A .(1,1)-B .(1,5)-C .(3,1)--D .(3,5)-二、填空题13.一个n 边形的内角和是540°,那么n =_____.14.如图,在△ABC 中,AB=BC ,∠ABC=100 ,BD 是∠ABC 的平分线,E 是AB 的中点,则∠EDB 的度数为__________.15.若24()3x m x +-+是完全平方式,则数m 的值是________.16.若不等式组321x x m <⎧⎨>-⎩无解,则m 的取值范围是________.17.如图,AN OB ⊥,BM OA ⊥,垂足分别为N 、M ,OM ON =,BM 与AN 交于点P .写出由上述条件得到的两个不同类的结论__________.三、解答题18.因式分解:(1)2288x y xy y-+(2)()()2222a b a b +--19.(1)解不等式()()3227x x ->-,并把它的解集表示在数轴上.(2)6234211132x x x x +≥-⎧⎪+-⎨-≤⎪⎩20.解分式方程:2181393x x x x x-=+---21.先化简,再求值:21211222m m m m ++⎛⎫-÷ ++⎝⎭,其中2m -22.在数学课上,老师出了这样一道题:甲、乙两地相距1200千米,乘高铁列车从甲地到乙地比乘特快列车少用8小时,已知高铁列车的平均行驶速度是特快列车的3倍,求特快列车从甲地到乙地的时间.23.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点.(1)求证:四边形EFGH 是平行四边形;(2)若AC+BD=36,AB=10,求△OEF 的周长.24.如图,四边形ABCD 为平行四边形,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:△ABE ≌△FCE ;(2)过点D 作DG AE ⊥于点G ,H 为DG 的中点.判断CH 与DG 的位置关系,并说明理由.25.在Rt △ABC 中,∠ACB =90°,∠B =30°,将△ABC 绕点C 顺时针旋转一定角度得到△DEC ,点D 恰好在AB 上.(1)若AC =4,求DE 的值;(2)确定△ACD 的形状,并说明理由.26.如图,在△ABC 中,∠ACB =90°,BC =AC =6,D 是AB 边上任意一点,连接CD ,以CD 为直角边向右作等腰直角△CDE ,其中∠DCE =90°,CD =CE ,连接BE .(1)求证:AD =BE ;(2)当△CDE 的周长最小时,求CD 的值;(3)求证:2222AD DB CE +=.参考答案1.A【分析】根据中心对称图形和轴对称图形的定义,分别进行判断,即可得到答案.【详解】解:A 、既是轴对称图形又是中心对称图形,故A 正确;B 、是轴对称图形,不是中心对称图形,故B 错误;C 、是中心对称图形,不是轴对称图形,故C 错误;D 、是轴对称图形,不是中心对称图形,故D 错误;故选:A .【点睛】本题考查了中心对称图形和轴对称图形的定义,解题的关键是熟练掌握定义进行解题.2.A【解析】【分析】本题可通过不等式两边同时乘或除一个数不等号方向是否变化,判断A 、C 选项;不等式两边同时加或减一个数,不等式大小不变与题意矛盾以判断B 、D 选项.【详解】A 选项:不等式两边同时乘一个正数,不等号方向不变,故A 选项正确;B 选项:由55a b +<+可推出a <b ,与题干a b >矛盾,故排除B 选项;C 选项:不等式两边同时乘一个负数,不等号方向改变,故正确表达应为5a -<5b -,故排除C 选项;D 选项:由22a b -<-可推出a <b ,与题干a b >矛盾,故排除D 选项;故选:A .【点睛】本题考查不等式相关性质,易错点在于不等式两边若乘或除一个负数,不等号方向必须改变.3.C【解析】【分析】根据分式的概念,逐一判断即可.【详解】解:①③分母中都含有未知数,故①③都是分式;②④分母中都不含有未知数,故②④不是分式;故答案选C【点睛】本题主要考查了分式的感念,熟记理解分式的基本概念是解题的关键.4.A【解析】【详解】试题分析:不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,-+,得x>2,在数轴上表示正确的是A.故选A.解不等式5x1>2x55.C【解析】【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【详解】解:根据题意得,x-6=0,y-7=0,解得x=6,y=7,①6是腰长时,三角形的三边分别为6、6、7,②6是底边时,三角形的三边分别为6、7、7,6,6,7和6,7,7都能组成三角形,6+6+7=19,6+7+7=20所以,三角形的周长为19或20.故选:C【点睛】本题考查了等腰三角形的性质,绝对值非负数,平方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.C【解析】【分析】平移的距离为对应点所连线段的长度,由于点P(2,0)平移后对应的点为Q(5,4),根据两点间的距离公式求出PQ即可.【详解】解:∵平面直角坐标系中,点P(2,0)平移后对应的点为Q(5,4),∴平移的距离为5,故选:C.【点睛】本题考查了坐标与图形变化-平移,知道平移的距离计算方法是解题的关键.7.B【解析】【分析】根据分式的基本性质以及分式的运算法则进行运算即可.【详解】A.11,y x y xy x-=-错误.B.()()()()2221111,111x x x x x x x +--+==---正确.C.()()22214222x x x x x x +---=-=--+,错误.D.3x ÷x 3=3x 3x =29x ,错误.故选:B.【点睛】考查分式的基本性质以及分式的运算,掌握运算法则是解题的关键.8.B【解析】【分析】由平行四边形的判定定理判断即可.【详解】解:∵一组对边平行且相等的四边形是平行四边形,∴A 不正确;∵两组对边分别相等的四边形是平行四边形,∴B 正确;∵对角线互相平分等的四边形是平行四边形,∴C 、D 不正确;故选:B .【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解决问题的关键.9.C【解析】【分析】先根据图象求出每个不等式的解集,再根据大小小大中间找求出它们的公共部分即可.【详解】解:∵直线y 1=k 1x+b 1与x 轴交于点(-4,0),且y 随x 的增大而增大,∴不等式k 1x+b 1>0的解集为x >-4;∵直线y 2=k 2x+b 2与x 轴交于点(3,0),且y 随x 的增大而减小,∴不等式k 2x+b 2>0的解集为x <3,∴不等式组112200k x b k x b +>⎧⎨+>⎩的解集是-4<x <3.故选:C .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一元一次不等式组的解集.10.C【解析】【分析】由等腰三角形的性质可求出∠ABD=30°、AD ⊥BC ,根据平行线的性质及角平分线的定义可证明∠DAF=∠DFA ,即可证明DF=AD ,利用含30°角的直角三角形的性质即可得答案.【详解】∵AB=AC=10,∠BAC=120°,AD 是中线,∴∠ABD=∠ACD=12(180°-120°)=30°,AD ⊥BC ,∴AD=12AB=5,∵DF//AB ,∴∠DFA=∠BAF ,∵AF 是∠BAD 的角平分线,∴∠BAF=∠DAF ,∴∠DAF=∠DFA ,∴DF=AD=5.故选C.【点睛】本题考查了等腰三角形的性质与判定、平行线的性质及含30°角的直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.11.C【解析】【分析】根据平行四边形的性质,以及平行四边形的判定定理即可作出判断.【详解】A 、在平行四边形ABCD 中,∵AO=CO ,DO=BO ,AD ∥BC ,AD=BC ,∴∠DAE=∠BCF ,若∠ADE=∠CBF ,在△ADE 与△CBF 中,DAE BCFAD BC ADE CBF∠∠⎧⎪⎨⎪∠∠⎩===,∴△ADE ≌△CBF ,∴AE=CF ,∴OE=OF ,∴四边形DEBF 是平行四边形;B 、若∠ABE=∠CDF ,在△ABE 与△CDF 中,BAE DCFAB CD ABE CDF∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABE ≌△CDF ,∴AE=CF ,∴OE=OF,∵OD=OB,∴四边形DEBF是平行四边形;C、若DE与AC不垂直,则满足AC上一定有一点M使DM=DE,同理有一点N使BF=BN,则四边形DEBF不一定是平行四边形,则选项错误;D、若OE=OF,∵OD=OB,∴四边形DEBF是平行四边形;故选C.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.12.C【解析】【分析】直角利用平移中点的变化规律进行解答即可.【详解】解:∵将点(-1.2)先向左平移2个单位长度再向下平移3个单位长度,∴平移后得到的点是(-1-2,2-3),即(-3,-1).故答案为C.【点睛】本题考查了点的平移规律,掌握横坐标右移加,左移减;纵坐标上移加,下移减是解答本题的关键.13.5【解析】【分析】根据多边形的内角和公式列出方程,解方程即可【详解】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,故答案为:5.【点睛】本题考查了多边形的内角和,熟练掌握n边形的内角和为(n﹣2)•180°是解题的关键14.50【解析】【分析】根据等腰三角形三线合一的性质可得D是AC的中点,已知又E是AB的中点,由此可得ED是△ABC的中位线,根据三角形的中位线定理可得DE∥BC;根据等腰三角形三线合一的性质可得∠DBA=∠CBD=50°,由平行线的性质即可得∠EDB=∠CBD=50°.【详解】∵BD是等腰△ABC的∠ABC的平分线,∴D是AC的中点,又∵E是AB的中点,∴ED是△ABC的中位线,∴DE∥BC.∵∠ABC=100°,BD是∠ABC的平分线,∴∠DBA=∠CBD=50°,∵DE∥BC,∴∠EDB=∠CBD=50°.故答案为:50°.【点睛】本题考查了等腰三角形的性质、三角形的中位线定理及平行线的性质,根据等腰三角形的性质证得ED是△ABC的中位线是解决问题的关键.15.7或-1【解析】【详解】∵x2+(m−3)x+4是完全平方式,∴m−3=±4,∴m=7或−1.故答案为7或-1.16.2m ≥【解析】【分析】根据大大小小无解了,即可求出m 的取值范围.【详解】解:∵不等式组321x x m <⎧⎨>-⎩无解,∴213m -≥,∴2m ≥;故答案为:2m ≥.【点睛】本题考查了已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.17.PM=PN ,∠PON=∠POM (答案不唯一).【解析】【分析】连接OP ,证明Rt △OPM ≌Rt △OPN (HL ),△APM ≌△PBN (ASA ),再利用全等三角形的性质解答即可.【详解】如PM=PN ,∠PON=∠POM ,∠OPN=∠OPM ,BN=AM ,OA=OB .从中选择边和角不同的结论即可.∵AN ⊥OB ,BM ⊥OA ,∴在Rt △OPM 与Rt △OPN 中ON OM OP OP =⎧⎨=⎩,∴Rt △OPM ≌Rt △OPN (HL ),∴∠PON=∠POM ,PN=PM ,∠OPN=∠OPM ,在△APM 与△PBN 中90PNB PMA PN PM BPN APM∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△APM ≌△PBN (ASA ),∴BN=AM ,∵OA=AM+OM ,OB=BN+ON ,∴OA=OB .故答案为:PM=PN ,∠PON=∠POM (答案不唯一).【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.18.(1)()222y x -;(2)()()33a b b a +-【解析】【分析】(1)先提取公因式,再运用完全平方公式因式分解即可;(2)运用平方差公式因式分解后化简即可.【详解】(1)2288x y xy y-+()2244y x x =-+()222y x =-(2)()()2222a b a b +--()()2222a b a b a b a b =++-+-+()()33a b b a =+-【点睛】本题主要考查了因式分解,熟记因式分解的公式以及灵活运用是解题的关键.19.(1)4x >,图详见解析;(2)-21x ≤≤【解析】【分析】(1)先去括号,移项、合并同类项,把x 的系数化为1,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.【详解】解:(1)()()3227x x ->-解:36142x x->-32146x x +>+520x >4x >在数轴上表示解集如下:(2)6234211132x x x x +≥-⎧⎪⎨+--≤⎪⎩①②解:解不等式①得2x ≥-解不等式②得1x ≤在同一数轴上表示不等式①②的解集如图所示:所以不等式组的解集为-21x ≤≤【点睛】本题考查了解一元一次不等式及解一元一次不等式组,掌握不等式的基本性质是解题的关键.20.无解【解析】【分析】先去分母,去括号,移项合并,求出方程的解,通过检验即可得到分式方程的解.【详解】解:2181393x x x x x-=+---方程两边同乘以()()33x x +-得:()23893x x x x x +-=--+,∴3793x x -=--,∴412x =∴3x =;经检验,3x =是原方程的增根∴原方程无解.【点睛】本题考查了解分式方程,解题的关键是熟练掌握运算法则进行解题,注意分式方程需要检验.21【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.【详解】原式=()()2m 1m 21m 2m 22m 1++⎛⎫-÷ ⎪+++⎝⎭m 12=m 2m 1+⋅++=2m 2+,当m 2=时,原式=.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.特快列车从甲地到乙地的时间为12h .【解析】【分析】由路程÷速度=时间,利用“乘高铁列车从甲地到乙地比乘特快列车少用8h ,高铁列车的平均行驶速度是特快列车的3倍”得出等量关系即可建立方程求得答案即可.【详解】解:设高铁列车从甲地到乙地的时间为y h ,则特快列车从甲地到乙地的时间为(y+8)h ,根据题意得1200120038y y =⨯+解这个方程得4y =经检验,4y =是原分式方程的根则812y +=;答:特快列车从甲地到乙地的时间为12h .【点睛】此题考查分式方程的实际运用,掌握路程、时间、速度三者之间的关系是解决问题的关键.23.(1)详见解析;(2)14【解析】【分析】(1)由平行四边形的性质可得AO=CO ,BO=DO ,由中点的性质可得EO=12AO ,GO=12CO ,FO=12BO ,HO=12DO ,由对角线互相平分的四边形是平行四边形可得结论;(2)由平行四边形的性质可得EO+FO=9,由三角形中位线定理可得EF=5,即可求解.【详解】证明:(1)∵四边形ABCD 是平行四边形∴AO=CO ,BO=DO∵E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点∴EO=12AO ,GO=12CO ,FO=12BO ,HO=12DO∴EO=GO ,FO=HO∴四边形EFGH 是平行四边形(2)∵E 、F 分别是AO 、BO 的中点∴EF=12AB ,且AB=10∴EF=5∵AC+BD=36∴AO+BO=18∴EO+FO=9∴△OEF 的周长=OE+OF+EF=9+5=14.【点睛】本题考查了平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键.24.(1)见解析;(2)CH ⊥DG ,见解析【解析】【分析】(1)由平行四边形的性质可得:AB‖DC ,则可求出∠BAE=∠CFE ,结合题目条件可证得结论;(2)由(1)可证得CF=CD ,可得CH 为三角形DFG 的中位线,则可得CH‖AF ,可证CH ⊥DG .【详解】(1)证明:∵四边形ABCD 为平行四边形,∴AB‖DC ,∴∠BAE=∠CFE ,∵E 为BC 的中点,∴BE=CE ,在△ABE 和△FCE 中:BAE CFE AEB CEF BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≅△FCE (AAS );(2)解:CH ⊥DG ,理由如下:由(1)得△ABE ≅△FCE ,∴AB=CF ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴CF=CD ,∴C 为FD 的中点,∵H 为DG 的中点,∴CH 为△DFG 的中位线,∴CH‖AF ,∵DG⊥AE,∴∠DHC=∠DGF=90°,∴DG⊥AE.【点睛】此题考查平行四边形的性质,三角形全等和中位线,其中第二问证明中位线是关键.25.(1)8;(2)等边三角形,理由见解析【解析】【分析】(1)根据直角三角形的性质和旋转的性质即可得到结论;(2)根据三角形的内角和得到∠A=60°,根据旋转的性质得到AC=CD,于是得到结论.【详解】解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,AC=4,∴AB=2AC=8,∵将△ABC绕点C顺时针旋转一定角度得到△DEC,∴DE=AB=8;(2)△ACD是等边三角形,理由:∵∠ACB=90°,∠ABC=30°,∴∠A=60°,∵将△ABC绕点C顺时针旋转一定角度得到△DEC,∴AC=CD,∴△ACD是等边三角形.【点睛】本题考查了旋转的性质,直角三角形的性质,等边三角形的判定,正确的识别图形是解题的关键.26.(1)见解析;(2)(3)见解析【解析】【分析】(1)先判断出∠ACD=∠BCE,得出△ADC≌△CBE(SAS),即可得出结论;(2)先判断出,进而得出△CDE的周长为()CD,进而判断出当CD⊥AB时,CD 最短,即可得出结论;(3)先判断出∠A=∠ABC=45°,进而判断出∠DBE=90°,再用勾股定理得出BE 2+DB 2=DE 2,即可得出结论.【详解】证明:(1)∵∠ACB =∠DCE =90°,∴∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2.∵BC =AC ,CD =CE ,∴△CAD ≌△CBE ,∴AD =BE .(2)∵∠DCE=90°,CD=CE .∴由勾股定理可得.∴△CDE 周长等于CD+CE+DE=2CD =(2CD .∴当CD 最小时△CDE 周长最小.由垂线段最短得,当CD ⊥AB 时,△CDE 的周长最小.∵BC =AC =6,∠ACB =90°,∴AB =.此时AD =CD =1122BD AB ==⨯=∴当CD =CDE 的周长最小.(3)由(1)易知AD =BE ,∠A =∠CBA =∠CBE =45°,∴∠DBE =∠CBE +∠CBA =90°.在Rt △DBE 中:222BE BD DE +=.222AD BD DE ∴+=21在Rt △CDE 中:222CD CE DE +=.222CE CE DE ∴+=∴2222AD BD CE +=.【点睛】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出CD ⊥AB 时,CD 最短是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末考试模拟试题
一、选择题
1..下列各式中能用完全平方公式进行因式分解的是( )
A .x 2+x+1
B .x 2+2x-1
C .x 2-1
D .x 2
-6x+9
2.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最
小值为( )A .1 B .2 C .3 D .4
3.等腰三角形的一个角是80°,则它顶角的度数是( )
A .80°
B .80°或20°
C .80°或50°
D .20°
4.设a 、b 是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是
( )A .1.5 B .2 C .2.5 D .3
5.将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( )
A .3cm
B .6cm
C .32cm
D .62cm
6. 下列变形中,错误的是( ). A .若3a+5>2,则3a >2-5 B .若213x -
>,则23
x <-
C .若115x -<,则x >-5
D .若1115x >,则511x > 7.如图,点A 、B 、C 、D 都在方格纸的格点上,若△AOB 绕点
O 按逆时针方向旋转到△COD 的位置,则旋转的角度为( )
A .30°
B .45°
C .90°
D .135°
8、各式中,分式的个数有( )
31x+21y , xy
1 , a +51 , -4xy , 2x x , πx A 、1个 B 、2个 C 、3个 D 、4个 9、如果把y
x y 322-中的x 和y 都扩大5倍,那么分式的值( ) A 、扩大5倍 B 、不变 C 、缩小5倍 D 、扩大4倍
10在一块a 公顷的稻田上插秧,如果10个人插秧,要用m 天完成;如果一台插秧机工作,要比10个人插秧提前3天完成,一台插秧机的工作效率是一个人工作效率的( )倍. A m a 7 B 3-m a C 310-m m D m
m 103- 11、分式方程 )2)(1(11+-=--x x m
x x
有增根,则m 的值为( )
A .0和3
B .1
C .1和-2
D .3
12.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )
A .8
B .7
C .6
D .5
13小明通常上学时走上坡路,途中平均速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时
A 、2n m +
B 、 n
m mn + C 、 n m mn +2 D 、mn n m + 二、填空题
1.如图,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠ABC 的平分线交AD 于点O ,连结OC ,若∠
AOC=125°,则∠ABC= .
2.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若
PE=2,则两平行线AD 与BC 间的距离为
3.如果关于x 的不等式组⎩⎨⎧≤-≥-020
3b x a x 的整数解仅有1,2,那么适合这个不等式组的整数a ,b
组成的有序数对(a ,b )共有 个.
4. 当x= 时,分式22143x x x ---的值为零.
5. 若分式方程a x a x =-+1
无解,则a=( ) 6.,将△AOB 绕点O 按逆时针方向旋转45°后得到△A ′OB ′,若∠AOB =15°,则∠AOB ′的度数是 ____
7.若不等式组x-a 03-2x>-1≥⎧⎨⎩有5个整数解,则a 的取范围是_______
8某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为_ _ 。

三、解答题
1. 分解因式:(1)-4a 2+4ab-b 2; (2) a 3+a 2b-ab 2-b 3. (3) 2x 3y-
2
12xy 3
2.解不等式组 ⎪⎩⎪⎨⎧->≤--253
1-x 24)2(3x x x 3解方程: x x x x x x x 22222222--=-+-+
4.先化简
)252(6332--+÷--m m m
m m ,然后选一个你喜欢的的数值,再求值
5如图在网格中按要求画出图形,先将△ABC向下平移5格得到△A1B1C1,再以点O为旋转中心将ABC沿顺时针旋转90°得到△A2B2C2.
6. 如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.
求证:(1)BC=AD;(2)△OAB是等腰三角形.
7.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3 (1)求证:BN=DN;(2)求△ABC的周长.
8、某工厂有甲种原料360kg,乙种原料290kg,计划用这两种原料生产A、B两种产品共50件。

已知生产一件A
种产品,需用甲种原料9kg,乙种原料3kg,可获利润700元:生产一件B种产品,需用甲种原料4kg,乙种原料10kg,可获利润1200元。

(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来。

(2)设生产A、B两种产品获总利润W(元),采用哪种生产方案获总利润最大?最大利润为多少?
9、某班住校生活若干,住若干宿舍,若每间住4人,则余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数。

10、绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?
11、甲打字员打9000个字所用的时间与乙打字员打7200个字所用的时间相同,已知甲、乙两人每小时共打5400个字,问甲、乙两个打字员每小时各打多少个字?
12、A、B两地相距20 km,甲骑车自A地出发向B地方向行进30分钟后,乙骑车自B地出发,以每小时比甲快2倍的速度向A地驶去,两车要距B地12 km的C地相遇,求甲、乙两人的车速.
13、近几年我省高速公路建设有了较大的发展,有力地促进了我省的经济建设,正在修建中的某段高速公路要招标,现有甲、乙两个工程队合做24天可以完成,需费用120万元;若甲单独做20天后,剩下的工程由乙做,还需40天才能完成,这样需要费用110万元.问:
(1)甲、乙两队单独完成此项工程,各需多少天?
(2)甲、乙两队单独完成此项工程,各需多少万元?。

相关文档
最新文档