色谱定量分析

合集下载

色谱定量分析要点

色谱定量分析要点

色谱定量分析色谱分析的重要作用之一是对样品定量。

色谱法定量的依据是:组分的重量或在载气中的浓度与检测器的响应信号成正比。

在此,响应信号指峰面积或峰高,表示为:i i i A f w =,其中:w i 为欲测组分i 的量,A i 为组分i 的峰面积,f i 为比例系数,在此称为校正因子。

由此可见,要准确定量,首先要准确测出峰面积与定量校正因子。

一、峰面积的测量1. 对称峰面积的测量对称色谱峰近似地看作一个等腰三角形,按照三角形求面积的方法,峰面积为i w h A h i i 2=,经验证明该方法计算的面积只有实际面积的0.94倍,故再乘一系数1.065,i w h A h i i 2065.1=,这是目前应用较广的计算法。

2. 不对称峰面积的测量在色谱分析中,经常会遇到不对称峰,多数不对称峰为拖尾峰,峰面积的计算方法为:取峰高0.15倍处和0.85倍处峰宽的平均值,乘峰高:h W W A h h ⨯+=)(2185.015.0 3. 大色谱峰尾部的小峰面积的测量分析某主成分中痕量组分时,常会遇到主峰未到基线,杂质峰开始馏出的情况。

此时,杂质峰面积计算法如下:沿主峰尾部划出杂质峰的基线,由峰顶作主峰基线的垂线。

峰顶为A ,垂线与主峰尾部交点为B ,峰高一半处峰宽为b ,则A=AB·b 。

4. 基线漂移时峰面积的测量基线漂移时的峰面积,形状与大峰后面拖尾的小峰的峰缝相似,计算方法相同。

5. 重合峰面积的测量在色谱分析中,常会遇到分离不完全的重合峰,峰面积可如下计算:两峰重合,如果交点位于小峰半高以下,可由峰高乘半高峰宽法计算两峰面积。

如果两峰交点位于小峰半高以上,通常是由交点作基线的垂线,再用剪纸称重法计算。

6. 峰高乘保留时间法同系物间,半高峰宽与保留时间呈线形关系:a bt W R h +=2,对于填充柱0≈a 。

当色谱峰很尖、很窄、半高峰宽不易测准时,可用保留时间代替半高峰宽R bt h A ⋅=065.1。

色谱定性定量分析方法

色谱定性定量分析方法

(1)绝对校正因子 某组分i通过检测器的量与检测器对该组分的响应信号之比
测定方法:将已知量的被测标准物质注入色谱仪,根据进样 量及色谱图上的峰面积或峰高计算出绝对校正因子
(2)相对校正因子 组分i与基准物(标准物)s的绝对校正因子之比
检测器不同,所选用的基准物不同 热导检测器——苯 氢火焰离子化检测器——正庚烷
(3)内标法
若试样中所有组分不能全部出峰,或仅需测定试样中某个或 某几个组分的含量时,可以采用内标法 将一定的标准物(内标物s)加入到一定量的试样中,混合均 匀后进样,从色谱图上分别测出组分i和内标物s的峰面积 (或峰高)
或:
内标法中常以内标物为基准,即fs=1.0,则:
■ 内标法最关键是选择合适的内标物,对内标物的 要求:
1.定量校正因子
■ 色谱定量分析是基于被测物质的量与其峰面积的 正比关系。但由于同一检测器对不同的物质具有 不同的响应值,所以两个相等量的物质出的峰面 积往往不相等,或者说,相同的峰面积并不意味 着相等物质的量。这样就不能用峰面积来直接计 算物质的量。
■ 因此,在计算组分的量时需将面积乘上一个换算 系数,使组分的面积转换成相应物质的量。即必 须将峰面积A乘上一个换算系数进行“校正”。
例:苯、甲苯、乙苯的相对校正因子的测定:分别称取一定 量的三种物质,在25 mL容量瓶中定容。取一定量注入色谱 仪,获得色谱图,测量其峰面积,以苯为基准物,计算各组 分相对校正因子。
组分 质量/g 1
峰面积/mm2
2
3
平均
相对校 正因子
苯(标 准物)
2.22
442
Hale Waihona Puke 440438440
甲苯 2.22 429
例:试样混合物中仅含有甲醇、乙醇和正丁醇,测得峰高分

chapter5 色谱定性、定量分析方法

chapter5 色谱定性、定量分析方法
1.仪器调试 2.操作条件选择 1.仪器调试 2.操作条件选择 3.定性定量分析 定性定量分析--3.定性定量分析--- 保留值定性 峰高, --- 峰高,峰面积定量
2012-5-20
一、色谱定性鉴定方法
色谱分析对象除少数外,大多数物质在分析前都需要预处理 例如, 色谱分析对象除少数外,大多数物质在分析前都需要预处理。例如, 预处理。 样品中含有大量的水,乙醇或被强烈吸附的物质,可导致色谱柱性能变坏。 样品中含有大量的水,乙醇或被强烈吸附的物质,可导致色谱柱性能变坏。 一些非挥发性物质进入色谱柱,本身还会逐渐降解,造成严重噪声。 一些非挥发性物质进入色谱柱,本身还会逐渐降解,造成严重噪声。还有 些物质,如有机酸,极性很强,挥发性很低,热稳定性差( 些物质,如有机酸,极性很强,挥发性很低,热稳定性差(液相色谱不考 必须先进行化学处理,才能进行色谱分析。 虑)。必须先进行化学处理,才能进行色谱分析。 色谱法是一种高效、快速的分离分析技术,它可以在很短时间内分离 色谱法是一种高效、快速的分离分析技术, 几十种甚至上百种组分的混合物,这是其他方法无法比拟的。但是, 几十种甚至上百种组分的混合物,这是其他方法无法比拟的。但是,由于 色谱法定性分析主要依据是保留值 所以需要标准样品等。 定性分析主要依据是保留值, 色谱法定性分析主要依据是保留值,所以需要标准样品等。而且单靠色谱 法对每个组分进行鉴定,往往不能令人满意——分离强 定性差。 分离强、 法对每个组分进行鉴定,往往不能令人满意 分离强、定性差。 近年来,色谱与质谱、光谱等联用 既充分利用色谱的高效分离能力。 联用, 近年来,色谱与质谱、光谱等联用,既充分利用色谱的高效分离能力。 又利用了质谱、光谱的高鉴别能力, 又利用了质谱、光谱的高鉴别能力,加上运用计算机对数据的快速处理和 检索,为未知物的定性分析开辟了一个广阔的前景。 检索,为未知物的定性分析开辟了一个广阔的前景。

色谱定性与定量

色谱定性与定量

仪器分析中各分析定量定性的依据定量分析是依据统计数据,建立数学模型,并用数学模型计算出分析对象的各项指标及其数值的一种方法。

定性分析则是主要凭分析者的直觉、经验,凭分析对象过去和现在的延续状况及最新的信息资料,对分析对象的性质、特点、发展变化规律作出判断的一种方法。

1、气相色谱:色谱峰保留值和面积,这样气相色谱可根据这两个数据进行定性定量分析。

色谱峰保留值是定性分析的依据,而色谱峰面积则是定量分析的依据。

2、紫外光谱:最大吸收波长λ、摩尔吸收系数ε及吸收曲线的形状不同是进行物质定性分析的依据。

进行定量分析依据朗伯-比耳定律:A=εbc3、核磁:定量分析以结构分析为基础,在进行定量分析之前,首先对化合物的分子结构进行鉴定,再利用分子特定基团的质子数与相应峰谱的峰面积之间的关系进行定量测定。

定量分析的根据:吸收能量的大小取决于核的多少。

以磁场强度为横坐标提供定性分析所依据的参数,以吸收能量为纵坐标,纵坐标对应于不同H0的出峰面积就是定量分析参数。

4、质谱:利用电磁学原理,对物质气相离子依其质荷比(m/e)进行分离和分析的方法。

被分析的样品首先离子化,然后利用离子在电场或磁场中的运动性质,将离子按质荷比(m/e)分开并按质荷比大小排列成谱图形式,根据质谱图可确定样品成分、结构和相对分子质量。

5、原子吸收:原子吸收光谱法进行定量分析的依据是:试样中待测元素的浓度与待测元素吸收辐射的原子总数成正比,即A=k'C 。

定量分析方法有标准曲线法和标准加入法两种。

6、红外:红外光谱的定性主要根据图谱中的:基团的特征吸收频率红外光谱的定量是根据图谱中的:特征峰的强度7、离子:利用离子交换的原理,连续对多种阴离子进行定性和定量的分析。

保留时间定性,峰高或峰面积定量。

8、荧光:物质吸收的光,称为激发光;物质受激后所发射的光,称为发射光或荧光。

根据荧光的光谱和荧光强度,对物质进行定性或定量测定9、差热:定性分析:定性表征和鉴别物质依据:峰温、形状和峰数目方法:将实测样品DTA曲线与各种化合物的标准(参考)DTA曲线对照。

气相色谱定性定量分析

气相色谱定性定量分析

气相色谱定性定量分析一.定性分析气相色谱的优点是能对多种组分的混合物进行分离分析,(这是光谱、质谱法所不能的)。

但由于能用于色谱分析的物质很多,不同组分在同一固定相上色谱峰出现时间可能相同,进凭色谱峰对未知物定性有一定困难。

对于一个未知样品,首先要了解它的来源、性质、分析目的;在此基础上,对样品可有初步估计;再结合已知纯物质或有关的色谱定性参考数据,用一定的方法进行定性鉴定。

(一)利用保留值定性1.已知物对照法各种组分在给定的色谱柱上都有确定的保留值,可以作为定性指标。

即通过比较已知纯物质和未知组分的保留值定性。

如待测组分的保留值与在相同色谱条件下测得的已知纯物质的保留值相同,则可以初步认为它们是属同一种物质。

由于两种组分在同一色谱柱上可能有相同的保留值,只用一根色谱往定性,结果不可靠。

可采用另一根极性不同的色谱柱进行定性,比较未知组分和已知纯物质在两根色谱柱上的保留值,如果都具有相同的保留值,即可认为未知组分与已知纯物质为同一种物质。

利用纯物质对照定性,首先要对试样的组分有初步了解,预先准备用于对照的已知纯物质(标准对照品)。

该方法简便,是气相色谱定性中最常用的定性方法。

2.相对保留值法对于一些组成比较简单的已知范围的混合物或无已知物时,可选定一基准物按文献报道的色谱条件进行实验,计算两组分的相对保留值:(5)式中:i-未知组分;s-基准物。

并与文献值比较,若二者相同,则可认为是同一物质。

(ris仅随固定液及柱温变化而变化。

)可选用易于得到的纯品,而且与被分析组分的保留值相近的物质作基准物。

2. 保留指数法又称为Kovats指数,与其它保留数据相比,是一种重现性较好的定性参数。

保留指数是将正构烷烃作为标准物,把一个组分的保留行为换算成相当于含有几个碳的正构烷烃的保留行为来描述,这个相对指数称为保留指数,定义式如下:(6)IX为待测组分的保留指数,z与z+n为正构烷烃对的碳数。

规定正己烷、正庚烷及正辛烷等的保留指数为600、700、800,其它类推。

色谱的定量分析

色谱的定量分析

色谱的定量分析1.色谱分析有几种定量方法色谱分析常用的定量方法:归一化法、内标法和内加(增量)内标法、外标法。

1、面积归一化法优点是简便、准确,当操作条件变化时对结果影响较小,宜于分析多组分试样中各组分的含量。

但是试样中所有组分必须全部出峰,因此,此法在使用中受到一定限制。

2、外标法是用纯物质配成一系列不同浓度的标准溶液(或直接购买不同浓度标准溶液)分别取一定体积,注入色谱仪,根据峰面积和浓度做标准曲线。

在分析未知样时按与标准曲线相同的操作条件和方法,由标准曲线查出所需组分的浓度(现在在工作站上直接就能求出浓度)。

此法要求进样准确,操作条件稳定,分析样品和标准曲线条件必须一致。

3、内标法是试样中所有组分不能全部出峰或只要求测定试样中某个或某几个组分时,可采用此法。

内标法是在准确称取一定量的试样中,加入一定的标准物质(内标物),根据内标物和试样的质量以及色谱图上的相应峰面积,计算待测组分的含量。

内标法的关键是选择合适的内标物,内标物应是试样中不存在的纯物质,物质与被测物质相近,能溶于样品中,但不能于样品发生反应。

此法比较费事,一般不使用于快速分析。

2.常用的层析分析方法有哪些在分离分析特别是蛋白质分离分析中,层析是相当重要、且相当常见的一种技术,其原理较为复杂,对人员的要求相对较高,这里只能做一个相对简单的介绍。

一、吸附层析1、吸附柱层析吸附柱层析是以固体吸附剂为固定相,以有机溶剂或缓冲液为流动相构成柱的一种层析方法。

2、薄层层析薄层层析是以涂布于玻板或涤纶片等载体上的基质为固定相,以液体为流动相的一种层析方法。

这种层析方法是把吸附剂等物质涂布于载体上形成薄层,然后按纸层析操作进行展层。

3、聚酰胺薄膜层析聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。

这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小。

层析时,展层剂与被分离物在聚酰胺膜表面竞争形成氢键。

因此选择适当的展层剂使分离在聚酰胺膜表面发生吸附、解吸附、再吸附、再解吸附的连续过程,就能导致分离物质达到分离目的。

色谱定性定量分析方法


⑥稳定性(stability):
意义: 考察分析样品与试剂在一定时间内稳定性。 内容:
根据样品与试剂测定时实际可能所处的环 境进行考察。
⑦耐用性( robustness ):
意义: 考察测定条件发生小变动时测定结果的变化。
内容:
流动相的组成和pH、商品柱的品牌尺寸、 柱温等
广泛用于药物中的杂质、体内外代谢产物的结构鉴定
重现性: 不同实验室,不同人测定的精密度 1、色谱信号的测量:
意义: 待测物浓度与响应值成线性关系的浓度范围;
相对保留值 α, (t-t0)/(tr -t0)
2、选择合适的离子源,利用LC-MS获得杂质的准分量不同浓度的对照品,比较测定值和加入值确定。
ELSD响应的自然对数与样品的浓度或质量呈线 性关系;
质谱(MS-ESI)检测器高浓度时的响应与样品 的质量可能呈二次或更复杂的方式。
四、色谱分析方法验证
目的:
证明所采用的色谱分析方法适合于相应的检验 要求,判断能否用于药品分析。
效能指标:评价分析方法的尺度
效能指标包括: 精密度、准确度、专属性、检测限、定量限、
tr
内容: LC-ESI-MS的
要求,判断能否用于药品分析。 内容: 药物制剂含量测定时的专属性考察内容:
重复性 广药泛品用 质于量药标物准中分的析杂方质法:、验体证内外代同谢产一物的实结构验鉴定室,同一人多次测定的精密度
中间精密度 2药、品选质择量合标适准的分离析子方源法,验利证用LC:-MS同获得一杂质实的准验分子室离子,峰。不同人,不同仪器测定的精密度
线性与范围、耐用性、稳定性、系统适用性等
不同分析测定方法的要求
药品质量标准分析方法验证 药物制剂人体生物利用度和生物等效性试验

【气相色谱定量分析方法】

【气相色谱定量分析方法】一、归一化法当试样中所有组分都能流出色谱柱,且在色谱图上都显示色谱峰时,建议你用归一化法计算组分含量。

所谓归一化法是以样品中被测组分经校正过的峰面积(或峰高)占样品中各组分经校正过的峰面积(或峰高)之和的比例来表示样品中各组分的含量的定量方法。

设试样中有几个组分,各组分的质量分别为m1、m2……m n在一定条件下测得各组分峰面积分别为A1、A2、……A n,则组分i的质量分数W i可按下式计算:式中各组分的校正因子均采用相对质量校正因子。

若试样中组分是同分异构体或同系物,各组分f<’值很接近,可以不用校正因子,将面积直接归一化,这样式5-28可简化为:(5-29)当色谱峰狭窄,峰形对称,操作条件稳定,各组分色谱半峰宽不变时,建议你用峰高归一化法计算组分含量,即:(5-30)式中f i'(h)为峰高校正因子,必须自行测定,测定方法与峰面积校正因子相同。

归一化法简便、准确,进样量的多少与测定结果无关,操作条件的变化对结果影响也较小,但如果试样中的组分不能全部出峰,则不能采用这种方法。

二、内标法若试样中所有组分不能全部出峰;或只要求测定试样中某个或某几个组分的情况时,你可以考虑采用内标法定量。

所谓内标法就是将一定量选定的标准物(称内标物S)加入到一定量试样中,混合均匀后,在一定操作条件下注入色谱仪,出峰后分别测量组分i和内标物S的峰面积(或峰高),按下式计算组分i的含量。

(5-31)式中、分别为组分i和内标物S的质量校正因子;A i、A s分别为组分i 和内标物S的峰面积。

也可以用峰高代替面积,则:(5-32)式中、分别为组分i和内标物S的峰高校正因子。

内标法中,常以内标物为基准,即=1.0则式5-31可以写为:(5-33)式(5-32)可改为:(5-34)内标法的关键是选择合适的内标物,对于内标物的要求是:1.应是试样中不存在的纯物质;2.内标物的性质应与待测组分性质相近,以使内标物的色谱峰与待测组分色谱峰靠近并与之完全分离;3.内标物与样品应完全互溶,但不能发生化学反应;4.内标物加入量应接近待测组分含量。

关于液相色谱的定量分析

定量分析是在定性分析的基础上,需要纯物质作为标准样品。

液相色谱的定量是相对的定量方法,即:由已知的标准样品推算出被测样品的量。

液相色谱法定量的依据被测组分的量(W)与响应值(A)(峰高或峰面积)成正比,W=f×A。

定量校正因子(f):是定量计算公式的比例常数,其物理意义时单位响应值(峰面积)所代表的被测组分的量。

由已知标准样品的量和其响应值可以求得定量校正因子。

测定未知组分的响应值,通过定量校正因子即可求得该组分的量。

定量分析常用术语:样品(sample):含有带测物,供色谱分析的溶液。

分为标样和未知样。

标样(standard):浓度已知的纯品。

未知样(unknow):浓度待测的混合物。

样品量(sample weight):待测样品的原始称样量。

稀释度(dilution):未知样的稀释倍数。

组分(componance):欲做定量分析的色谱峰,即含量未知的被测物。

组分的量(amount):被测物质的含量(或浓度)。

积分(integerity):由计算机对色谱峰进行的峰面积测量的计算过程。

校正曲线(calibration curve):组分含量对响应值的线性曲线,由已知量的标准物建立,用于测定待测物的未知含量。

常用的定量方法1外标法标准曲线法,分为外标法和内标法。

外标法在液相色谱中用的最多。

内标法准确但是麻烦,在标准方法中用的最多。

用被测化合物的纯品作为标准样品,配制成一系列的已知浓度的标样。

注入色谱柱的到其响应值(峰面积)。

在一定范围内,标样的浓度与响应值之间存在较好的线性关系,即W=f×A,制成标准曲线。

在完全相同的实验条件下,注入未知样品,得到欲测组分的响应值。

根据已知的系数f,即可求出欲测组分的浓度。

外标法的优点:操作、计算简单,是一种常用的定量方法;无需各组分都被检出、洗脱;需要标样;标样及未知样品的测定条件要一致;进样体积要准确。

外标法缺点:实验条件要求高,如检测器的灵敏度,流速、流动相组成的不能发生变化;每次进样体积要有好的重复性。

色谱定量计算三种方法,归一化法,内标法和外标法

色谱法是根据色谱峰的面积或高度进行定量分析的。

色谱定量计算方法很多,目前比较广泛应用的有归一化法、内标法和外标法。

1. 归一化法如果试样中所有组分均能流出色谱柱并显示色谱峰,则可用此法计算组分含量。

设试样中共有n个组分,各组分的量分别为m1,m2,……,m n,则i种组分的百分含量为:归一化法的优点是简便、准确,进样量的多少不影响定量的准确性,操作条件的变动对结果的影响也较小,对组分的同时测定尤其显得方便。

缺点是试样中所用的组分必须全部出峰,某些不需定量的组分也需测出其校正因子和峰面积,因此应用受到一些限制。

2. 内标法当试样中所有组分不能全部出峰,或只要求测定试样中某个或几个组分时,可用此法。

准确称取m(g)试样,加入某种纯物质ms(g)作为内标物,根据试样和内标物的质量比m s/m及相应的色谱峰面积之比,基于下式可求组分i的百分含量W i%:因为所以内标物的选择条件是:内标物与试样互溶且是试样中不存在的纯物质;内标物的色谱峰既处于待测组分峰附近,彼此又能很好地分开且不受其它峰干扰;加入量宜与待测组分量相近。

内标法的优点是定量准确,操作条件不必严格控制,且不象归一化法那样在使用上有所限制。

缺点是必须对试样和内标物准确称重,比较费时。

3. 外标法(亦称标准曲线法)该法是在一定色谱操作条件下,用纯物质配制一系列不同的浓度的标准样,定量进样,按测得的峰面积对标准系列的浓度作图绘制标准曲线。

进行试样分析时,在与标准系列严格相同的条件下定量进样,由所得峰面积从标准曲线上即可查得待测组分的含量。

外标法的优点是操作和计算简便,不需要知道所有组分的相对校正因子,其准确度主要取决于进样量的准确和重现性,以及操作条件的稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

色谱定量分析色谱分析的重要作用之一是对样品定量。

色谱法定量的依据是:组分的重量或在载气中的浓度与检测器的响应信号成正比。

在此,响应信号指峰面积或峰高,表示为:i i i A f w =,其中:w i 为欲测组分i 的量,A i 为组分i 的峰面积,f i 为比例系数,在此称为校正因子。

由此可见,要准确定量,首先要准确测出峰面积与定量校正因子。

一、峰面积的测量 1. 对称峰面积的测量对称色谱峰近似地看作一个等腰三角形,按照三角形求面积的方法,峰面积为i w h A h i i 2=,经验证明该方法计算的面积只有实际面积的0.94倍,故再乘一系数1.065,i w h A h i i 2065.1=,这是目前应用较广的计算法。

2. 不对称峰面积的测量在色谱分析中,经常会遇到不对称峰,多数不对称峰为拖尾峰,峰面积的计算方法为:取峰高0.15倍处和0.85倍处峰宽的平均值,乘峰高:h W W A h h ⨯+=)(2185.015.0 3. 大色谱峰尾部的小峰面积的测量分析某主成分中痕量组分时,常会遇到主峰未到基线,杂质峰开始馏出的情况。

此时,杂质峰面积计算法如下:沿主峰尾部划出杂质峰的基线,由峰顶作主峰基线的垂线。

峰顶为A ,垂线与主峰尾部交点为B ,峰高一半处峰宽为b ,则A=AB·b。

4. 基线漂移时峰面积的测量基线漂移时的峰面积,形状与大峰后面拖尾的小峰的峰缝相似,计算方法相同。

5. 重合峰面积的测量在色谱分析中,常会遇到分离不完全的重合峰,峰面积可如下计算:两峰重合,如果交点位于小峰半高以下,可由峰高乘半高峰宽法计算两峰面积。

如果两峰交点位于小峰半高以上,通常是由交点作基线的垂线,再用剪纸称重法计算。

6. 峰高乘保留时间法同系物间,半高峰宽与保留时间呈线形关系:a bt W R h +=2,对于填充柱0≈a 。

当色谱峰很尖、很窄、半高峰宽不易测准时,可用保留时间代替半高峰宽R bt h A ⋅=065.1。

7. 自动积分仪法使用自动积分仪测量峰面积,速度快,比其他方法测量的精密度高,可大大节省人力,提高分析自动化程度。

8. 峰高在定量分析中的作用峰高也可作为定量指标,对于一定的样品,如果操作条件保持不变,在一定的进样量范围内,半高峰宽是不变的,峰高可直接代表组分的浓度,由峰高代替面积计算。

方法快速、简便,适用于固定不变的常规分析。

与使用面积定量法比较,对于出峰早的组分,由于半高峰宽很小,相对测量误差大,这时用峰高定量更准确。

对于出峰晚、峰较宽的组分,用峰面积定量更准确。

二、定量校正因子 1. 定量校正因子的提出定量校正因子是定量计算公式中的比例常数,其物理意义是单位峰面积所代表的被测组分的量。

定量分析的依据是被测组分的量与响应信号成正比,但是,同一含量的不同物质,由于其物理、化学性质的差别,即使在同一检测器上产生的信号大小也不同,直接用响应信号定量,必然产生较大误差。

因此提出了定量校正因子。

定量校正因子对信号加以校正,校正后的峰面积可定量地代表物质的含量。

物质的响应还与检测器的灵敏度有关。

单位量的同一物质在不同灵敏度检测器上,校正因子不同,但物质间的相对响应值相同,故进行面积校正时,常用相对值。

由此提出了相对校正因子,即某物质与标准物质绝对校正因子之比值。

常用的标准物质,热导池是苯,氢焰离子化检测器是正庚烷。

人们通常将相对二字省略,仍称校正因子。

随着被测组分使用的计量单位不同,又可分为质量校正因子,摩尔校正因子和体积校正因子。

2. 校正因子的表达式 (1) 质量校正因子f m单位面积所代表组分质量,是最常用的定量校正因子si is ms m i m m A m A f f f ==,,'(1) 式中:m i ,A i ——分别为被测物的质量和峰面积; m s ,A s ——分别为标准物的质量和峰面积。

(2) 摩尔校正因子f M ’ 单位峰面积所代表组分的摩尔数is m s i i i s s sM iM M M Mf m M A m M A f f f ⋅===''(2) M i ,M s 分别为被测物和标准物的相对分子质量。

(3) 体积校正因子f v ’对于气体样品,体积校正因子按下式计算:')()('4.224.22M i s i s i s v s v i v f M m A M m A f f f =⋅⋅==(3)(4) 相对响应值S is相对响应值也叫相对应答值,相对灵敏度等,指某组分i 与等量基准组分s 的响应值之比,当计算单位与相对校正因子相同时,他们与相对校正因子的关系为:''1isis f S =(4) 3. 峰高定量校正因子对于用峰高进行定量的峰,要使用峰高定量校正因子,峰高定量校正因子受操作条件影响较大,因此一般不能直接引用文献值,必须在实际操作条件下用标准纯物质测定。

对于同系物,峰高定量校正因子可按下式估算:As i RsRi h s i f bt a bt a f ,,++=(5)其中:As i f ,为组分对标准物面积校正因子;b a ,为常数。

对于保留值较大的组分,a 值可忽略不计,上式近似表示为:As i RsRi h s i f t t f ,,=(6) 具体计算方法为:测两个纯物质(标准物与欲测样品组分)的W h/2与t R 值,根据R bt a W h +=2,解方程组求a 和b 值,然后根据测得的保留时间,再从文献上查得面积校正因子A s i f ,,即可求出hs i f ,。

该方法不适用于不对称的色谱峰和保留时间过小的色谱峰。

4. 校正因子的测量方法 (1) 测量方法准确称取被测组分和标准物质,最好使用色谱纯试剂,在实验条件下,准确称量进样,准确测量峰面积,分别按式(1)、(2)、(3),计算质量校正因子,摩尔校正因子和体积校正因子。

(2) 校正因子的换算如果将校正因子改为相对于另一标准物的校正因子,可按下式计算:),(),(),(ΦΦ=i m s m s i m f f f (7)),(),(),(ΦΦ=i M s M s i M f f f (8)其中:Φ,s 表示两种不同的标准物。

5. 校正因子的估算(1) 热导检测器校正因子的估算 (i ) 内插法同系物的摩尔相对响应值MisS 与其分子量成线形关系:bM a S Mis+=,式中a 、b 为常数,M 为被测组分的相对分子质量,若已知同系物中两个组分的相对响应值,就可求出a 、b 值,从而求出同系物中其他组分的Mis S 值。

该方法计算值能与实测值较好的吻合。

(ii )加和法加合法也有人称为基团截面积法,Littwood 等人证实,一个化合物的摩尔相对响应值Mis S ,可由该分子剖析后各指定的结构单位的相对响应值单位加合法计算,各种结构基团的相对响应值见表1。

例如:甲乙酮有2个甲基、一个乙基、一个羰基,查表计算值为99,实验值为98;又如叔丁醇有3个-CH 3,一个-COH ,查表计算值为96,实测值为96。

此法适合于估算基本醇、酮、醚和卤化物的相对响应值。

表1 有机物各结构因子的相对响应值(2) 氢焰离子化检测器校正因子的估算(i ) 内插法与热导池的内插法相同,在同系物中,摩尔相对响应值与分子中在碳数或分子量也是线形的,因此,可以在知道同系物中两个许粉的相对响应值后,计算其它组分的相对响应值。

(ii ) 有效碳数法实验证明,相对响应值与其有效碳数成正比。

如以正庚烷为标准,即正庚烷的有效碳数为7.00,质量校正因子为1,其它有机物的质量校正因子按下式计算cim N M f 1007(9)式中 i M ——组分i 的分子量; c N ——有效碳数。

有机物原子的有效碳数见表2。

表2 有机物中有效碳数的贡献三、百分含量的计算 1. 归一化法归一化法是常用的一种简便、准确的定量方法。

使用这种方法的条件是样品中所有组分都出峰,将所有出峰组分的含量之和按100%计,当测量参数为面积时,计算式如下:100)(⨯∑=i i ii i A f A f x (10)式中 i x ——试样中组分i 的百分含量; i f ——组分i 的校正因子; i A ——组分i 的峰面积。

如果测量参数为峰高,计算式如下:100)(⨯∑=i hi i hi i h f h f x (11)式中 hi f ——组分i 的峰高校正因子; i h ——组分i 的峰高。

如果样品中组分是同分异构体或同系物,若已知校正因子近似相等,就可以不用校正因子,将面积直接归一化,即可按下式计算:100⨯∑=iii A A x (12) 或 100⨯∑=iii h h x (13) 归一化定量的优点是方法准确,进样量的多少与结果武官,仪器与操作条件对结果影响小。

缺点是某些组分在所用检测器上可能不出峰,如H 2O 在氢焰离子化检测器上等;样品中含有沸点高,出峰很慢的组分(如果用其它定量方法,可用反吹法除去),不需定量的个别组分可能分离不好,重叠在一起,影响面积的测量,使其应用受到一定程度的限制。

在使用选择性检测器时,一般不用该法定量。

2. 内标法当分析样品不能全部出峰,不能用归一化法定量时,可考虑用内标法定量。

方法:准确称取样品,选择适宜的组分作为欲测组分的参比物,在此称为内标物。

加入一定量的内标物,根据被测物和内标物的质量及在色谱图上相应的峰面积比按下式求组分的含量。

ssii s i A m f A m x ⋅⋅=(%) (14)式中 i x ——试样中组分i 的含量; s m ——加入内标物的质量; i A ——内标物的峰面积; m ——试样的质量; s A ——组分i 的峰面积;s i si f f f =。

对内标物的要求是:不能与样品或固定相发生反应;能与样品完全互溶;与样品组分很好的分离,又比较接近;加入内标的量要接近被测组分的含量;要准确称量。

如果用峰高作为测量参数,上式也可将面积改为峰高,将面积校正因子改为峰高校正因子进行定量。

内标法定量也比较准确,而且不象归一化法有使用上的限制。

主要缺点是:每次需要用分析天平准确称量内标和样品,日常分析使用很不方便,样品中多了一个内标物,显然对分离的要求更高些。

3. 外标法外标法又称校正曲线法。

用已知纯样品配成不同浓度的标准样进行试验,测量各种浓度下对应的峰高或峰面积,绘制响应信号-百分含量标准曲线。

分析时,进入同样体积的分析样品,从色谱图上测出面积或峰高,从校正曲线上查出其百分含量。

在一些工厂的常规分析中,样品中各组分中的浓度一般变化不大,在检量线通过原点(O 点)时可不必做校正曲线,而用单点校正法来分析。

即配制一个和被测组分含量十分接近的标准样,定量进样,由被测组分与外标组分峰面积或峰高比来求被测组分百分含量。

相关文档
最新文档