CTI Cryogenics overview

合集下载

美国CTI低温泵

美国CTI低温泵

美国CTI低温泵CTI On-Board IS 智能冷凝泵  CTI-CRYOGENICS 世界顶级的低温泵(冷凝泵),其先进的技术,稳定的产品质量引领着真空低温泵的发展。

冷凝泵的原理是将气体冷冻结成霜,从而形成真空;或者气体冷冻后动能减少,从而用焦碳将其吸附住,形成真空。

CTI-CRYOGENICS 冷凝泵(低温泵)无论在真空度,性能,维护成本,远程监控功能上都给客户提供了专业完美的解决方案。

151-595-95-709 QQ241-002-0180 CTI-CRYOGENICS提供世界顶级的冷凝泵(低温泵),其先进的技术,稳定的产品质量引领着真空低温泵的发展。

 产品的优点: 1、真空度高,无油。

符合高要求的真空系统的需要; 2、泵内没有机械运动部件,没有易损件,安装灵活,无需特别维护; 3、性能稳定,维护成本低; 4、抽吸水汽的能力强,抽速大; 5、On-Board型冷凝泵具有全自动快速再生功能,全再生最多只需4小时; 6、具有强大的网络(远程)监控功能 应用: 工业真空系统、科研真空系统等需要无油的高真空系统。

  由于低温泵(冷凝泵)具有无油, 对所有气体的抽速都较大, 特别是对水蒸汽、H2 等抽速很大, 适应性强, 制冷机低速运行, 且运动部件很少, 有利于长期可靠运行等优点. 因而, 低温泵(冷凝泵)被广泛应用于IC生产工艺中的蒸发、溅射、离子注入、分子束外延以及其它诸如高能粒子加速器、受控热核反应、电真空器件、材料科学、表面分析仪器等领域, 以此来获得清洁的高真空或超高真空。

  CTI On-Board IS 智能冷凝泵产品优势:  ?优越的真空质量  ?最快捷的全面再生速度  ?在两次再生之间更长的生产运行时间  ?智能化“自动调节”技术  ?智能泵体管理系统  ?相同的生产力状况下最节能的设备 。

Chen_2012_Cryogenics

Chen_2012_Cryogenics

Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator systemLingen Chen ⇑,Fankai Meng,Fengrui SunPostgraduate School,Naval University of Engineering,Wuhan 430033,PR Chinaa r t i c l e i n f o Article history:Received 22July 2009Received in revised form 20September 2011Accepted 25October 2011Available online 11November 2011Keywords:Combined thermoelectric device Thermoelectric generator Thermoelectric refrigerator Heat transferFinite-time thermodynamicsNon-equilibrium thermodynamicsa b s t r a c tA model of thermoelectric generator-driven thermoelectric refrigerator with external heat transfer is pro-posed.The performance of the combined thermoelectric refrigerator device obeying Newton’s heat transfer law is analyzed using the combination of finite time thermodynamics and non-equilibrium ther-modynamics.Two analytical formulae for cooling load vs.working electrical current,and the coefficient of performance (COP)vs.working electrical current,are derived.For a fixed total heat transfer surface area of four heat exchangers,the allocations of the heat transfer surface area among the four heat exchangers are optimized for maximizing the cooling load and the coefficient of performance (COP)of the combined thermoelectric refrigerator device.For a fixed total number of thermoelectric elements,the ratio of number of thermoelectric elements of the generator to the total number of thermoelectric elements is also optimized for maximizing both the cooling load and the COP of the combined thermo-electric refrigerator device.The influences of thermoelectric element allocation and heat transfer area allocation are analyzed by detailed numerical examples.Optimum working electrical current for maxi-mum cooling load and COP at different total number of thermoelectric elements and different total heat transfer area are obtained,respectively.Ó2011Elsevier Ltd.All rights reserved.1.IntroductionSemiconductor thermoelectric power generation,based on the Seebeck effect,and semiconductor thermoelectric cooling,based on the Peltier effect,have very interesting capabilities with respect to conventional power generation and cooling systems [1–3].The absence of moving components results in an increase of reliability,a reduction of maintenance,and an increase of sys-tem life;the modularity allows for application in a wide-scale range without significant losses in performance;the absence of a working fluid avoids environmental dangerous leakage;and the noise reduction appears also to be an important feature.Thermoelectric generator and refrigerator have been used in military,aerospace,instrument,and industrial or commercial products,as a power generation or cooling devices for specific purposes.Many researchers are concerned about the physical properties of thermoelectric material and the manufacturing technique of thermoelectric modules.In addition to the improve-ment of the thermoelectric material and module,the system analysis and optimization of thermoelectric generator and refrig-erator are equally important in designing high-performance thermoelectric generators and refrigerators.In general,the conventional non-equilibrium thermodynamics [1,4]is used to analyze the performance of single-stage one-or multiple-element thermoelectric generators [5–13]and refrigera-tors [14–25].Non-equilibrium thermodynamics is a progress of classical thermodynamics,it considers some specific phenomena such as Seebeck effect and Peltier effect.All objects of these researches are independent thermoelectric devices,that is,they generate direct-current power source for users (thermoelectric generator)or need a direct-current power source to provide direct current (thermoelectric refrigerator).In some special fields,the heat rejected from the thermal machine may drive a thermoelec-tric refrigerator through the use of a thermoelectric generator,so that the thermoelectric refrigerator does not need an independent power source.Such a new system is different from the traditional thermoelectric systems merely consisting of a thermoelectric gen-erator and a refrigerator.These systems dispense with complicated pipelines and heat insulation,so they can be used in many special fields such as aircraft and submarine.Chen et al.[26]and Khattab and El Shenawy [27]built a model of this kind of combined system,i.e.single-stage thermoelectric refrigerator driven by single-stage thermoelectric generator,and analyzed the performance of the device.The theory of finite time thermodynamics or entropy generation minimization [28–35]is a powerful tool for performance analysis and optimization of practice thermodynamic processes and0011-2275/$-see front matter Ó2011Elsevier Ltd.All rights reserved.doi:10.1016/j.cryogenics.2011.10.007Corresponding author.Tel.:+862783615046;fax:+862783638709.E-mail addresses:lingenchen@ ,lgchenna@ (L.Chen).devices.Finite time thermodynamics or entropy generation mini-mization is the method of modeling and optimization of various thermodynamic processes and devices that owe their thermody-namic imperfection to heat transfer,mass transfer,andfluidflow and other transport processes.It bridges the gaps not only between thermodynamic and heat transfer,mass transfer,fluid mechanics, and other transport science,but also between the physics and the engineering.It thermodynamically optimize performance of realfi-nite-time and/orfinite-size thermodynamic systems with the irrev-ersibilities of heat transfer,fluidflow and mass transfer toward decreasing the irreversibility of the total system.Some authors have investigated the performance of thermoelectric generators [36–48]and thermoelectric refrigerator[49–57]using the combi-nation offinite time thermodynamics and non-equilibrium ther-modynamics.They analyzed the effect offinite-rate heat transfer between the thermoelectric device and its external heat reservoirs on the performance of single-element single-stage thermoelectric generators[36–43]and refrigerator[49–52].They also investigated the characteristics of single-stage multi-element thermoelectric generators[44–48]and thermoelectric refrigerator[53–57]with the irreversibility offinite rate heat transfer,Joulean heat inside the thermoelectric device,and the heat leak through the thermo-electric couple leg.However,all of those were performed only for independent thermoelectric devices.There has been no investiga-tion concerning the performance analysis and optimization for sin-gle-stage thermoelectric refrigerator driven by single-stage thermoelectric generator published in the open literature.On the basis of the exo-reversible model of a single-stage ther-moelectric refrigerator driven by a single-stage thermoelectric generator without external irreversibility built in Refs.[26,27],a model of thermoelectric generator-driven thermoelectric refrigera-tor with external heat transfer is built.The performance of the combined thermoelectric refrigerator device obeying Newton’s heat transfer law is analyzed using the combination offinite time thermodynamics and non-equilibrium thermodynamics.Two ana-lytical formulae for cooling load vs.working electrical current,and the coefficient of performance(COP)vs.working electrical current, are derived.For afixed total heat transfer surface area of four heat exchangers,the allocations of the heat transfer surface area among the four heat exchangers are optimized for maximizing the cooling load and the coefficient of performance(COP)of the combined thermoelectric refrigerator device.For afixed total number of thermoelectric elements,the ratio of number of thermoelectric ele-ments of the generator to the total number of thermoelectric ele-ments is also optimized for maximizing both the cooling load and the COP of the combined thermoelectric refrigerator device. The influences of thermoelectric element allocation and heat trans-fer area allocation are analyzed by detailed numerical examples. Optimum working electrical current for maximum cooling load and COP at different total number of thermoelectric elements and different total heat transfer area are given,respectively.2.Model of a thermoelectric generator-driven thermoelectric refrigerator systemA schematic diagram of a thermoelectric generator-driven thermoelectric refrigerator device is shown in Fig.1.The device consists of an irreversible single-stage multi-element thermoelec-tric generator and an irreversible single-stage multi-element thermoelectric refrigerator in series with internal and external irreversibilities.The direct-current power source of the refrigerator is the direct-current power output of the generator.The irreversible thermoelectric generator is composed of m pairs of thermoelectric elements.Each element is composed of P-type and N-type semiconductor legs.The thermoelectric power generation element is assumed to be insulated,both electrically and thermally,from its surroundings,except at the junction-reservoir contacts.The internal irreversibility is caused by Joulean electrical resistive loss and heat conduction loss through the semi-conductor between the hot and cold junctions.The Joulean loss generates an internal heat I2R,where R is the total internal electri-cal resistance of the semiconductor couple and I is the electrical current generating from the semiconductor couple.The conduction heat loss is K T0H1ÀT0L1ÀÁ,where K is the thermal conductance of thesemiconductor couple,T0H1is the hot junction temperature,and T0L1 is the cold junction temperature.Finite rate heat transfers,i.e.the temperature differences T H1ÀT0H1ÀÁand T0L1ÀT L1ÀÁ,where T H1and T L1are the temperatures of the heat source and heat sink of the thermoelectric generator,respectively,cause the external irrevers-ibility.For the thermoelectric generator,the rate of heat transfer at the hot junction is Q H1,and the rate of heat transfer at the cold junction is Q L1.The irreversible thermoelectric refrigerator is composed of n pairs of thermoelectric elements.Each element is composed ofNomenclatureA coefficient of system stable working electrical currentequationF heat transfer surface areas of heat exchangerf heat transfer surface area ratioI working electrical current(A)K thermal conductance of a semiconductor couple(W/K) k heat transfer coefficient of heat exchanger(W/K)M total number of thermoelectric elements pairs of whole devicem number of thermoelectric elements pairs of thermoelec-tric generatorn number of thermoelectric elements pairs of thermoelec-tric refrigeratorT temperature(K)Q rate at which heat is transferred(W)R total internal electrical resistance of a semiconductor couple(X)x ratio of number of thermoelectric element pairs of the thermoelectric generator to total number of thermoelec-tric element pairs of the combined irreversible device Greek symbolsa Seebeck coefficients of P-and N-type semiconductorlegse coefficient of performance(COP)of combined thermo-electric refrigerator deviceSubscripts1parameter of thermoelectric generator2parameter of thermoelectric refrigeratorH1heat source of thermoelectric generatorH2heat sink of thermoelectric refrigeratorL1heat sink of thermoelectric generatorL2heat source of thermoelectric refrigerators practical solution of working electrical current equation opt optimum parameterL.Chen et al./Cryogenics52(2012)58–6559P-type and N-type semiconductor legs.The thermoelectric refrig-erating element is assumed to be insulated,both electrically and thermally,from its surroundings,except at the junction-reservoir contacts.The internal irreversibility is caused by Joulean electrical resistive loss and heat conduction loss through the semiconductor between the hot and cold junctions.The Joulean loss generates an internal heat I 2R ,where R is the total internal electrical resistance of the semiconductor couple and I is the electrical current generat-ing from the semiconductor couple.The conduction heat loss is K T 0H 2ÀT 0L 2ÀÁ,where K is the thermal conductance of the semicon-ductor couple,T 0H 2is the hot junction temperature,and T 0L 2is the cold junction temperature.Finite rate heat transfers,i.e.the tem-perature differences T H 2ÀT 0H 2ÀÁand T 0L 2ÀT L 2ÀÁ,where T H 2and T L 2are the temperatures of the heat sink and heat source of the thermoelectric refrigerator,respectively,cause the external irre-versibility.For the thermoelectric refrigerator,the rate of heat transfer at the hot junction is Q H 2,and the rate of heat transfer at the cold junction is Q L 2.Assume that the four heat exchangers among the hot and cold junctions of the thermoelectric refrigerator,thermoelectric gener-ator and their respective reservoirs are counter-flow,and the heat conductance (product of heat transfer coefficient and heat transfer surface area)of the heat exchangers are k H 1F H 1,k L 1F L 1,k H 2F H 2and k L 2F L 2,respectively,where k H 1,k L 1,k H 2and k L 2are the heat transfercoefficients of the four heat exchangers,respectively,and F H 1,F L 1,F H 2and F L 2are the heat transfer surface areas of the four heat exchangers,respectively.The total number (M )of thermoelectric element pairs of the irreversible combined thermoelectric device is finite and M =m +n holds.The total heat transfer surface area (F )of the fourheat exchangers of the irreversible combined thermoelectric de-vice is finite and F =F H 1+F L 1+F H 2+F L 2holds.Assuming that the heat transfers among the hot and cold junc-tions of the thermoelectric generator and the thermoelectric refrig-erator and their respective reservoirs obey Newton’s law gives:Q H 1¼k H 1F H 1T H 1ÀT 0H 1ÀÁ¼m a IT H 1þK T 0H 1ÀT 0L 1ÀÁÀ12I 2R!ð1ÞQ L 1¼k L 1F L 1T 0L 1ÀT L 1ÀÁ¼m a IT L 1þK T 0H 1ÀT 0L 1ÀÁþ12I 2R!ð2ÞQ H 2¼k H 2F H 2T 0H 2ÀT H 2ÀÁ¼n a IT H 2ÀK T 0H 2ÀT 0L 2ÀÁþ12I 2R!ð3ÞQ L 2¼k L 2F L 2T L 2ÀT 0L 2ÀÁ¼n a IT L 2ÀK T 0H 2ÀT 0L 2ÀÁÀ12I 2R!ð4Þwhere a =a P Àa N ,a P and a N are the Seebeck coefficients of the P-and N-type semiconductor legs for each thermoelectric power gen-eration and refrigeration element.3.Performance analysisCombining Eq.(1)with Eq.(2)gives the hot junction tempera-ture T 0H 1,and the cold junction temperature T 0L 1of the thermoelec-tric generator:Combining Eq.(3)with Eq.(4)gives the hot junction tempera-ture T 0H 2and the cold junction temperature T 0L 2of the thermoelec-tric refrigerator.T 0H 2¼À0:5a Rn 2I 3Àð0:5n þn 2K ÞRI 2Àn a T H 2I ÀnK ðk H 2F H 2T H 2þk L 2F L 2T L 2ÞÀk H 2F H 2k L 2F L 2T H 2n 2a 2I 2þn a ðk L 2F L 2Àk H 2F H 2ÞI ÀnK ðk H 2F H 2þk L 2F L 2ÞÀk H 2F H 2k L 2F L 2ð7ÞT 0H 1¼0:5a Rm 2I 3Àð0:5m þm 2K ÞRI 2þm a T H 1I ÀmK ðk H 1F H 1T H 1þk L 1F L 1T L 1ÞÀk H 1F H 1k L 1F L 1T H 1m 2a 2I 2þm a ðk H 1F H 1Àk L 1F L 1ÞI ÀmK ðk H 1F H 1þk L 1F L 1ÞÀk H 1F H 1k L 1F L 1ð5ÞT 0L 1¼À0:5a Rm 2I 3Àð0:5m þm 2K ÞRI 2Àm a T H 1I ÀmK ðk H 1F H 1T H 1þk L 1F L 1T L 1ÞÀk H 1F H 1k L 1F L 1T H 1m 22I þm ðk H 1F H 1Àk L 1F L 1ÞI ÀmK ðk H 1F H 1þk L 1F L 1ÞÀk H 1F H 1k L 1F L 1ð6ÞSubstituting Eqs.(5)–(8)into Eqs.(1)–(4)yields:Q H1¼k H1F H1f T H1À½0:5a Rm2I3Àð0:5mþm2KÞRI2þm a T H1I ÀmKðk H1F H1T H1þk L1F L1T L1ÞÀk H1F H1k L1F L1T H1 =½m2a2I2þm aðk H1F H1Àk L1F L1ÞIÀmKðk H1F H1þk L1F L1ÞÀk H1F H1k L1F L1 gð9ÞQ L1¼k L1F L1f½À0:5a Rm2I3Àð0:5mþm2KÞRI2Àm a T H1IÀmKðk H1F H1T H1þk L1F L1T L1ÞÀk H1F H1k L1F L1T H1 =½m2a2I2þm aðk H1F H1Àk L1F L1ÞIÀmKðk H1F H1þk L1F L1ÞÀk H1F H1k L1F L1 ÀT L1gð10ÞQ H2¼k H2F H2f T H2À½À0:5a Rn2I3Àð0:5nþn2KÞRI2Àn a T H2I ÀnKðk H2F H2T H2þk L2F L2T L2ÞÀk H2F H2k L2F L2T H2 =½n2a2I2þn aðk L2F L2Àk H2F H2ÞIÀnKðk H2F H2þk L2F L2ÞÀk H2F H2k L2F L2 gð11ÞQ L2¼k L2F L2f½À0:5a Rn2I3Àð0:5nþn2KÞRI2þn a T H2IÀnKðk H2F H2T H2þk L2F L2T L2ÞÀk H2F H2k L2F L2T H2 =½n2a2I2þn aðk L2F L2Àk H2F H2ÞIÀnKðk H2F H2þk L2F L2ÞÀk H2F H2k L2F L2 ÀT L2gð12ÞThe overall system is a closed loop circuit,and the heatflow of the system is in balance,one has:Q H1þQ L2¼Q L1þQ H2ð13ÞSubstituting Eqs.(9)–(12)into Eq.(13)and re-arranging the re-sults yields the equation that the system stable working electrical current should be satisfied:A4I4þA3I3þA2I2þA1IþA0¼0ð14ÞwhereA4¼a3m2n2Rðk L1F L1Àk H1F H1Àk L2F L2þk H2F H2Þð15ÞA3¼a2mn½mnð2k H2F H2KRþ2k H2F H2T H2a2þ2k L2F L2KRþ2k H1F H1KRþ2k L2F L2T L2a2þ2a2k L1F L1T L1þ2k L1F L1KRþ2a2k H1F H1T H1Þþmðk H2F H2Rk H1F H1Àk H2F H2Rk L1F L1þk L2F L2Rk L1F L1Àk L2F L2Rk H1F H1þ2k L2F L2k H2F H2RÞþnðÀk H2F H2Rk L1F L1þ2k H1F H1k L1F L1RÀk L2F L2Rk H1F H1þk L2F L2Rk L1F L1þk H2F H2Rk H1F H1Þ ð16ÞA2¼a½m2nðÀ3k L1F L1KRk H2F H2À2a2k L1F L1T L1k H2F H2þ2a2k L1F L1T L1k L2F L2þ2a2k H1F H1T H1k L2F L2þk L1F L1KRk L2F L2À2a2k H1F H1T H1k H2F H2À2k L2F L2T L2a2k H2F H2þ2k H2F H2T H2a2k L2F L2Àk H1F H1KRk H2F H2þ3k H1F H1KRk L2F L2Þþmn2ðÀk L1F L1KRk L2F L2þ2a2k L2F L2T L2k H1F H1þ3k H1F H1KRk L2F L2À2a2k H1F H1T H1k L1F L1þ2a2k H2F H2T H2k H1F H1Àk L2F L2T L2a2k L1F L1þk H1F H1KRk H2F H2À3k L1F L1KRk H2F H2þ2a2k L1F L1T L1k H1F H1À2k H2F H2T H2a2k L1F L1Þþm2ðÀk L1F L1Rk H2F H2k L2F L2Àk H1F H1Rk H2F H2k L2F L2Þþn2ðk L2F L2Rk L1F L1k H1F H1Àk H2F H2Rk L1F L1k H1F H1Þþmnð2k L2F L2Rk L1F L1k H1F H1þ2k L1F L1Rk H2F H2k L2F L2þ2k H2F H2Rk L1F L1k H1F H1þ2k H1F H1Rk H2F H2k L2F L2Þ ð17ÞA1¼À2m2nKðk L2F L2þk H2F H2Þðk L1F L1KRþKk H1F H1Rþa2k L1F L1T L1þa2k H1F H1T H1ÞÀ2m n2Kðk H1F H1þk L1F L1ÞðKRk L2F L2þKRk H2F H2þa2k H2F H2T H2þa2k L2F L2T L2ÞÀ2m2k L2F L2k H2F H2ðKRk L1F L1þKRk H1F H1þa2k L1F L1T L1þa2k H1F H1T H1ÞÀ2n2k L1F L1k H1F H1ðKRk L2F L2þKRk H2F H2þa2k H2F H2T H2þa2k L2F L2T L2Þþ2mn½a2ðk H1F H1k L1F L1k H2F H2T H1Àk L2F L2k H2F H2k H1F H1T L2þk L1F L1k H1F H1k L2F L2T L1Àk H2F H2k L2F L2k L1F L1T H2Àk L1F L1k H1F H1k H2F H2T L1þk L2F L2k H2F H2k L1F L1T L2Àk H1F H1k L1F L1k L2F L2T H1þk H2F H2k L2F L2k H1F H1T H2ÞÀRKðk H2F H2k L1F L1k H1F H1þk L2F L2k H2F H2k H1F H1þk L2F L2k L1F L1k H1F H1þk L1F L1k L2F L2k H2F H2Þ À2mRk H1F H1k L1F L1k H2F H2k L2F L2À2nRk L2F L2k H2F H2k L1F L1k H1F H1ð18ÞA0¼2mnðKk L1F L1k H1F H1T H1k H2F H2ÀKk L1F L1k H1F H1T L1k H2F H2þKk L1F L1k H1F H1T H1k L2F L2ÀKk L1F L1k H1F H1T L1k L2F L2ÀKk L2F L2k H2F H2T H2k L1F L1þKk L2F L2k H2F H2T L2k H1F H1þKk L2F L2T L2k H2F H2k L1F L1ÀKk L2F L2k H2F H2T H2k H1F H1Þþ2mðk H1F H1k L1F L1k H2F H2k L2F L2T H1Àk L1F L1k H1F H1k H2F H2k L2F L2T L1Þþ2nðk L2F L2T L2k H2F H2k L1F L1k H1F H1Àk H2F H2k L2F L2k L1F L1k H1F H1T H2Þð19ÞFor the given parameters,one can obtain four theoretical solu-tions by solving Eq.(14).Analysis shown that there is only one solution I s,which satisfies I>0,Q H1>0,Q L1>0,Q H2>0,and Q L2>0.Upon that one has the cooling load and COP of the com-bined thermoelectric device as follows:Q L2¼k L2F L2À0:5a Rn2I3sÀð0:5nþn2KÞRI2sþn a T H2I sÀnKðk H2F H2T H2h nþk L2F L2T L2ÞÀk H2F H2k L2F L2T H2 =n2a2I2sþn aðk L2F L2Àk H2F H2ÞI shÀðk H2F H2þk L2F L2ÞÀk H2F H2k L2F L2 ÀT L2gð20ÞT0 L2¼À0:5a Rn2I3Àð0:5nþn2KÞRI2þn a T H2IÀnKðk H2F H2T H2þk L2F L2T L2ÞÀk H2F H2k L2F L2T H2n22Iþnðk L2F L2Àk H2F H2ÞIÀnKðk H2F H2þk L2F L2ÞÀk H2F H2k L2F L2ð8ÞL.Chen et al./Cryogenics52(2012)58–6561e¼QL2=Q H1¼k L2F L2À0:5a Rn2I3sÀð0:5nþn2KÞRI2sþn a T H2I sÀnKðk H2F H2T H2þk L2F L2T L2ÞÀk H2F H2k L2F L2T H2h i=n2a2I2sþn aðk L2F L2Àk H2F H2ÞI sÀnKðk H2F H2þk L2F L2ÞÀk H2F H2k L2F L2h iÀT L2 n ok H1F H1T H1À0:5a Rm2I3sÀð0:5mþm2KÞRI2sþm a T H1I sÀmKðk H1F H1T H1þk L1F L1T L1ÞÀk H1F H1k L1F L1T H1h i=m2a2I2sþm aðk H1F H1Àk L1F L1ÞI sÀmKðk H1F H1þk L1F L1ÞÀk H1F H1k L1F L1h in oð21ÞMaximum cooling load(a),maximum COP(b)and optimumcurrents(c)vs.total number of thermoelectric elements.In(a)represents result obtained by using the combination ofthermodynamics and non-equilibrium thermodynamics while theresult obtained by using non-equilibrium thermodynamics,transfer are not taken into account.In(c),the solid line representselectrical current for maximum cooling load and the dashoptimum working electrical current for maximum COP.62L.Chen et al./Cryogenics52(2012)58–65heat exchangers for thefixed total heat transfer area of thermoelectric generator or thermoelectric refrigerator.For combined thermoelectric device,besides optimum heat transfer allocation between the high temperature side and the temperature side,there is an optimum heat transfer area allocation between the thermoelectric generator and the thermoelectric refrigerator for thefixed total heat transfer area of the whole device.In order to describe the allocation of the heat transfer area,three ratios of heat transfer surface area are defined:total heat transfer surface area ratio f=F1/F,where F1=F H1+F L1,i.e.the ratio of the heat transfer surface area of the thermoelectric generator to the total heat transfer surface area of the combined irreversible device;generator heat transfer surface area ratio f1=F H1/F1,i.e. the ratio of the heat transfer surface area of the high-temperature side heat exchangers of the thermoelectric generator to the total heat transfer surface area of the thermoelectric generator;and refrigerator heat transfer surface area ratio f2=F H2/F2,where F2=F H2+F L2,i.e.the ratio of the heat transfer surface area of the high-temperature side heat exchangers of the thermoelectric refrigerator to the total heat transfer surface area of the thermo-electric refrigerator.Then,one has F H1=ff1F,F L1=f(1Àf1)F,F H2= (1Àf)f2F and F L2=(1Àf)(1Àf2)F.In order to describe the allocation of the thermoelectric element pairs,one ratio of numbers of thermoelectric element pairs is defined:x=m/M,i.e.the ratio of number of thermoelectric element pairs of the thermoelectric generator to total number of thermoelectric element pairs of the combined irreversible device. Then,one has m=xM and n=(1Àx)M.Obviously,value ranges of the variables x,f,f1,f2are[0,1].Numerical calculations are performed in order to analyze and optimize the performance of the thermoelectric refrigerator dri-ven by a thermoelectric generator.In the calculations,T H1= 450K,T L1=300K,T H2=300K,T L2=290K,k H1=60W/K,k L1=15 W/K,k H2=240W/K,k L2=120W/K,a=2.1Â10À4V/K,K=1.6Â10À2W/K,and R=1.2Â10À3X are set[53].4.2.Effects of total number and allocation of thermoelectric elementsThe system working electrical current(I),cooling load(Q L2)and COP(e)vs.ratio of numbers of thermoelectric elements(x)are shown in Fig.2by solid lines,respectively.In the calculations, M=200,F=1m2,f=0.6,f1=0.7,and f2=0.4are set.There exist two optimum working electrical currents corresponding to maxi-mum cooling load(Q L2,max)and maximum COP(e max).The maxi-mum cooling load and maximum COP vs.the total number of thermoelectric elements(M)are shown in Fig.3a and b by solid lines,respectively.In order to compare the results obtained by using the combination offinite time thermodynamics and4.Contour maps of the cooling load(a)and COP(b)vs.ratios of heat transfersurface area.f1is generator heat transfer surface area ratio,and f2is refrigeratortransfer surface area ratio.Maximum cooling load(a),maximum COP(b)and optimumcurrents(c)vs.total heat transfer surface area.The solid lineworking electrical current for maximum cooling load andrepresents optimum working electrical current for maximum COP.non-equilibrium thermodynamics with these obtained by using non-equilibrium thermodynamics,the non-equilibrium thermody-namic results,i.e.the effects of heat transfer are not taken into ac-count,are also shown in Figs.2and3by dotted lines.One can see that the effects of heat transfer are obvious and should be consid-ered in the performance analysis and optimization of the combined irreversible thermoelectric devices.The optimum working electrical currentðI opt;QL2Þcorresponding to maximum cooling load(Q L2,max)and the optimum working elec-trical current(I opt,e)corresponding to maximum COP(e max)vs.the total number of thermoelectric element pairs(M)are shown in Fig.3c.One can see that the optimum working electrical current(I)is smaller and no longer proportional to x when effects of heat trans-fer are taken into account.I increases monotonically and the slope of the curve decreases monotonically with the increase of x.I changes little when x is near1.Practical cooling load(Q L2)and COP(e)is smaller.The minimum x,i.e.the ratio of number of thermoelectric elements correspond-ing the zero cooling load and zero COP is bigger when the effects of heat transfer are taken into account.However,heat transfer has little influence on optimum x,i.e.the ratios of number of ther-moelectric elements corresponding the maximum cooling load and maximum COP.The maximum cooling load(Q L2,max)is smaller and no longer proportional to M when the effects of heat transfer are taken into account.Q L2,max increases monotonically and the slope of curve de-creases monotonically with the increase of M.The maximum COP (e max)is no longer constant and decreases monotonically with the increase of M.Both the optimum working currents I opt;QL2and I opt,e decrease with the increase of total number of thermoelectric elements, and I opt;QL2P I opt;e holds.4.3.Effects of total heat transfer area and allocation heat transfer areaFig.4shows contour lines of the cooling load(Q L2)and the COP (e)vs.the heat transfer surface area ratios f1and f2,respectively, with M=100,F=1m2,and f=0.6.One can see that there are an optimum f1and an optimum f2 corresponding maximum cooling load Q L2,max or maximum COP e max,respectively.In fact,forfixed total number of thermoelectric elements M and total heat transfer area F,there are optimum parameters x,f,f1and f2corresponding the maximum cooling load Q L2,max or maximum COP e max,respectively.Fig.5shows the maximum cooling load Q L2,max,the maximum COP e max,the optimum working electrical currentðI opt;QL2Þcorre-sponding to maximum cooling load,and the optimum working electrical current(I opt,e)corresponding to maximum COP vs.the to-tal heat transfer surface area F,respectively,with M=100.One can see that both the maximum cooling load and COP increases mono-tonically with the increase of F.The optimum working currents I opt;QL2increases with the increase of total heat transfer area F while I opt,e changes little and I opt;QL2P I opt;e holds.Calculations show that when total heat transfer area changes, the optimum variables x,f,f1and f2remain constant approx-imately.5.ConclusionA model of internal and external irreversible thermoelectric generator-driven thermoelectric refrigerator is presented in this paper by using a combination offinite time thermodynamics and non-equilibrium thermodynamics.Two analytical formulae describing the cooling load vs.working electrical current,and the coefficient of performance(COP)vs.working electrical current are derived.The performance optimization of the combined device is performed by searching for the optimum allocation of heat transfer surface area of the four heat exchangers and the optimum allocation of the number of thermoelectric element pairs based on the optimization of working electrical current.All the parameters should be considered in the design and application of practice ther-moelectric devices in order to obtain the maximum economy benefit.The results show that when effects of heat transfer are taken into account,the working electrical current is smaller than that by non-equilibrium thermodynamics.The cooling load is smaller and no longer proportional to total number of thermoelectric ele-ments while the COP is no longer constant and decreases monoton-ically with the increase of total number of thermoelectric elements.For thefixed total number of thermoelectric elements and total heat transfer surface area,there are optimum variables,i.e.ratio of numbers of thermoelectric element pairs x,total heat transfer sur-face area ratio f,generator heat transfer surface area ratio f1and refrigerator heat transfer surface area ratio f2,corresponding the maximum cooling load or maximum COP,respectively.Heat exchangers are necessary in thermoelectric generator-dri-ven thermoelectric refrigerator devices.There is always external heat transfer loss in the devices.Conventional non-equilibrium thermodynamic analysis cannot take into account the external heat transfer factor.The combination offinite time thermodynam-ics and non-equilibrium thermodynamic gives a comprehensive analysis and optimization of the devices by taking account of external and internal irreversibilities and obtains optimal perfor-mance characteristics closer to practice.The results obtained here-in may provide guidelines for the design and application of practical combined thermoelectric devices.Some experiments will be made to confirm the performance of the combined device in the later work by the way of Ref.[53].AcknowledgementsThis paper is supported by Program for New Century Excellent Talents in University of PR China(Project No.NCET-04-1006)and The Foundation for the Author of National Excellent Doctoral Dis-sertation of PR China(Project No.200136).The authors wish to thank the reviewers for their careful,unbiased and constructive suggestions,which led to this revised manuscript.References[1]Angrist SW.Direct energy conversion.4th ed.Boston:Allyn and Bacon Inc.;1992.[2]di Salvo FJ.Thermoelectric cooling and power generation.Science1999;285(5428):703–6.[3]Ma X,Riffat SB.Thermoelectric:a review of present and potential applications.Appl Therm Eng2003;23(8):913–35.[4]Bejan A.Advanced engineering thermodynamics.2nd ed.New York:Wiley;1997.[5]Sisman A,Yavuz H.The effect of Joule losses on the total efficiency of athermoelectric power cycle.Energy1995;20(6):573–6.[6]Chen J,Yan Z.The influence of Thomson effect on the maximum power outputand maximum efficiency of a thermoelectric generator.J Appl Phys 1996;79(11):8823–8.[7]Chen J,Yan Z,Wu L.Non-equilibrium thermodynamic analysis ofthermoelectric device.Energy1997;22(10):979–85.[8]Rowe DM,Min G.Evaluation of thermoelectric modules for power generation.JPower Sour1998;73(2):193–8.[9]Omer SA,Infield DG.Design optimization of thermoelectric a devices for solarpower generation.Solar Energy Mater Solar Cell1998;53(1):67–82.[10]Mayergoyz ID,Andrel D.Statistical analysis of semiconductor devices.J ApplPhys2001;90(6):3019–29.[11]Naji M,Alata M,Al-Nimr MA.Transient behavior of a thermoelectric device.Proc IMechE Part A:J Power&Energy2003;217(6A):615–21.64L.Chen et al./Cryogenics52(2012)58–65。

冷泵说明书

冷泵说明书

On-Board® Cryopump Installation andMaintenance Instructions©2004 Helix Technology Corporation Pub. No. 8040491, Rev. 104, 03/08/05ECO No.16977 Printed in USAELIXH The information in this document is believed to be accurate and reliable. However, Helix Technology Corporation, cannot accept any financial or other responsibilities that may result from the use of this information. No warranties are granted or extended by this document.Helix Technology Corporation reserves the right to change any or all information contained herein without prior written notice. Revisions may be issued at the time of such changes and/or deletions.Any duplication of this manual or any of its parts without expressed written permission from Helix Technology Corporation is strictly prohibited.Any correspondence regarding this document should be forwarded to:Helix Technology CorporationMansfield Corporate CenterNine Hampshire StreetMansfield, Massachusetts 02048-9171 U.S.A.Telephone: (508) 337-5000FAX: (508) 337-5464The following Helix Technology Corporation trademarks and service marks may appear in this document:All other trademarks or registered trademarks are the property of their respective holders.Conductron ®Convectron ®Cryodyne ®Cryogem ®Cryogenerator ®Cryo-Torr ®CTI-Cryogenics ®FastRegen™GOLDLink ®Granville-Phillips ®GUTS ®Helix ®Helix Technology..Your Vacuum Connection SMMicro-Ion ®Mini-Convectron ®Mini-Ion™On-Board ®RetroEase ®RetroFast ®Stabil-1®Stabil-Ion ®ThinLine™TurboPlus ®TrueBlue SMVacuum Assurance SMTable of ContentsCryopump SafetyIntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-1 Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-1 Toxic, Corrosive, Dangerous Gases, or Liquids . . . . . . . . . . . . . . . . . . . . . . . . S-1 Flammable or Explosive Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-1 High Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-2 High Gas Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-2 Cautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-2 Cryopump Oxygen Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-2 Section 1 - On-Board Cryopump DescriptionIntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Installation, Operation, and Maintenance Instructions . . . . . . . . . . . . . . . . . . . . . . 1-1 Microprocessor-Based Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Remote Operation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17 Cold Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17 Vacuum Vessel and Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17 Compressor Gas and Oil Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17 Section 2 - InstallationIntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Keypad/Display Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Position A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Position B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 Position C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 Position D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 On-Board Cryopump Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 Vent Pipe Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 Roughing Pump Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Rough Valve Gas Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Purge Gas Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Helium Line Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Auxiliary (AUX) TC Gauge Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 Setpoint Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 Remote Keypad/Display Installation (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10Section 3 - TroubleshootingTechnical Inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 Section 4 - MaintenanceHelium Circuit Decontamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 Equipment/Tools Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 Method 1 - Decontaminate all On-Board Cryopumps . . . . . . . . . . . . . . . . . . . . 4-6 Decontamination Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 Method #1 Decontaminate All Cryopumps . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 Method # 2 Decontamination of Only Cold Cryopumps . . . . . . . . . . . . . . . . 4-11 Step 1 - Method #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11Step 17 - Method #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 Method # 3 Grouped Decontamination using Manifold . . . . . . . . . . . . . . . . . 4-11 Step 5 - Method #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11Step 6 - Method #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12Step 10- Method #3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12Steps 11 - 16 - Method #3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12 On-Board Cryopump Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15 Appendix A - Customer Support InformationCustomer Support Center Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1 Guaranteed Up-Time Support (GUTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1 Product Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1 E-mail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1 IndexList of FiguresList of TablesList of FiguresFigure 1-1: On-Board Cryopumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 Figure 1-2: On-Board Cryopumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 Figure 1-3: Typical On-Board Cryopump System. . . . . . . . . . . . . . . . . . . . . . . . . 1-18 Figure 1-4: Cutaway View of a Typical Flat On-Board Cryopump Vessel. . . . . . 1-19 Figure 1-5: Cutaway View of a Typical Straight On-Board Cryopump Vessel. . . 1-20 Figure 1-6: Typical Flat On-Board Cryopump Component Identification. . . . . . . 1-21 Figure 1-7: Typical Straight On-Board Cryopump Component Identification . . . 1-22 Figure 2-1: Block Diagram for On-Board Cryopump Installation. . . . . . . . . . . . . . 2-1 Figure 2-2: Keypad/Display Mounting Position A. . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Figure 2-3: Keypad/Display Mounting Position B. . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 Figure 2-4: Keypad/Display Mounting Position C. . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 Figure 2-5: Keypad/Display Mounting Position D. . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 Figure 2-6: Setpoint Relays Connection and Pin Identification. . . . . . . . . . . . . . . . 2-9 Figure 4-1: Decontamination Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 Figure 4-2: On-Board Cryopump Helium Supply and Return Lines . . . . . . . . . . . . 4-8 Figure 4-3: Maintenance Manifold Part Number 8032051G001 . . . . . . . . . . . . . . 4-13 Figure 4-4: Proper Helium Line Coupling Disconnection/Connection . . . . . . . . . 4-14List of TablesTable 1-1: On-Board 4 Cryopump Specifications .....................................................................1-5 Table 1-2: On-Board 4F Cryopump Specifications ...................................................................1-6 Table 1-3: On-Board 6 Cryopump Specifications .....................................................................1-7 Table 1-4: On-Board 8 Cryopump Specifications .....................................................................1-8 Table 1-5: On-Board 8F Cryopump Specifications ...................................................................1-9 Table 1-6: On-Board Enchanced 8F Cryopump Specifications ..............................................1-10 Table 1-7: On-Board 10 Cryopump Specifications .................................................................1-11 Table 1-8: On-Board 10F Cryopump Specifications ...............................................................1-12 Table 1-9: On-Board 250F Cryopump Specifications .............................................................1-13 Table 1-10: On-Board 250FH Cryopump Specifications ........................................................1-14 Table 1-11: On-Board 400 Standard Capacity Cryopump Specifications ...............................1-15 Table 1-12: On-Board 400 High Capacity Cryopump Specifications .....................................1-16 Table 3-1: Cryopump Troubleshooting Procedures ...................................................................3-2 Table 3-1: Troubleshooting Procedures (continued) .................................................................3-3 Table 4-1: Methods of Decontamination ...................................................................................4-1 Table 4-2: Decontamination Tools and Equipment ...................................................................4-3Cryopump SafetyIntroductionAll On-Board ®, On-Board ® IS , and Cryo-Torr ® products are designed to provide extremely safe and dependable operation when properly used. You must observe safety precautions during normal operation and when servicing On-Board, On-Board IS, and Cryo-Torr systems.NOTE: Read this manual and follow the safety guidelines in this chapter before installing, operating, or servicing On-Board, On-Board IS, and Cryo-Torr prod-ucts.Safety SymbolsThe safety symbols in this manual conform to ISO 3864 and ANSI Z535 standards. Table S-1 describes the kinds of symbols used in this manual.Signal Word DescriptionThis Caution indicates a potentially hazardous situation or unsafe practice which, if not avoided, may result in minor or moderate personal injury or equipment damage . ThisCaution is highlighted in yellow.This caution indicates a situation or unsafe practice which, if not avoided, may result in equipment damage. .A Warning indicates a potentially hazardous situation which, if not avoided, could result in serious injury or death . A Warning is highlighted in orange.Table S-1: Safety SymbolsSymbol TypeExample Description Warning Identifies the hazard; forexample, electric shockCryopump Cautions and WarningsYou must observe the following safety precautions when installing, operating, and main-taining the On-Board®, On-Board IS and Cryo-Torr® equipment. If you have any doubtson using this equipment, refer to Appendix A, “Customer Support” and call your localCustomer Support Center for assistance.Toxic, Corrosive, Dangerous Gases, or LiquidsTake the following precautions when handling toxic, corrosive, or dangerous gases.1.Follow all local, state, and national codes when working with causticmaterials and liquids.2.Always vent toxic, corrosive, dangerous gases, or liquids to a safe loca-tion using an inert purge gas.3.Clearly identify on the cryopump which toxic, corrosive, dangerous gasor liquid has been contained in the pump before storing or shipping toHelix Technology Corporation.Flammable or Explosive GasesTake the following precautions when handling flammable or explosive gases:1.Follow all local, state, and national codes when working with flam-mable gases2.Always purge the cryopump with an inert gas during regeneration.3.Always vent flammable or explosive gases to a safe location using an inert purge gas. Purging the cryopump’s exhaust line might also be neces-sary.4.Do not install a hot filament type vacuum gauge on the high vacuum side of the isolation valve. This could be an ignition source for flammable gases in the product.High VoltageTake the following precautions to prevent high voltage risks:1.Follow all local, state, and national codes when working with high voltage equipment.2.Disconnect the high vacuum pump system from all power sources before making electrical connections between system components or before per-forming troubleshooting and maintenance procedures.High VoltageHigh voltage electric shock could cause severe injury or loss of life.High Gas PressureTake the following precautions when working with high gas pressure:1.Normal making and breaking of the quick disconnect couplings canbe done routinely. However, when a quick disconnect coupling needsto be replaced and separated from the helium flex or solid line, alwaysbleed the helium charge down to atmospheric pressure before any dis-assembly.2.During regeneration, a rapid expansion of the cryopumped species occurswithin the cryopump. Restricting the flow through the exhaust port andexhaust line rapidly increases the pressure in the cryopump. This highinternal pressure can cause severe injury from propelled particles or parts.•Do not modify or remove the pressure relief valve on the cryopump.•Make sure that the path for the regenerated gas is unobstructed.FastRegen™ Control Users OnlyTake the following precautions in designing an appropriate gas handling system, includingroughing pump for toxic, corrosive, or dangerous gases.•The roughing pump must be compatible with these gases•The discharge from the roughing pump may include these gases andshould be vented in a safe manner•These gases will be discharged more rapidly into the roughing linethan from conventional cryopump regenerations. This might impactthe safe handling of discharge gases.e appropriately sized roughing lines to prevent over pressurizationof the roughing line during the expansion of such gases2.Be sure that the roughing line is compatible with low temperaturese roughing lines of sufficient length to allow the gases to warm ade-quately before entering the roughing pump4.Do not use fast regeneration after pumping large amounts of oxygenunless the roughing system is compatible with oxygen dutyCryopump Oxygen ProceduresTake the following special precautions when oxygen is used as a process gas:1.Insure that there are no sources of ignition (for example; hot filament vac-uum gauges) on the cryopump side of the high vacuum valve operating dur-ing the warming or venting of the cryopump.2.Perform inert gas purge regeneration cycles at flow rates recommended for cry-opumps.3.Regenerate as frequently as practical to minimize the amount of oxidizer present in the cryopump. It is standard practice in the vacuum industry that any system exposed to richer-than-air oxy-gen levels should be prepared for oxygen service per the manufacturer’s recommendations. This includes the use of oxygen service lubricating oils in roughing pumps or dry roughing pumps.Ozone may be unknowingly produced if oxygen is a process gas in an ionizing procedure; for example, sputtering, etching, and glow discharge. Explosive conditions may exist if ozone is present, especially during the warming of the cryopump. Signs of ozone presence are:1.Crackling, popping sounds (as in electrical arcing) occurring within the first few minutes of a regeneration cycle 2.Gas venting from the cryopump during regeneration that has a pungent smell, similar to that present in an arc welding operation or after an electrical storm NOTE: A change in process can increase the amount of ozone present.If your process can generate ozone, take these precautions:1.Reduce the oxygen flow rate to the lowest level that the process allows.2.Shorten the time between regenerations. Daily regenerations may be required.Call Helix Technology Corporation for assistance.Oxygen Combustion DangerWhen oxygen is used as a process gas in the cryopump, combustioncould cause severe injury .3.Insure that there are no sources of ignition (for example, hot filament vacuumgauges) on the cryopump side of the high vacuum valve operating during the warming or venting of the cryopump4.Perform inert gas purge regenerations at flow rates recommended for cryopumps.Cryo-Torr 8600 Compressor Operation, Installation and Maintenance GuideSection 1 - On-Board Cryopump DescriptionIntroductionOn-Board Cryopumps provide fast, clean pumping of all gases in the 10-3to 10-9 Torr range. An On-Board Cryopump operates on the principle thatgases can be condensed and held at extremely low vapor pressures,achieving high speeds and throughputs as described in Table1-5 - Table1-11.The On-Board Cryopump is a highly-reliable and rugged unit that requireslittle maintenance. Since the On-Board Cryopump exposes no movingparts, operating fluids, or backing pumps to the vacuum, the possibility ofsystem or process contamination from the On-Board Cryopump iseliminated.Installation, Operation, and Maintenance InstructionsInstallation, Operation, and Maintenance Instructions for your On-BoardCryopump provide easily accessible information. All personnel withinstallation, operation, and maintenance responsibilities should becomefamiliar with the contents of these instructions to ensure safe, reliable, andhigh performance.Microprocessor-Based Control SystemThe On-Board Cryopump is equipped with a microprocessor-based controlsystem that allows you to both monitor and control a wide range ofimportant vacuum system functions. Operations are performed on a keypadcontrol/display panel that is mounted right on the cryopump. You canmonitor and control cooldown, warm-up, regeneration, etc.Refer to appropriate On-Board Module Programming and OperationInstructions, that came with your On-Board Cryopump, for a completedescription of the numerous operational functions that are available.Remote Operation OptionsA remote keypad/display is available which provides the same functions asthe basic On-Board keypad/display.On-Board Cryopumps can be controlled remotely using either aBITBUS™ or RS-232 protocol. The most common implementation, usedin multiple On-Board Cryopump process tools, is to network the On-BoardCryopumps using the BITBUS™ protocol. In this configuration, thenetworked On-Board Cryopumps are managed as a group by the On-BoardNetwork Terminal, which coordinates group regeneration cycles andprovides a standardized communication link to the process tool hostcontroller. Using this approach, control of the networked On-BoardCryopumps is fully integrated with process tool control.On-Board Cryopumps are available in a range of sizes and configurationsto address different applications as shown in Figure 1-1 and Figure 1-2.The specifications for each On-Board Cryopump are provided inTable1-5 - Table1-12.Cryo-Torr 8600 Compressor Operation, Installation and Maintenance GuideFigure 1-1: On-Board Cryopumps On-Board 8On-Board 8FOn-Board 4 On-Board 6On-Board 250FOn-Board 4FOn-Board 10On-Board 10F On-Board 400 Figure 1-2: On-Board CryopumpsCryo-Torr 8600 Compressor Operation, Installation and Maintenance GuideSpecificationsTable 1-1: On-Board 4 Cryopump SpecificationsParameter Specifications Rough Pump Connection NW 25 ISO KFIntegrated Hardware Keypad/Display (Optional)Roughing ValvePurge ValveCryopump TC Gauge1st Stage Diode2nd Stage Diode1st Stage Heater2nd Stage Heater2 Setpoint RelaysRS-232 InterfacePumping Speeds:WaterAir HydrogenArgon 1100 liters/sec 500 liters/sec 500 liters/sec 420 liters/secArgon Throughput700 scc (9 Torr-liters/sec) Capacity:Argon Hydrogen 210 std. liters (no recovery metric)100 std. liters (recovery to 10-7 in 30 sec. or less) 3 std. liters @ 5 x 10-6TorrCrossover100 Torr-liters Regeneration TimeFull (Typical) Fast (Typical)Less than 84 minutes Less than 42 minutesDimensions Refer to Installation/Interface Drawing Weight45 lbs. (20 kg)Table 1-2: On-Board 4F Cryopump Specifications Parameter Specifications Rough Pump Connection NW 25 ISO KFIntegrated Hardware Keypad/Display (Optional)Roughing ValvePurge ValveCryopump TC Gauge1st Stage Diode2nd Stage Diode1st Stage Heater2nd Stage Heater2 Setpoint RelaysRS-232 InterfacePumping Speeds:WaterAir HydrogenArgon 1100 liters/sec 370 liters/sec 370 liters/sec 310 liters/secArgon Throughput700 scc (9 Torr-liters/sec) Capacity:Argon Hydrogen 210 std. liters (no recovery metric)100 std. liters (recovery to 10-7 @ 30 sec. or less) 3 std. liters @ 5 x 10-6TorrCrossover100 Torr-liters Regeneration TimeFull (Typical) Fast (Typical)Less than 84 minutes Less than 42 minutesDimensions Refer to Installation/Interface Drawing Weight47 lbs. (21 kg)Cryo-Torr 8600 Compressor Operation, Installation and Maintenance GuideTable 1-3: On-Board 6 Cryopump SpecificationsParameter Specifications Rough Pump Connection NW 25 ISO KFPurge Gas Connection VCR-4 Female NutIntegrated Hardware Keypad/Display (Optional)Roughing ValvePurge ValveCryopump TC Gauge1st Stage Diode2nd Stage Diode1st Stage Heater2nd Stage Heater2 Setpoint RelaysRS-232 InterfacePumping Speeds:WaterAir HydrogenArgon 2,500 liters/sec 800 liters/sec 1,200 liters/sec 650 liters/secArgon Throughput700 sccm (9 Torr-liters/sec) Capacity:Argon Hydrogen 500 std. liters9 std. liters @ 5 x 10-6 TorrCrossover100 Torr-liters Regeneration TimeFull (Typical) Fast (Typical)Less than 162 minutes Less than 60 minutesDimensions Refer to Installation/Interface Drawing Weight55 lbs. (25 kg)Table 1-4: On-Board 8 Cryopump Specifications Parameter Specifications Rough Pump Connection NW 25 ISO KFIntegrated Hardware Keypad/Display (optional)Roughing ValvePurge ValveCryopump TC Gauge1st Stage Diode2nd Stage Diode1st Stage Heater2nd Stage Heater2 Setpoint RelaysRS-232 InterfacePumping Speeds:WaterAir HydrogenArgon 4000 liters/sec 1500 liters/sec 2500 liters/sec 1200 liters/secArgon Throughput700 sccm (9 Torr-liters/sec) Capacity:Argon Hydrogen 1000 std. liters17 std. liters @ 5 x 10-6 TorrCrossover150 Torr-liters Regeneration TimeFull (Typical) Fast (Typical)Less than 162 minutes Less than 60 minutesDimensions Refer to Installation/Interface Drawing Weight55 lbs. (25 kg)Cryo-Torr 8600 Compressor Operation, Installation and Maintenance GuideTable 1-5: On-Board 8F Cryopump Specifications Parameter Specifications Rough Pump Connection NW 25 ISO KFIntegrated Hardware Keypad/Display (optional)Roughing ValvePurge ValveCryopump TC Gauge1st Stage Diode2nd Stage Diode1st Stage Heater2nd Stage Heater2 Setpoint RelaysRS-232 InterfacePumping Speeds:WaterAir HydrogenArgon 4000 liters/sec 1500 liters/sec 2200 liters/sec 1200 liters/secArgon Throughput700 sccm (9 Torr-liters/sec) Capacity:Argon Hydrogen 1000 std. liters (no recovery metric)450 std. liters (recovery to 10-7 in 30 seconds or less) 12 std. liters @ 5 x 10-6 TorrCrossover150 Torr-liters Regeneration TimeFull (Typical) Fast (Typical)Less than 162 minutes Less than 60 minutesDimensions Refer to Installation/Interface Drawing Weight52 lbs. (24 kg)Table 1-6: On-Board Enchanced 8F Cryopump Specifications Parameter SpecificationsRough Pump Connection NW 25 ISO KFIntegrated Hardware Keypad/Display (optional)Roughing ValvePurge ValveCryopump TC Gauge1st Stage Diode2nd Stage Diode1st Stage Heater2nd Stage Heater2 Setpoint RelaysRS-232 InterfacePumping Speeds:WaterAir HydrogenArgon 4000 liters/sec 1500 liters/sec 2200 liters/sec 1200 liters/secArgon Throughput700 sccm (9 Torr-liters/sec) Capacity:Argon Hydrogen 1000 std. liters (no recovery metric)750 std. liters (recovery to 10-7 in 30 seconds or less) 12 std. liters @ 5 x 10-6 TorrCrossover150 Torr-liters Regeneration TimeFull (Typical) Fast (Typical)Less than 162 minutes Less than 60 minutesDimensions Refer to Installation/Interface Drawing Weight52 lbs. (24 kg)Cryo-Torr 8600 Compressor Operation, Installation and Maintenance GuideTable 1-7: On-Board 10 Cryopump SpecificationsParameter Specifications Rough Pump Connection NW 25 ISO KFIntegrated Hardware Keypad/Display (optional)Roughing ValvePurge ValveCryopump TC Gauge1st Stage Diode2nd Stage Diode1st Stage Heater2nd Stage Heater2 Setpoint RelaysRS-232 InterfacePumping Speeds:WaterAir HydrogenArgon 9000 liters/sec 3000 liters/sec 5000 liters/sec 2500 liters/secArgon Throughput1500 scc/min. (19 Torr-liters/sec) Capacity:Argon Hydrogen 2000 std. liters24 std. liters @ 5 x 10-6TorrCrossover300 Torr-liters Regeneration TimeFull (Typical) Fast (Typical)Less than 132 minutes Less than 60 minutesDimensions Refer to Installation/Interface Drawing Weight95 lbs. (43 kg)Table 1-8: On-Board 10F Cryopump Specifications Parameter Specifications Rough Pump Connection NW 25 ISO KFIntegrated Hardware Keypad/Display (optional)Roughing ValvePurge ValveCryopump TC Gauge1st Stage Diode2nd Stage Diode1st Stage Heater2nd Stage Heater2 Setpoint RelaysRS-232 InterfacePumping Speeds:WaterAir HydrogenArgon 9500 liters/sec 3600 liters/sec 6000 liters/sec 3000 liters/secArgon Throughput1500 scc/min. (19 Torr-liters/sec) Capacity:Argon Hydrogen 2000 std. liters24 std. liters @ 5 x 10-6TorrCrossover300 Torr-liters Regeneration TimeFull (Typical) Fast (Typical)Less than 132 minutes Less than 60 minutesDimensions Refer to Installation/Interface Drawing Weight100 lbs. (45 kg)。

全球半导体设备厂商名单及网站

全球半导体设备厂商名单及网站

全球半导体设备厂商名单及网站全球半导体设备厂商名单及网站A.E. ADVANCED ENGINEERING, LTD. ABAKUS SOFTWARE GMBH www.abakus-soft.deAC SP. ZOO ACCRETECH www.accretech.jpACCRETECH/TOKYO SEIMITSU EUROPE GMBH www.accretech.jp ACE, INC. ACECO PRECISION MANUFACTURING ACP-IT AG ACUID ADE CORPORATION ADTEC PLASMA TECHNOLOGY CO. LTD. ADVANCE ELECTRIC CO., INC. ADVANCED DICING TECHNOLOGIES ADVANCED FLUID SYSTEMS LTD ADVANTEK GMBH AEM-EVERTECH AES MOTOMATION GMBH AGRU KUNSTSTOFFTECHNIK GMBH www.agru.atAIR PRODUCTS PLC 全球半导体设备厂商名单及网站(二)BEDESCIENTIFIC BERKSHIRE BERL INER GLAS KGaA www.berlinerglas.deBERNT GMBH www.berntgmbh.deBESI N.V. www.besi.nlBIBUS GMBH - CKD www.bibus.deBID SERVICE BIONICS INSTRUMENT EUROPE B.V. BIRD TECHNOLOGIES GROUP BMR TECHNOLOGY CORPORATION BMT MESSTECHNIK GMBH www.bmt-berlin.deBREWER SCIENCE LIMITED BRISKHEAT PRODUCTS (BH THERMAL) BRONKHORST HIGH-TECH B.V. BROOKS AUTOMATION BUSCH SEMICONDUCTOR VACUUM GROUP CABOT MICROELECTRONICS CABOT SUPERMETALS CABURN-MDC www.caburn.co. ukCAMBRIDGE FLUID SYSTEMS LIMITED CAMLINE DATENSYSTEME GMBH CAMTEK LTD. www.camtek.co.il#2 续CANON EUROPA N.V. CAPOVANI BROTHERS INC. CARBONE LORRAINE COMPOSANTS CARL ZEISS SMT www.zeiss.de/semiconductorCASCADE MICROTECH EUROPE LTD. CASCADE SCIENTIFIC LTD CATALYST EQUIPMENT CORPORATION CCI-VON KAHLDEN GMBH (PARTNER OF CINNOVATION) i-vk.de CCT EUROPE B.V. CENTROTHERM GMBH+CO KG CERADYNE, INC. CERAMTEC, CERAMASEAL DIVISION #3 续CHRIST WATER TECHNOLOGY www.christ.chCIMETRIX CLARIANT GMBH BU EM CLEANPART GMBH www.cleanpart.deCLEAR & CLEAN GMBH CMC INSTRUMENTS GMBH www.cmc-instruments.deCOLANDIS GMBH-CLEANROOM TECHNOLOGY JENA COMDEL, INC. CONTAINER TECHNOLOGY, INC. CONTECH SOLUTIONS INC. CONTRADE MICROSTRUCTURE TECHNOLOGY CRAFTECH INDUSTRIES, INC. CRYSTAL GROWING SYSTEMS GMBH www.cgs-gmbh.deCRYSTEC TECHNOLOGY TRADING GMBH CS CLEAN SYSTEMS AG CTI-CRYOGENICS CYBERNETIX MICROELECTRONIQUE www.cybernetix.fr#1 全球半导体设备厂商名单及网站(三)DAGE GROUP DAINIPPON SCREEN www.screen.co.jpDAITO ELECTRON CO., LTD. www.daitron.co.jpDALDROP + DR. ING. HUBER GMBH + CO. DAS GMBH DRESDEN www.das-europa.deDASTEX REINRAUMZUBEHOR GMBH & CO. KG (PARTNER OF CINNOVATION) DATACON TECHNOLOGY AG www.datacon.atDAW TECHNOLOGIES (EUROPE) LTD. www.dawtech.co mDELTA DESIGN DIENER ELECTRONIC GMBH + CO. KG www.plasma.deDISCO HI-TEC EUROPE GMBH DKSH GMBH (FORMER SIBERHEGNER GMBH) DMS DYNAMIC MICRO SYSTEMS GMBH www.dms-semi.deDOCKWEILER AG DONALDSON EUROPE DR. JOHANNES HEIDENHAIN GMBH www.heidenhain.deDR. SCHENK GMBH DR. TRESKY AG DRESSLER HF-TECHNIK GMBH #2 续DUPONT AIR PRODUCTS NANOMATERIALS L.L.C. DUPONT DE NEMOURS INTERNATIONAL SA DUPONT DOW ELASTOMERS S.A. /kalrez DUPONT PHOTOMASKS (FRANCE) SAS #1 全球半导体设备厂商名单及网站(四)E+H EICHHORN + HAUSMANN GMBH www.eichhorn-hausmann.deEAGLE TEST SYSTEMS, INC. EARTH TECH MICROELECTRONICS EDLON EKC TECHNOLOGY LTD ELECTROGLAS, INC. ELECTRONICS MANUFACTURING CHINA ELECTROPLATING ENGINEERS OF JAPAN ELMA CORP. www.elma.ruELSEVIER SCIENCE III-V'S REVIEW EM-TECHNIK GMBH ARMATURENBAU ENGELHARD CORPORATION ENTEGRIS, INC. ENTWICKLUNGSAGENTUR KÄRNTEN GMBH - [MICRO] ELECTRONIC CLUSTER GMBH www.me2c.atENTWICKLUNGSAGENTUR KÄRNTEN GMBH - ZENTRUM FÜR#2INNOVATION & TECHNOLOGIEEO TECHNICS CO., LTD. EPICHEM GROUP EPOXY TECHNOLOGY INC. EPP GMBH ERS ELECTRONIC GMBH www.ers-gmbh.deESEC (EUROPE) SA ESMO AG ETEL S.A. www.etel.chEURIS GMBH EUROPEAN IMPLANT FOUNDRY EUROPEAN SEMICONDUCTOR EUROTEC GMBH www.datacon.atEV GROUP EVAC #1 全球半导体设备厂商名单及网站(五)F&K DELVOTEC BONDTECHNIK GMBH FAB-TECH INCORPORATED FABTRONICS LTD. FALA TECHNOLOGIES INC. FEI COMPANY FEINMESS DRESDEN GMBH www.feinmess.deFEINMETALL GMBH www.feinmetall.deFERRO CORPORATION FERROTEC GMBH FESTO AG & CO. KG FHRANLAGENBAU GMBH www.fhr.deFHR ANLAGENBAU GMBH www.fhr.deFINETECH GMBH & CO. KG www.finetech.deFIRFAX SYSTEMS LTD FLOWMECA FOI CORPORATION www.foi.co.jpFOOTHILL INSTRUMENTS, LLC FRAUNHOFER INSTITUTE FOR RELIABILITY AND MICROINTEGRATION IZM www.izm.fraunhofer.deFRAUNHOFER INSTITUTE OF INTEGRATED SYSTEMS AND DEVICE TECHNOLOGY (IISB) www.iisb.fraunhofer.deFRAUNHOFER IPA www.ipa.fhg.deFRONTIER SEMICONDUCTOR FRT GMBH FSI INTERNATIONAL, INC. FUJIMI EUROPE www.fujimieurope.co.jp#1 全球半导体设备厂商名单及网站(六)GAISER TOOL COMPANY GE QUARTZ GEMETEC GEMU GEBR. MUELLER APPARATEBAU GMBH & CO KG www.gemue.deGENMARK AUTOMATION, INC. GEORG FISCHER PIPING SYSTEMS LTD. GIGACOMP GMBH GLOBAL SEMICONDUCTOR SAFETY SERVICES GOLD TECH INDUSTRIES GRANVILLE-PHILLIPS www.heli GREENE, TWEED & CO.GMBH www.gtweed.deGRENOBLE - ISERE, FRANCE HALCYONICS GMBH www.halcyonics.deHAMAMATSU PHOTONICS DEUTSCHLAND GMBH www.hamamatsu.deHAM-LET GROUP HAP GMBH DRESDEN www.hap-dresden.deHCT SHAPING SYSTEMS SA www.hct.chHD MICROSYSTEMS GMBH HEIDELBERG INSTRUMENTS www.himt.deHELIX TECHNOLOGY CORPORATION HELMUT BOSS VERPACKUNGSMASCHINEN #1 全球半导体设备厂商名单及网站(七)HERAEUS HOLDING GMBH HERAEUS NOBLELIGHT GMBH HESSE & KNIPPS GMBH HILEVEL TECHNOLOGY, INC. HILLELIAN CONCEPTS, INC. HITACHI HIGH-TECHNOLOGIES EUROPE GMBH HIWIN GMBH www.hiwin.deHONEYWELL ELECTRONIC MATERIALS HORIBA EUROPE GMBH HORST GMBH www.horst.deHOSITRAD HOLLAND/DEUTSCHLAND BV HOYA CORP. EUROPE BRANCH www.hoya.co.jpHSEB DRESDEN GMBH www.hseb-dresden.deHTT HIGH TECH TRADE GMBH www.httgmbh.de#2HUDSON VALLEY ECONOMIC DEVELOPMENT CORPORATION HUETTINGER ELEKTRONIK GMBH + CO. KG HYPERNEX, INC. IAT, INC. IBS - ION BEAM SERVICES ICADA GMBH IGAM - INGENIEURGESELLSCHAFT FUR ANGEWANDTE MECHANIK MBH www.igam-mbh.deIGC POLYCOLD SYSTEMS INC. IMEC www.imec.beIMTEC ACCULINE, INC. IN USA, INC. INABATA EUROPE S.A. www.inabata.beINABATA UK LIMITED www.inabata.co.jpINA-SCHAEFFLER KG INNODYS INNOLAS GMBH www.innolas.de#1 全球半导体设备厂商名单及网站(八)INNOVATIVE SILICON TECHNOLOGIES GMBH (ISILTEC GMBH) INTEGA HANS J JEHLGMBH INTEGRATED DYNAMICS ENGINEERING IDE INTERNATIONAL SEMATECH - WAFER SERVICES GROUP INTEST CORPORATION ION SYSTEMS, INC. IOS INSTRUMENTS GMBH IQE SILICON COMPOUNDS ISEL AUTOMATION KG www.iselautomation.deISONICS CORPORATION ITEMIC AG ITH - ISRAELI TEST HOUSE www.ith.co.ilITOCHU SYSTECH GMBH www.itochu-systech.deITW CONTAMINATION CONTROL IWAKI EUROPE GMBH www.iwaki.deJAPANS PIONICS CO., LTD. www.japan-pionics.co.jpJEM AMERICA JEMI FRANCE JEMI UK LTD JEOL GMBH #1 全球半导体设备厂商名单及网站(九)JINAN TMMT STONE CO., LTD. JIPELEC "JOBIN YVON S.A.S. " JOHN P. KUMMER AG JOYO ENGINEERING CO., LTD. www.joyo-eng.co.jpJSR MICRO N.V. JUST VAKUUMTECHNIK GMBH www.justvakuum.deK.T. PAK INTERNATIONAL KAYEX DIV OF SPXCORPORATION KDF KEITHLEY INSTRUMENTS GMBH KENOTEC S.R.L. www.kenotec.itKINETIC SYSTEMS INC. KITEC MICROELECTRONIC TECHNOLOGIE GMBH www.kitec.deKOMICO LTD. KOYO THERMO SYSTEMS CO., LTD. KSI KRÄMER SCIENTIFIC INSTRUMENTS GMBH KULICKE & SOFFA KYOCERA FINECERAMICS GMBH LAM RESEARCH CORPORATION LASERTEC CORPORATION sertec.co.jpL-A-T SUHL AG t-suhl.deLBF LUFTTECHNIK GMBH www.lbf-it.deLEICA MICROSYSTEMS SEMICONDUCTOR GMBH #1 全球半导体设备厂商名单及网站(十)LEVITRONIX GMBH LINDE AG, LINDE GAS DIVISION www.linde-gas.deLINOS PHOTONICS GMBH & CO. KG www.linos.deLINTEC ADVANCED TECHNOLOGIES (EUROPE) GMBH www.lintec.co.jp/e-deptLITEL INSTRUMENTS LOGITECH LTD. LOGITEX GMBH www.logitex.deLORANGER INTERNATIONAL CORPORATION LOTUS SYSTEMS LPE SPA LYDALL INDUSTRIAL THERMAL SOLUTIONS,LLC. M+W ZANDER FACILITY ENGINEERING GMBH MACROTRON SCIENTIFIC ENGINEERING GMBH MALEMA FLOW SENSORS MARTIN WALTER ULTRASCHALLTECHNIK AG www.walter-ultraschall.deMARUBENI CORPORATION MARUBENI EUROPE PLC, DUESSELDORF BRANCH MARUBENI TECHNO-SYSTEMSCORP. /index.htmlMASCHINENFABRIK LAUFF ER GMBH & CO KG uffer.deMASS-VAC, INC. MATEC APPLIED SCIENCES MCMILLAN COMPANY MECHATRONIC SYSTEMTECHNIK GMBH www.mechatronic.at#2MEECO, INC. MERCK ELECTRONIC CHEMICALS GMBH www.electronicchemicals.merck.deMESATRONIC S.A. www.mesatronic.frMESSER CUTTING & WELDING GMBH www.messer-cw.deMESSER NIPPON SANSO www.messer-nippon-sanso.deMETRONICS SEMICONDUCTOR EQUIPMENT GMBH www.metronics-semi.deMETTLER TOLEDO-THORNTON INC. MEYER + BURGER LTD www.meyerburger.chMICRO MAGAZINE MICROCHEM CORP. MICROHANDLING GMBH #1 全球半导体设备厂商名单及网站(十一)MIDDLESEX INDUSTRIES MIKROPACK GMBH www.mikropack.deMINAMI CO., LTD. www.ho-minami.co.jpMINITRON ELEKTRONIK GMBH MIRAE CORPORATION MIRAPRO CO., LTD. MITUTOYO MESSGERÄTE GMBH www.mitutoyo.deMKS INSTRUMENTS, INC. MOLECULAR ANALYTICS, INC. MONDIA QUARTZ MONOCRYSTAL PLC. MORGAN ADVANCED CERAMICS LTD. MRL INDUSTRIES, INC. MUEHLBAUER AG www.muehlbauer.deMULTITEST ELEKTRONISCHE SYSTEME GMBH MYKROLIS N. BUCHER AG NANOPHOTONICS AG www.nanophotonics.deNANOSENSORS™ www.nanosensors.co mNANOTEC INTERNATIONAL www.nanotec-gmbh.de#1 全球半导体设备厂商名单及网站(十二)NEGEVTECH NEW YORK LOVES NANOTECH NEXX SYSTEMS, INC. NIKAD ELECTRONICS LIMITED NIKKO MATERIALS NIKON PRECISION EUROPE GMBH NIPPON THOMPSON EUROPE B.V. www.ikont.co.jpNITTO DENKO (REP: NITTO EUROPE N.V.) NOR-CAL PRODUCTS, INC. NOVA MEASURING INSTRUMENTS LTD. www.nova.co.ilNOVASINA, A Division of Axair Ltd. #2NSK PRECISION EUROPE OAK TECHNICAL OBJECTIVE SOLUTIONS, INC. OEM SPARES, INC. OEM SURPLUS, INC. OHKA EUROPE, TOK www.tok.co.jpOKAMOTO MACHINE TOOL EUROPE GMBH www.okamoto-europe.de OKMETIC OYJ #1 全球半导体设备厂商名单及网站(十三)ONDEO INDUSTRIAL SOLUTIONS OPTICAL ASSOCIATES INC. ORTHODYNE ELECTRONICS ORTNER C.L.S. GMBH CLEANROOM LOGISTIC SYSTEMS www.ortner-cls.deOSRAM GMBH OXFORD INSTRUMENTS PLASMA TECHNOLOGY /plmchp5.htmOXIDKERAMIK J. CARDENAS GMBH www.oxidkeramik.deP.R. HOFFMAN PA LBAM CLASS PALL EUROPE /microPARKER HANNIFIN PARTICLE MEASURING SYSTEMS PB-TECHNIK AG PB-TECHNIK GMBH www.pbt.dePCT SYSTEMS INC PECO PRECISION ENGINEERING CO. LTD. PERFECTION PRODUCTS, INC. PERSYS TECHNOLOGY LTD. PETER WOLTERS SURFACE TECHNOLOGIES PHOENIX X-RAY SYSTEMS+SERVICES GMBH PHOTONICS SPECTRA/EUROPHOTONICS PHOTRONICS INC. PHYSIK INSTRUMENTE GMBH & CO. KG www.pi.wsPILLAR JSC www.pillar.kiev.uaPILZ AUTOMATION SAFETY L.P.PINTAIL TECHNOLOGIES, INC. PLADEPLANAR SEMICONDUCTOR INC.PLASPRO FOREIGN SALES www.plaspro.dePM PROFESSIONAL MAINTENANCE SERVICE & WARTUNGS GMBH www.pm-service-gmbh.dePMT PARTIKEL-MESSTECHNIK AG POCO GRAPHITE, INC. PODOLSKY CHEMICAL & METALLURGICAL PLANT, JSC www.pcmp.ru POLYTEC GMBH POWER TECH POWATEC GMBH PRATEC PRAZISIONSTECHNIK GMBH PRAXAIR, INC. /electronicsPRECISION FABRICS GROUP (EUROPE) GMBH PRECISION FLOW TECHNOLOGIES PRECISION PLUS VACUUM PARTS #1 全球半导体设备厂商名单及网站(十五)PRESI S.A. PROBE TECHNOLOGY EUROPE LTD PROBEST www.probest.frPR OCESS TECHNOLOGY PROLOG SEMICOR LTD. PROSYS, INC. PROTEC GMBH www.protec-gmbh.dePST PLASMA & SEMICONDUCTOR TECHNOLOGIES GMBH www.pst4eguns.dePUCES TECHNOLOGIESSEMICONDUCTOR PTS PUERSTINGER HIGH PURITY SYSTEMS GMBH www.puerstinger.dePVA TEPLA AG PYCON, USA QUALIFLOW QUALITAU INC. QUASYS AG www.quasys.chQUASYS GMBH www.quasys.deQUINTEL CORPORATION #1 全球半导体设备厂商名单及网站(十六)R.A. RODRIGUEZ GMBH www.rodriguez.deR3T GMBH www.r3t.deRAITH GMBH RAMGRABER GMBH www.ramgraber.deRASCO AG www.rasco.deRD AUTOMATION REED BUSINESS INFORMATION REID-ASHMAN MANUFACTURING RENA GMBH www.rena.deRENISHAW GMBH www.renishaw.deRETRONIX RF SUPPORT LTD. RIGAKU INTERNATIONAL CORPORATION www.rigaku.co.jpRIKA DENSHI AMERICA INC. RIKUTEC GMBH & CO. KG www.rikutec.deRION CO. LTD. RIPPEY CORPORATION #1 全球半导体设备厂商名单及网站(十七)ROFIN-SINAR LASER GMBH ROHM AND HAASELECTRONIC MATERIALS ROOD TECHNOLOGY DEUTSCHLAND GMBH+CO ROOS INSTRUMENTS INC. ROTH & RAU AG www.roth-rau.deRUDOLPH TECHNOLOGIES EUROPE S.E.S. CO., LTD. www2.ses-corp.co.jpSAE SEMICONDUCTOR ASSEMBLY EQUIPMENT GMBH SAES GETTERS S.P.A. SAES PURE GAS INC. SAGITTA SAINT-GOBAIN ADVANCED CERAMICS, BORON NITRIDE SAINT-GOBAIN DERMARQUEST SAINT-GOBAIN DIAMANTWERKZEUGE GMBH & CO. KG SAINT-GOBAIN INDUSTRIEKERAMIK DÜSSELDORF GMBH SEMICONDUCTOR COMPONENTS SAINT-GOBAIN PERFORMANCE PLASTICS ASTI SAINT-GOBAIN QUARTZ INTL LTD. SAINT-GOBAIN QUARTZ PLC SAINT-GOBAIN QUARTZ S.A.S. SAINT-GOBAIN SEMICON SERVICES LTD. #1 全球半导体设备厂商名单及网站(十八)SALLAND ENGINEERING B.V. SANDVIK CALAMO AB /calamoSAWATEC SOLUTIONS AG SC FLUIDS, INC. SCHENKER DEUTSCHLAND AG SCHMIDHAUSER AG www.schmidhauser.chSCHUNK INGENIEURKERAMIK SCHUNKKOHLENSTOFFTECHNIK SCHUNK SEMICONDUCTOR SCHWAB + KLUG GMBH & CO. KG www.schwab-klug.deSCOTTISH DEVELOPMENT INTERNATIONAL SCOTTISH SEMICONDUCTOR SUPPLIER FORUM SCP GLOBAL TECHNOLOGIES SDI SEMICONDUCTOR INSTRUMENTS SEC/N (SURPLUS EQUIPMENT CONSORTIUM/NETWORK INC.) #1 全球半导体设备厂商名单及网站(十九)SELFA VALVES + FITTINGS SEL-TEK SEMCO ENGINEERING SEMEQUIP, INC. SEMICAPS SEMICONDUCTOR EQUIPMENT & MATERIALS INTERNATIONAL (SEMI). SEMICONDUCTOR EQUIPMENT ASSESSMENT SEMICONDUCTOR INTERNATIONAL SEMICONDUCTOR MANUFACTURING MAGAZINE SEMICONDUCTOR TEST CONSORTIUM SEMILAB RT SEMITEST, INC. SEMITOOL EUROPE LIMITED SEMPA SYSTEMS GMBH SENSARRAY CORPORATION SENTECH INSTRUMENTS GMBH #1 全球半导体设备厂商名单及网站(二十)SETRA SYSTEMS SEZ AG SGL CARBON GMBH SHI - APD CRYOGENICS INC. SHIBUYA KOGYO CO., LTD. SHIMADZU - KRATOS SHINANO ELECTRONICS CO. LTD. SHINKAWA LTD. SHIN-ETSU POLYMER CO., LTD. www.shinpoly.co.jpSHIPLEY EUROPE LIMITED SIC ELECTRONICS SICK AG SICONNEX CUSTOMIZED SOLUTIONS GMBH SIEGHARD SCHILLER GMBH & CO. KG SIEMENS AG /semiconductor#1 全球半导体设备厂商名单及网站(二十一)SI-MAT SINGULUS TECHNOLOGIES www.singulus.deSMAC EUROPE LTD SMC CORPORATION SNECMA PROPULSION SOLIDE SOITEC www.soitec.co mSOLID STATE COOLING SYSTEMS SOLID STATE EQUIPMENT CORPORATION SOLURIS INC. SOLVAY FLUOR UND DERIVATE GMBH & CO KG www.solvay-fluor.deSOLVAY INTEROX SOLVAY SOLEXIS SONOSCAN, INC. SONOSYS<sup>®</sup> GMBH www.sonosys.deSOPRA SPARES,LLC SPI/SEMICON EUROPE GMBH SPS EUROPE SPT ROTH LTD. #1 全球半导体设备厂商名单及网站(二十二)SSE SISTER SEMICONDUCTOR EQUIPMENT GMBH STANGL SEMICONDUCTOR EQUIPMENT AG www.stangl.deSTC 'LUTCH-CERAMICS' STEAG ETA-OPTIK GMBH STEC STI SA-SYSTEMS & TECHNOLOGY INTL SA SURFACE TECHNOLOGY SYSTEMS PLC SUSS MICROTEC SWAGELOK COMPANY SWISSOPTIC SY NATRON GMBH www.synatron.deSYNOVA S.A. www.synova.chSYNTRONIXS TAKIRON CO., LTD. www.takiron.co.jpTEC LIMITED TESCE CHINA (SHANGHAI) CO.,LTD. TECH VALLEY, NEW YORK TECHLINK #1 全球半导体设备厂商名单及网站(二十三)TECHNIC FRANCE TECHNOS INTERNATIONAL, INC. TECNISCO LTD. www.tecnisco.co.jpTECNOTION TEGAL CORPORATION TEIKOKU TAPING SYSTEM CO., LTD. TELTEC TEM FILTER COMPANYINC. TEMPRESS SYSTEMS www.tempress.nlTEMPTRONIC CORPORATION TERADYNE GMBH TESCOM EUROPE GMBH & CO. KG TEXAS INSTRUMENTS TFE SRL, THIN FILM EQUIPMENT THE SCOTTISH MICROELECTRONICS CENTRE THERMO ELECTRON CORP. THERMO ELECTRON DEUTSCHLAND GMBH & CO KG #2 THERMO NORAN THERMOCOAX TIGER OPTICS, LLC. TLC EQUIPMENT EUROPE LTD. TOKYO ELECTRON EUROPE LIMITED TOSHIBA CERAMICS CO., LTD. www.tocera.co.jpTOSOK A NIDEC GROUP COMPANY www.tosok.co.jpTOWA CORPORATION www.towajapan.co.jpTRACIT TECHNOLOGIES TREBOR T RIKONTECHNOLOGIES TRU-SI TRUSTSEC IT SOLUTIONS GMBH www.trustec.de#1 全球半导体设备厂商名单及网站(二十四)TUILASER AG TUV RHEINLAND GROUP TYCO THERMAL CONTROLS GMBH ULVAC GMBH UMICORE MATERIALS AG UNAXIS SEMICONDUCTORS UNISANTIS S.A. USHIO EUROPE B.V. hio.nlVACO MICROTECHNOLOGIES VACOM GMBH www.vacom.deVALEX SARL VARIAN, INC. VAT VAKUUMVENTILE AG VEECO INSTRUMENTS #1 全球半导体设备厂商名单及网站(二十五)VEONIS TECHNOLOGIES GMBH VICTREX EUROPA GMBH VOLTAIX, INC. VON ARDENNE ANLAGENTECHNIK GMBH VOSS ELECTRONIC GMBH www.vosselectronic.deVZS//SEAGOE ADVANCED CERAMICS WAFER SERVICES INTERNATIONAL WAFERFAB EQUIPMENT LTD. WAFERTEC PRIBYL GMBH www.Wafertec-Pribyl.deWATLOW GMBH WAVECREST EUROPA GMBH WELLS-CTI WEST BOND INTERNATIONAL, INC. #1 全球半导体设备厂商名单及网站(二十六完)WHITE KNIGHT FLUID HANDLING INC. WIKA c/o Wika Alexander Wiegand GmbH www.wika.deWILLIAMS ADVANCED MATERIALS - THIN FILM PRODUCTS WORLD COURIER (DEUTSCHLAND) GMBH WWK WRIGHT WILLIAMS & KELLY, INC. XANDEX, INC. XIPEQ XSIL LTD. XYCARB CERAMICS B.V. YAMAICHI ELECTRONICS DEUTSCHLAND www.yamaichi.deYASKAWA ELECTRIC EUROPE GMBH www.yaskawa.de还有些公司没有整理好!希望各位同行见谅!。

微型斯特林制冷机的进展

微型斯特林制冷机的进展

〈制冷技术〉微型斯特林制冷机的进展胡白楠1,陈晓屏2,夏明2(1.中国北方工业公司,北京 100053;2.昆明物理研究所,云南昆明 650223)摘要:随着高温超导和空间技术的发展对微型低温制冷机的制冷量、效率和可靠性提出了更高的要求。

新出现的技术如柔性支撑和脉管将对未来的制冷机产生巨大的影响。

介绍了最近几十年里各种微型制冷机的发展状况,特别是重点介绍了微型斯特林制冷机的发展,给出了世界各大制冷机生产厂家的生产水平。

同时本文介绍了目前国内的微型斯特林制冷机发展状况。

关键词:斯特林;制冷机;进展中图分类号:TB66 文献标识码:A 文章编号:1001-8891(2006)12-0730-04The Development of Low-Power Stirling CryocoolerHU Bai-nan1,CHEN Xiao-Ping2,XIA Ming2(1.China North Industries Corporation, Beijing 100053, China; 2.Kunming Institute of Physics, Kunming Yunnan 650223, China)Abstract:With the development of high temperature superconduct and space technology, the requirements for the high efficiency, reliability and cooling max of the low-power cryocoolers will be higher. The new technologies of flexure and pulse tube have enormous effect on future cryocoolers. The development of the low-power stirling cryocooler in several decades is proposed, and many high-power cryocooler companies are presented. The development stirling cryocooler in our country is introduced.Key words:Stirling;cryocooler;development引言在过去的三四十年里微型斯特林制冷机在军事和空间技术上得到了极大的发展。

cryogenics in space 制冷与低温技术在太空的发展

cryogenics in space 制冷与低温技术在太空的发展

ІІІ. Cryogenics and spacecraft engineering
Shanghai Jiao Tong University
Architecture of cryogenic spacecraft Space coolers Thermal insulation and ancillary equipment
Cryogenics in space
-- a review of the missions and of the technologies
**** 2012.03
Shanghai Jiao Tong University
Contents
Introduction Applications of cryogenics in space Cryogenics and spacecraft engineering Key technologies Conclusions
Shanghai Jiao Tong University
Cryo-electronics
In the last 10 years electronics systems operating at cryogenic temperature(often indicated by the term cryoelectronics) have found numerous applications in several fields, including flight hardware onboard spacecrafts
Shanghai Jiao Tong University
І. Introduction
The continuious improvement of cryogenic equipment has made it easier and easier to achieve temperature well below the liquefaction point of nitrogen The rapid progress of the last 30 years is clearly visible.

冷泵工作原理

半导体应用资料库————冷(凝)泵基础讲座2011.07.01上海驰舰半导体科技有限公司康凯丽CRYOPUPING SEMINARWELCOME TOCTI-CRYOGENICS’ CRYOPUMPING BASICSCRYOPUMPING BASICS: Molecules and TemperatureMolecules and Temperature Molecules in constant motion have kinetic energy.The temperature determinestheir average kinetic energy.The higher the temperature,the faster the molecules move.CRYOPUMPING BASICS: Molecules and TemperatureWater Boils373 K100o C212o FRoom Temperature293 K20o C68o F Water Freezes273 K0o C32o FNitrogen Boils77 K-196o C-320o FHydrogen Boils20 K-253o C-423o F Helium Boils 4.2 K-269o C-452o F Absolute Zero0.0 K-273o C-459o FNo Molecular ActivityCRYOPUMPING BASICS: Capture TheoryCryocondensation(冷凝)Pumping gases by cooling them to point thatthey condense, and freeze, on a surface. Acryopump pumps water and “air” gases by cryocondensation; the gases forming a layer of frost on the condensing array.CRYOPUMPING BASICS:Capture TheoryCryoadsorption(吸附)Pumping gases by cooling them to the point that they lose sufficient energy andaccumulate on a surface. A cryopumppumps H2, He, and Ne in the charcoaladsorbing array by cryoadsorbtion.CRYOPUMPING BASICS:Capture Theory H 2O N 2Ar Ne80K~15K~15KH 2This surface pumps water vapor by cryo condensationThis surface pumps air gases by cryo condensation This surface pumps H 2, He, and Ne by cryoadsorptionCRYOPUMPING BASICS: Capture Theory -Cryoadsorption⏹Increased surface area providesgreater capacity.⏹Released molecules remainconfined.⏹Irregular surface constrictsmotion.⏹Cryoadsorption of hydrogen, neon,and helium accomplished.⏹Large surface area: 1150-1250 m2/gmActivated CharcoalFreeMolecules Adsorbed MoleculesLimitedaperturesCRYOPUMPING BASICS:Cryopump Concept⏹Cryopumps pump different gases at different places at different temperatures.⏹Array spacing provides molecular path⏹Necessary temperatures are maintained with an integrated control module.Control ModuleH 2OO 2, N 2, ArH 2, He, NeCRYOPUMPING BASICS:Characteristics:Capture Type PumpCleanest high vacuum pump No fluids, lubricants, or movingparts High crossover capabilityminimizes backstreaming Highest pumping speeds Tailorable pumping speedsFast system pumpdown CTI -CRYOGENICSFlange Central ProcessorVacuum Vessel1st Stage Array 2nd Stage Array Radiation ShieldA cryopump is built around the cold-head.–Creates temperatures needed to condense and adsorb gases –Two stages for different temperaturesAchieves these temperatures by the expansion of helium.CRYOPUMPING BASICS:System Design -Cryopump Components1st Stage:65 -80 K2nd Stage:10 -14 KCRYOPUMPING BASICS: System Design -Cryopump ComponentsA radiation shield is attached tothe 1st stage of the cold-head.–Copper for conductivity–Nickel plating for protection The vacuum vessel isolates the cryopump.The inlet flange attaches to the chamber.RadiationShield VacuumVesselFlangeCRYOPUMPING BASICS:System Design -Cryopump ComponentsThe 1st stage (65 K) array is attached to the radiation shield.–Condenses water vaporA series of arrays with charcoal are attached to the 2nd stage (12 K) of the cold-head.–Condenses O 2, N 2, Ar –Adsorbs H 2, He, NeControl ModuleH 2OO 2, N 2, ArH 2, He, Ne12 K Arrays w/ CharcoalPrimary Displacer Stainless housingBronze screen for thermal mass (蓄冷器)Phenolic casingHelium inlet and exhaustCRYOPUMPING BASICS:System Design -Refrigerator置换器出气阀封条蓄冷器进气阀Cycle begins with displacer at TDC.CRYOPUMPING BASICS:System Design -RefrigeratorTop-Dead Center (TDC)CRYOPUMPING BASICS: System Design -RefrigeratorCycle Begins with displacer atTDC.Inlet valve opens.Displacer moves downward.Cycle begins with displacer at TDC.Inlet valve opens.Displacer moves downward.Helium fills void.CRYOPUMPING BASICS:System Design -RefrigeratorAt BDC, inlet valve closes.Exhaust valve opens.Displacer moves upward.Gas expands and cools.CRYOPUMPING BASICS:System Design -RefrigeratorBottom -Dead Center (BDC)CRYOPUMPING BASICS: System Design -RefrigeratorGas flows down through displacermatrix removing heat.Gas exits through exhaust valve.CRYOPUMPING BASICS: System Design -RefrigeratorDisplacer again at TDC.Remaining gas exits.Exhaust valve closes.Cycle repeats at 72 rpm.CRYOPUMPING BASICS:System Design -RefrigeratorAfter each cycle the displacermatrix (thermal mass蓄冷器) iscolder ...... pre-cooling the incoming heliumBEFORE expansion.Secondary DisplacerSecond stage attached to top of primary displacer allows even lower temperatures.Lead shot for thermal mass.Phenolic casing.CRYOPUMPING BASICS:System Design -RefrigeratorDisplacer HousingExhaustValveSealBrass Screen InletValveSealLead ShotCRYOPUMP OPERATIONS 氦气回路图:压缩机冷头热交换器油雾分离器油雾吸附器CRYOPUMP OPERATIONS:System Overview:Cold-Head Power CableInput Power CableTo Roughing SystemSupply Line Return LineHelium CompressorUnitControl ModuleMounting Flange(Interface to Vacuum Chamber)Cold HeadCryopumpON -BOARDCryopumpCTI -CRYOGENICSCRYOPUMP OPERATIONS: VacuumPumps -CrossoverCrossover Pressure(交差压力)CalculationCrossover value (可以处理的最大气体吸入量)for On-Board8 = 150 Torr-liters最大允许交差压力: Crossover value = P in TorrChamber volume150 Torr-liters= .5 Torr300 liters 交差压力:当真空腔体粗抽完了后,在打开冷泵的主阀时,真空腔体的压力。

Chemical Science and Technology Laboratory Overview

Hratch Semerjian
Physics Laboratory
Katharine Gebbie
Materials Science and Engineering Laboratory
Leslie Smith
Building and Fire Research Laboratory
Jack Snell
Dale Hall
Chemical Science and Technology Laboratory
Hratch Semerjian
Physics Laboratory
Katharine Gebbie
Materials Science and Engineering Laboratory
Leslie Smith
National Institute of Standards and Technology
Director Arden Bement Deputy Director Karen Brown
National Quality Program
Harry Hertz
Boulder Laboratories
Vacant
Director for Administration
Jorge Urrutia
Technology Services
Richard Kayser
Advanced Technology Program
Marc Stanley (Act.)
Manufacturing Extension Partnership
Cell Phones
ቤተ መጻሕፍቲ ባይዱ
Improving the Quality of Life:

美国CTI低温泵

美国CTI低温泵CTI On-Board IS 智能冷凝泵  CTI-CRYOGENICS 世界顶级的低温泵(冷凝泵),其先进的技术,稳定的产品质量引领着真空低温泵的发展。

冷凝泵的原理是将气体冷冻结成霜,从而形成真空;或者气体冷冻后动能减少,从而用焦碳将其吸附住,形成真空。

CTI-CRYOGENICS 冷凝泵(低温泵)无论在真空度,性能,维护成本,远程监控功能上都给客户提供了专业完美的解决方案。

151-595-95-709 QQ241-002-0180 CTI-CRYOGENICS提供世界顶级的冷凝泵(低温泵),其先进的技术,稳定的产品质量引领着真空低温泵的发展。

 产品的优点: 1、真空度高,无油。

符合高要求的真空系统的需要; 2、泵内没有机械运动部件,没有易损件,安装灵活,无需特别维护; 3、性能稳定,维护成本低; 4、抽吸水汽的能力强,抽速大; 5、On-Board型冷凝泵具有全自动快速再生功能,全再生最多只需4小时; 6、具有强大的网络(远程)监控功能 应用: 工业真空系统、科研真空系统等需要无油的高真空系统。

  由于低温泵(冷凝泵)具有无油, 对所有气体的抽速都较大, 特别是对水蒸汽、H2 等抽速很大, 适应性强, 制冷机低速运行, 且运动部件很少, 有利于长期可靠运行等优点. 因而, 低温泵(冷凝泵)被广泛应用于IC生产工艺中的蒸发、溅射、离子注入、分子束外延以及其它诸如高能粒子加速器、受控热核反应、电真空器件、材料科学、表面分析仪器等领域, 以此来获得清洁的高真空或超高真空。

  CTI On-Board IS 智能冷凝泵产品优势:  ?优越的真空质量  ?最快捷的全面再生速度  ?在两次再生之间更长的生产运行时间  ?智能化“自动调节”技术  ?智能泵体管理系统  ?相同的生产力状况下最节能的设备 。

CTI Cryogenics overview


M-350
30 Lbs. 15 kg
50 to 20K
8200
M-1020
33 Lbs. 15 kg
50 to 20K
9600
M-1050
0 watts @ 10K 33 Lbs. 50 to 20K 2 watts @ 12K 15 kg + 8 watts @ 18K Note: Refer to load curves in manual for specific performance
Bronze Screen Seal
Exhaust Valve
Inlet Valve
© 2015 Brooks Automation, Inc. • Proprietary Information
Two-Stage Cryodyne® Refrigerators
Second Stage Heat Station
Model M-22
Weight 13 Lbs. 6 kg 28 Lbs. 13 kg 31 Lbs. 14 kg
M-350
20 to 80K
8200
M-1050
16 to 30K
9600
© 2015 Brooks Automation, Inc. • Proprietary Information
© 2015 Brooks Automation, Inc. • Proprietary Information
CTI-Cryogenics Product Line
Cryo-Torr Cryopump (4F, 8, 8F, 10, 400) On-Board Cryopump (4, 8, 8F, 250F, 10, 10F, 400, WP)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M-350 P/N 8039194
M-1050 P/N 8004502
© 2015 Brooks Automation, Inc. • Proprietary Information
Single-Stage Cryodyne® Specification
Typical Performance 0 watts @ 30K 10 watts @ 77K 0 watts @ 30K 25 watts @ 77K 0 watts @ 30K 80 watts @ 77K Cooldown Time/minutes 24 to 80K Required Compressor_ 8200
© 2015 Brooks Automation, Inc. • Proprietary Information
Refrigerator Operation
Cycle Begins With Displacer at TDC Inlet Valve Opens Displacer Moves Downward Helium Fills Void
CTI-Cryogenics Product Line Overview
2015 Sept
© 2015 Brooks Automation, Inc. • Proprietary Information
Cryopumps and Cryopump Systems
CTI-Cryogenics®: World leader in cryogenic vacuum technology
© 2015 Brooks Automation, Inc. • Proprietary Information
Refrigerator Operation
Displacer Again at TDC Remaining Gas Exits Exhaust Valve Closes Cycle Repeats at 72 RPM
Top-Dead Center (TDC)
© 2015 Brooks Automation, Inc. • Proprietary Information
Refrigerator Operation
Cycle Begins With Displacer at TDC Inlet Valve Opens Displacer Moves Downward
First Stage Heat Station Mounting Flange
M-22 P/N 8104001
M-350 P/N 3695576
M-1020 P/N 8018095
M-1050 P/N 8004047
© 2015 Brooks Automation, Inc. • Proprietary Information
© 2015 Brooks Automation, Inc. • Proprietary Information
Refrigerator Operation
Secondary Displacer
Second Stage Attached to Top of Primary Displacer Allows Even Lower Temperatures Lead Shot for Thermal Mass Phenolic Casing Lead Shot Seal Displacer Housing
Two-Stage Cryodyne® Specification
Typical Model M-22 Performance 0 watts @ 8K 0.25 watts @ 10K + 2.0 watts @ 22K 0 watts @ 10K 2 watts @ 14K + 6 watts @ 24K 0 watts @ 8K 10 watts @ 17K + 15 watts @ 24K Weight 14 Lbs. 6.5 kg Cooldown Time/minutes 30 to 20K Required Compressor_ 8200
© 2015 Brooks Automation, Inc. • Proprietary Information
Refrigerator Operation
Gas Flows Down Through Displacer Matrix Removing Heat Gas Exits Through Exhaust Valve
M-350
30 Lbs. 15 kg
50 to 20K
8200
M-1020Biblioteka 33 Lbs. 15 kg
50 to 20K
9600
M-1050
0 watts @ 10K 33 Lbs. 50 to 20K 2 watts @ 12K 15 kg + 8 watts @ 18K Note: Refer to load curves in manual for specific performance
Compressors and Refrigerators
© 2015 Brooks Automation, Inc. • Proprietary Information
Refrigerator Operation
Primary Displacer
Stainless Housing Bronze Screen for Thermal Mass Phenolic Casing Helium Inlet and Exhaust Displacer Housing
Bronze Screen Seal
Exhaust Valve
Inlet Valve
© 2015 Brooks Automation, Inc. • Proprietary Information
Two-Stage Cryodyne® Refrigerators
Second Stage Heat Station
On-Board® IS Cryopump The New Industry standard
o
Designs can be tailored to fit most applications
© 2015 Brooks Automation, Inc. • Proprietary Information
© 2015 Brooks Automation, Inc. • Proprietary Information
• • • • •
Cryopump Product Line
On-Board®
Cryo-Torr®
Reliable Cryopump Technology Intelligent Components Integrated Electronics
On-Board IS
Intelligent System-level Controls
Advanced Cryopump Technology
© 2015 Brooks Automation, Inc. • Proprietary Information
Product Applications
CTI products are used in semiconductor wafer process tools that make all of the microprocessors and single purpose chips, used in all electronic and most Electromechanical devices such as computers, radios, telephones, cell phones, TV satellites, cars, appliances, tools etc. Our products are also used in the manufacturing of magnetic and optical storage discs and flat panel displays.
Bronze Screen Seal
Exhaust Valve
Inlet Valve
© 2015 Brooks Automation, Inc. • Proprietary Information
Refrigerator Operation
Cycle Begins With Displacer at TDC
9600
© 2015 Brooks Automation, Inc. • Proprietary Information
Single-Stage Cryodyne® Refrigerators
First Stage Heat Station
Mounting Flange
M-22 P/N 8104073
Model M-22
Weight 13 Lbs. 6 kg 28 Lbs. 13 kg 31 Lbs. 14 kg
M-350
20 to 80K
8200
M-1050
16 to 30K
9600
© 2015 Brooks Automation, Inc. • Proprietary Information
o o o
70,000+ cryopumps shipped High reliability Global support: 7 x 24 hours, 365 days a year
Broad product range
o o
Four product lines 1,200+ unique designs -- and growing
相关文档
最新文档