人教版七年级数学上册各章知识点总结及对应章节经典练习汇编
(word版)人教版七年级数学上册各章知识点总结,文档

七年级数学〔上册〕第一章:有理数总复习一、有理数的根本概念1.正数:大于0的数叫做正数;负数:小于0的数叫做负数。
备注:在正数前面加“-〞的数是负数;“0〞既不是正数,也不是负数。
有理数:整数和分数统称有理数。
数轴:规定了原点、正方向和单位长度的直线。
性质:〔1〕在数轴上表示的两个数,右边的数总比左边的数大;〔2〕正数都大于 0,负数都小于0;正数大于一切负数;〔3〕所有有理数都可以用数轴上的点表示。
相反数:只有符号不同的两个数,其中一个是另一个的相反数。
性质:〔1〕数a的相反数是-a〔a是任意一个有理数〕;〔2〕0的相反数是 0;〔3〕假设a、b互为相反数,那么a+b=0;假设a、b互为相反数且a、b都不等于零,那么a1;b5.倒数:乘积是1的两个数互为倒数。
性质:〔1〕a的倒数是〔a≠0〕;〔2〕0没有倒数;〔3〕假设a与b互为倒数,那么ab=1;假设a与b互为负倒数,那么ab= -1。
倒数与相反数的区别和联系:〔1〕a与-a互为相反数;a与1〔a≠0〕互为倒数;〔2〕符号上:互为相反数〔除0a外〕的两数的符号相反;互为倒数的两数符号相同;〔3〕a、b互为相反数→→a+b=0;a、b互为倒数→→ab=1;〔4〕相反数是本身的数是0,倒数是本身的数是±1。
6.绝对值:一个数a的绝对值就是数轴上表示数a的点与原点的距离。
性质:〔1〕数a的绝对值记作︱a︱;〔2〕假设a>0,那么︱a︱=a;假设a<0,那么︱a︱=-a;假设a=0,那么︱a︱=0;〔3〕对任何有理数a,总有︱a︱≥0.有理数大小的比拟:〔1〕可通过数轴比拟:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于 0;正数大于一切负数;〔2〕两个负数,绝对值大的反而小。
即:假设a<0,b<0,且︱a︱>︱b︱,那么a<b.8.科学记数法:把一个绝对值大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法。
新人教版七年级上册数学1-5单元知识点总结

新人教版七年级上册数学1-5单元知识点
总结
1.数与代数
- 自然数、整数、有理数和实数的概念
- 数轴及其在数线上的表示
- 有理数的比较和大小关系
- 加法和减法的运算规则
- 正数和负数的加法和减法运算
- 数的整除和倍数的概念
2.图形的认识
- 平面图形和立体图形的分类
- 点、线、面的概念
- 直线、曲线的认识
- 三角形、四边形、圆的基本特征
- 直角、钝角、锐角的辨认
- 图形的对称和变化
3.两线之间的位置关系
- 平行线和垂直线的特征与判定方法
- 同位角、对顶角、内错角的定义和计算- 直线之间的夹角与对应角
- 利用平行线的性质解决问题
4.数的整数运算
- 乘法的运算规则
- 整数的加法、减法和乘法运算
- 整数除法与余数的概念
- 合并同类项和因式分解的方法
5.方程与不等式
- 代数式、方程和等式的关系与区别
- 解方程的基本步骤和原则
- 一元一次方程的解法和应用
- 不等式的定义和性质
- 解一元一次不等式的方法
以上是新人教版七年级上册数学1-5单元的知识点总结。
通过学习这些内容,能够对数与代数、图形、位置关系、整数运算、方程与不等式等方面的数学知识有更全面的了解。
(最新最全)人教版初中数学七年级上知识点详解总结(汇编)

初中数学公式及定理点总结 七年级数学(上)知识点第一章 有理数一、知识框架二、知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数. (2)有理数的分类: ①按符号分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② 按定义分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,互为相反数,即a 和- a 互为相反数;0的相反数是0;(2) 几何意义:到原点距离相等的两个点表示的两个数是互为相反数(3)a+b=0 ⇔ a 与b 互为相反数.4.绝对值:(1)绝对值几何意义:是数轴上表示某数的点到原点的距离; 代数意义:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a(或⎩⎨⎧<-≥=)0a (a )0a (a a 或⎩⎨⎧≤->=)0()0(a a a a a ;) 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;5.有理数的大小比较:两个负数比较大小,绝对值大的反而小;数轴上的两个数,右边的数总比左边的数大;即负数<0<正数6.倒数:乘积为1的两个数互为倒数;7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,负因数的个数为奇数时乘积为负,负因数个数为偶数时乘积为正.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数; 注意:零不能做除数,无意义即0a . 13.有理数的乘方:(1)乘方的定义:求相同因式积的运算,叫做乘方;即n 个a 相乘表示为:n an a a a a a a =⋅⋅⋅个 (其中叫幂叫指数,叫底数,n a n a )(2)有理数乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数;负数的偶次幂是正数;14.科学记数法:(1)把一个大于10的数记成a ×10n的形式,(其中1≤a <10)这种记数法叫科学记数法.(2)近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.(3)有效数字:从左边第一个不为零的数字起,到精确的位数上,所有数字,都叫这个近似数的有效数字.(补充)第二章整式的加减一.知识框架二.知识概念1.单项式:数字或字母的乘积叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的系数;单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
人教版七年级数学(上册)各章知识点总结材料与对应章节经典练习

七年级上册各章知识点第一章《有理数》一、正数与负数1.正数与负数表示具有相反意义的量。
问:收入+10元与支出-10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数就是有理数 。
判断:有理数可分为正有理数和负有理数( 错,还有0)②零既不是正数,也不是负数。
判断:0是最小的正整数(错 ),正整数负整数统称整数(错,还有0 ),正分数负分数统称分数(对 )③有限小数和无限循环小数因都能化成分数,故都是有理数。
判断:0是最小的有理数(错 )④无限不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。
判断:整数和小数统称有理数(错,整数和分数统称有理数 )。
二、数轴1.数轴三要素:原点、正方向、单位长度 (另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。
3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)则对应的数应加(或减)4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?)三、相反数1.定义:若a+b=0,则a 与b 互为相反数 特例:因为0+0=0,所以0的相反数是02.性质:①若a 与b 互为相反数,则a+b= 0②-a 不一定表示负数,但一定表示a 的相反数(仅仅相差一个负号)③若a 与b 互为相反数且都不为零,a b= -1 ④除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。
⑤互为相反数的两个数绝对值相等,平方也相等。
即:a =a -,()22a a =-四、绝对值1.定义:在数轴上表示数a 点到原点的距离,称为a 的绝对值。
记作a2.法则:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。
(完整)人教版七年级数学上册各章知识点总结,推荐文档

一、有理数的基本概念第一章:有理数总复习1.正数:大于 0 的数叫做正数;负数:小于 0 的数叫做负数。
备注:在正数前面加“-”的数是负数;“0”既不是正数,也不是负数。
2.有理数:整数和分数统称有理数。
3.数轴:规定了原点、正方向和单位长度的直线。
性质:(1)在数轴上表示的两个数,右边的数总比左边的数大;(2)正数都大于 0, 负数都小于 0;正数大于一切负数;(3)所有有理数都可以用数轴上的点表示。
4.相反数:只有符号不同的两个数,其中一个是另一个的相反数。
性质:(1)数a 的相反数是-a(a 是任意一个有理数);(2)0 的相反数是 0;(3)a 若a、b 互为相反数,则 a+b=0;若a、b 互为相反数且 a、b 都不等于零,则5.倒数:乘积是 1 的两个数互为倒数。
=-1 ;b 性质:(1)a 的倒数是(a≠0);(2)0 没有倒数;(3)若a 与b 互为倒数,则ab=1;若 a 与 b 互为负倒数,则 ab=-1。
倒数与相反数的区别和联系:1(1)a 与- a 互为相反数;a 与(a ≠ 0)互为倒数;(2)符号上:互为相反数(除a0 外)的两数的符号相反;互为倒数的两数符号相同;(3)a、b 互为相反数→→a+b=0;a、b 互为倒数→→ ab=1;(4)相反数是本身的数是 0,倒数是本身的数是±1。
6.绝对值:一个数 a 的绝对值就是数轴上表示数 a 的点与原点的距离。
性质:(1)数 a 的绝对值记作︱a︱;(2)若 a>0,则︱a︱= a;若 a<0,则︱a︱= -a;若 a =0,则︱a︱=0;(3)对任何有理数 a,总有︱a︱≥0.7.有理数大小的比较:(1)可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于 0,负数都小于 0;正数大于一切负数;(2)两个负数,绝对值大的反而小。
即:若 a<0,b<0,且︱a︱>︱b︱,则 a < b.8.科学记数法:把一个绝对值大于 10 的数记成a×10n的形式,其中 a 是整数数位只有一位的数,这种记数法叫做科学记数法。
七年级数学上上册知识点总结及练习题(含答案)

人教版七年级数学上册知识点及练习题第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
【能力训练】一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b <-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
人教版七年级数学上册知识点总结1-4章
第一章有理数1.1 正数和负数(1)大于0的数叫正数,在正数前面加上负号“- ”的数叫负数,负数小于0(根据需要我们有是时会在正数前面加上”+ ”表示正数,但通常不加,负数一定加“- ”);(2)0是正数与负数的分界,0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a不一定是负数,+a也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 a是正数; a≥0 a是正数或0 a是非负数;a<0 a是负数; a≤ 0 a是负数或0 a是非正数.例题:1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;正分数,负分数统称为分数;(3)用一条直线上的点表示数,这条线叫做数轴;在数轴上任取一个点表示数0,这个点叫做原点 ; 通常规定直线上从原点向右为正方向,从原点向左为负方向;选取适当的长度为单位长度;(4)一般地,当a是正数时,则数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度;(5)两点关于原点对称:一般地,设a是正数,则在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称;(6只有符号不同的两个数叫做互为相反数;(7)一般地,a的相反数是-a;特别地,0的相反数是0;在任意一个数前面填上”- ”,就得到了这个数的相反数;(8)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(9)a、b互为相反数 a+b=0 ;(即相反数之和为0)(10)a、b互为相反数或;(即相反数之商为-1)(11)a、b互为相反数 |a|=|b|;(即相反数的绝对值相等)(12)绝对值:一般地,在数轴上表示数a的点与原点的距离叫做a的绝对值,记做|a|(|a|≥0);(13)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(14)绝对值可表示为:当a>0时,|a|=a, 当a=0时,|a|=0,当a<0时,|a|=-a(15)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
(完整word版)人教版七年级数学上册各章知识点总结,推荐文档
第一章:有理数总复习一、有理数的基本概念1.正数:大于0的数叫做正数;负数:小于0的数叫做负数。
备注:在正数前面加“-”的数是负数;“0”既不是正数,也不是负数。
2.有理数:整数和分数统称有理数。
3.数轴:规定了原点、正方向和单位长度的直线。
性质:(1)在数轴上表示的两个数,右边的数总比左边的数大;(2)正数都大于0,负数都小于0;正数大于一切负数;(3)所有有理数都可以用数轴上的点表示。
4.相反数 :只有符号不同的两个数,其中一个是另一个的相反数。
性质:(1)数a 的相反数是-a (a 是任意一个有理数);(2)0的相反数是0;(3)若a 、b 互为相反数,则a+b=0;若a 、b 互为相反数且a 、b 都不等于零,则1-=ba ; 5.倒数 :乘积是1的两个数互为倒数 。
性质:(1)a 的倒数是(a ≠0); (2)0没有倒数 ;(3)若a 与b 互为倒数,则ab=1;若a 与b 互为负倒数,则ab=-1。
倒数与相反数的区别和联系:(1)a 与-a 互为相反数; a 与a1(a ≠ 0)互为倒数;(2)符号上:互为相反数(除0外)的两数的符号相反;互为倒数的两数符号相同;(3)a 、b 互为相反数 →→ a+b=0;a 、b 互为倒数 →→ ab=1;(4)相反数是本身的数是0,倒数是本身的数是±1 。
6.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
性质:(1)数a 的绝对值记作︱a ︱;(2)若a >0,则︱a ︱= a ;若a <0,则︱a ︱= -a ;若a =0,则︱a ︱=0;(3) 对任何有理数a,总有︱a ︱≥0.7.有理数大小的比较:(1)可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;(2)两个负数,绝对值大的反而小。
即:若a <0,b <0,且︱a ︱>︱b ︱,则a < b.8.科学记数法:把一个绝对值大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫做科学记数法。
人教版七年级数学上册 第一至第四章全册知识点归纳
人教版初一数学上册知识点归纳七年级数学上册知识点第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
人教版七年级上册数学知识点梳理汇编含教学设计及答案(实用必备!)
人教版七年级上册数学知识点梳理汇编含教学设计及答案(实用必备!)一. 教材分析人教版七年级上册数学知识点梳理汇编含教学设计及答案(实用必备!)主要包括以下内容:1.第一章:有理数1.1.1 整数的定义及性质1.1.2 整数的分类:正整数、负整数、零1.1.3 整数的运算:加、减、乘、除、乘方、开方1.2.1 分数的定义及性质1.2.2 分数的分类:正分数、负分数、零分数1.2.3 分数的运算:加、减、乘、除、乘方、开方1.3 混合运算1.3.1 混合运算的顺序1.3.2 混合运算的法则2.第二章:几何图形2.1 平面图形2.1.1 点的定义及性质2.1.2 直线的定义及性质2.1.3 射线的定义及性质2.1.4 圆的定义及性质2.1.5 三角形的定义及性质2.1.6 四边形的定义及性质2.1.7 多边形的定义及性质2.2 立体图形2.2.1 棱柱的定义及性质2.2.2 棱锥的定义及性质2.2.3 球体的定义及性质3.第三章:方程与不等式3.1.1 方程的定义及性质3.1.2 方程的解法:代入法、消元法、换元法、公式法3.2 不等式3.2.1 不等式的定义及性质3.2.2 不等式的解法:同大取大、同小取小、大小小大中间找、大大小小找不到二. 学情分析学生在学习数学的过程中,已经掌握了加、减、乘、除等基本的运算技能,对简单的数学概念有一定的理解。
但是,对于更复杂的数学知识点,如分数、混合运算、几何图形等,学生可能还存在一定的困惑。
因此,在教学过程中,需要注重对这些知识点的讲解和巩固。
三. 教学目标1.知识与技能:使学生掌握整数、分数、混合运算、几何图形、方程与不等式等基本数学知识,能够熟练运用这些知识解决实际问题。
2.过程与方法:培养学生的逻辑思维能力、创新能力和合作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自信心和克服困难的勇气。
四. 教学重难点1.教学重点:整数、分数、混合运算、几何图形、方程与不等式的基本概念和运算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册各章知识点第一章《有理数》一、正数与负数1.正数与负数表示具有相反意义的量。
问:收入+10元与支出-10元意义相反吗?2.有理数的概念与分类①整数和分数统称有理数,能写成两个整数之比的数就是有理数 。
判断:有理数可分为正有理数和负有理数( 错,还有0)②零既不是正数,也不是负数。
判断:0是最小的正整数(错 ),正整数负整数统称整数(错,还有0 ),正分数负分数统称分数(对 )③有限小数和无限循环小数因都能化成分数,故都是有理数。
判断:0是最小的有理数(错 )④无限不循环小数因为不能化成两个整数之比,固称为无理数,如π,π/2等。
判断:整数和小数统称有理数(错,整数和分数统称有理数 )。
二、数轴1.数轴三要素:原点、正方向、单位长度 (另:数轴是一条有向直线)2.作用:1)描点:数形结合;2)比较大小:沿着数轴正方向数在逐渐变大;3)直观反映互为相反数的两个点的位置关系;4)绝对值的几何意义;5)有理数都在数轴上,但数轴上的数并非都是有理数。
3.数轴上点的移动规律:“正加负减”向数轴正方向(或负方向)则对应的数应加(或减)4.数轴上以数a 和数b 为端点的线段中点为a 与b 和的一半(如何用代数式表示?)三、相反数1.定义:若a+b=0,则a 与b 互为相反数 特例:因为0+0=0,所以0的相反数是02.性质:①若a 与b 互为相反数,则a+b= 0②-a 不一定表示负数,但一定表示a 的相反数(仅仅相差一个负号)③若a 与b 互为相反数且都不为零,a b= -1 ④除0以外,互为相反数的两个数总是成双成对的分布在原点两侧且到原点的距离相等。
⑤互为相反数的两个数绝对值相等,平方也相等。
即:a =a -,()22a a =-四、绝对值1.定义:在数轴上表示数a 点到原点的距离,称为a 的绝对值。
记作a2.法则:1)正数的绝对值等于它本身;2)0的绝对值是0;3)负数的绝对值是它的相反数。
即()()()000a a a a a a >⎧⎪==⎨⎪-<⎩0 ()()00a a a a a ≥⎧⎪=⎨-<⎪⎩ ()()00a a a a a >⎧⎪=⎨-≤⎪⎩ 3.一个数的绝对值越小,说明这个数越接近0(离原点越近)。
绝对值最小的有理数是04.若0a >,则aaa a == 1 ,若0a <,则aaa a == -15.数轴上数a 与数b 之间的距离d 满足:d = |a-b|6.非负数的性质: 220ab c d +++=,则a b c d ==== 五、倒数1.定义:若ab=1,则a 与b 互为倒数。
注意:因为0乘以任何数都为0,所以0没有倒数。
2.若a 与b 互为倒数,则ab=1。
3.因两数相乘同号才能得正,故互为倒数的两数必定同号。
所以负数的倒数肯定还是负数。
4.求带分数的倒数要先将其化为假分数,再颠倒分子分母位置(有负号的勿忘负号!)5.注意:只有当指明0a ≠时,1a 才能表示a 的倒数! 六、有理数的运算加000,与相加:等于没加同号相加:取相同的符号,绝对值相加两数相加无参与互为相反数和为异号相加取绝对值较大数的符号绝对值大减小互为相反数优先结合相加多数相加分母相同的分数优先结合相加同号的数优先结合相加⎧⎧⎪⎪⎪⎧⎪⎨⎪⎪⎨⎧⎪⎪⎨⎪⎪⎩⎩⎩⎨⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩减:减去一个数等于加上这个数的相反数!切一刀就搞定加减混合运算要求对()()(),,,a a a a --+--+--型符号化简相当纯熟,你行吗?乘⎧⎧⎪⎪⎨⎧⎫⎪⎪⎨⎬⎪⎩⎩⎭⎨⎪⎧⎪⎨⎪⎩⎩与0相乘:马上得0两数相乘同号得正无0参与绝对值相乘异号得负只要有0:马上得0多数相乘无0参与:先定符号,奇负偶正;再将绝对值直接相乘作为最终结果的绝对值除:除以一个不为零的数等于乘以这个数的倒数!(两数相除也满足同号得正,异号得负的法则)乘方()()()432332*********,1,1,1,1n n n a a n n 定义:个相乘记做,作用: 为偶数性质: 为奇数区分:⨯=-=------⎧⎪⎪⎧⎨⎨⎩⎪⎪⎩混合运算顺序:先乘方,再乘除,最后加减;对于同级运算,一般按从左到右的顺序进行;如果有括号的,先做括号内的运算,按小括号、中括号、大括号依次进行.七、有理数的大小比较1)宏观比较法:正数>0>负数2)数轴法:在数轴上右边的数总比左边的大.(沿着数轴正方向数在逐渐变大)3)绝对值法:正数绝对值越大,数就越大;负数绝对值越大;数越小。
4)作差法:与0作比较.若a>b,则a-b>0;若a=b,则a-b=0;若a<b,则a-b<0.注:这就是:大数减小数等于正数,小数减大数等于负数,相等两数差为0.八、科学记数法,近似数,有效数字 把一个绝对值较大的数,表示为()10110,n a a n ⨯≤<为正整数称为科学记数法。
a 与原数只是小数点位置不同, n 等于a 化为原数时小数点移动的位数精强记1万=410,1亿=810;确到X 位就是指四设五入到X 位(这时要看X 后面那一位上的数字) 一个数,从左边第一个不是0的数起到末位为止,所有的数字称为这个数的有效数字。
对于较小数,只要能准确的写出0.0010061800的所有有效数字即掌握有效数字概念对于较大数,一般先用科学记数法表示,a 的有效数字即为原数的有效数字,a 的末位数字在原数中的位置(数位)即为原数精确度;Q 万,Q 亿中Q 的有效数字即为原数的有效数字。
4.23与4.23万各自精确到哪位?第二章《整式的加减》代数式:含有 的算式。
特例:单独的一个数也是代数式。
注意:代数式中不含:,,,,,=3?<代数式的书写规则:1)数与字母,字母与字母相乘,乘号可以省略,数字与数字相乘,乘号不能省略。
2)数与字母相乘时,数要写在字母(包括带括号的多项式)前面3)带分数一定要写成假分数4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式5)式子后面有单位时,和差形式的代数式要在单位前把代数式用括号括起来。
试列代数式:a 与b 的差的一半,a 与b 的一半的差,a 与b 的平方和,a 与b 的和的平方,a 与b 差的绝对值,a 与b 绝对值的差单项式:数与字母的 构成的代数式叫做单项式一个书写习惯:当数字因数是1±时,“1”省略不写;一个特例:单独的一个数也是单项式简称常数项;一个特殊字母:圆周率π是常数两条判断捷径:A :单项式中不含“+”“—”号,如2a b -不是单项式. B.单项式的分母中不含字母,如23bca 不是单项式。
单项式中的 叫做这个单项式的系数。
单项式中 叫做这个单项式的次数。
说出2325abp -系数和次数多项式:几个单项式的 叫做多项式。
在多项式中,每个单项式简称为多项式的 。
多项式里, 次数,就是这个多项式的次数.练习:多项式9x 4-2x 3+xy -4,常数项为 ,次数最高项为 ,三次项系数为 ,这个多项式是 次 项式.整式: 和 统称为整式.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项,另外,所有的常数项都是同类项.“两个相同”是指:①含有的字母相同;②相同字母的指数也分别相同“两个无关”是指:①与系数无关;②与字母顺序无关合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则:同类项的系数相 ,所得的结果作为系数,字母和字母的指数 ,不是同类项, 。
去括号法则:括号外的是“+”号,把括号和括号外的“+”号一起去掉,括号内各项的符号都 。
括号外的是“—”号,把括号和括号外的“—”号一起去掉,括号内各项都变号(变成它的 )。
若括号外有系数应先用乘法分配律将系数绝对值乘给括号内的每一项,再按以上法则去括号。
整式加减:把去括号,合并同类项的过程统称为整式加减。
(与X 无关=不含X 项=X 项系数为0)代数式求值三个要点:(1) 代入准备:“先化简,再代入”——化到最简形式的标准:再也没有括号可去,再也没有同类项可合并(2) 代入格式:“当…………时,原式=…………”只有规范,才能得分!(3) 代入方法:“先挖坑,后填数”——保持代数式的形式不变,只是把字母换成数,注意:该带的括号不能丢!第三章《一元一次方程》等式性质辨析:性质1同加(同减)同一个数。
性质2,同乘(同除)同一个数。
【性质2中有陷阱】①若a=b,则3a+2=2b+3. ( ), ②若a=b,则3a-2=3b-2. ( ), ③若-2a+3=-2b+3,则a=b. ( )④若ax=ay,则x=y. ( ) ⑤若a=b,则xa+y=xb+y. ( ) ⑥若xa+y=xb+y,则a=b. ( )方程,整式方程,一元一次方程概念辨析含有字母的等式叫做方程. 方程的命名:先移项使得方程右端为0,判左端代数式名称定方程名称。
分母中含字母的统称分式方程。
①5=4+1,②222a b ab +³,③1x y +=,④210x x +-=,⑤1x =,⑥13x x+=,⑦4322x +=,⑧211x =+ 以上8个式子哪些是方程?哪些是整式方程?哪些是一元一次方程?“方程的解”与“解方程”概念辨析使方程中等号左右两边相等的未知数的值,叫做方程的解.它是一个数,不是x这个字母!而解方程是指求出方程的解的过程.方程解的“不管三七二十一”:已知方程的解,不管三七二十一,把解代回方程建立等式方程的解检验方法(验根)把未知数的值分别代入方程的左、右两边计算它们的值,比较两边的值是否相等.(格式还记得吗?)解方程的一般步骤:变形名称具体做法变形依据注意事项去分母方程两边都乘以各分母的最小公倍数等式性质①不要漏乘不含分母的项;②分子是和、差的形式时,要在分子加上括号去括号可按“小、中、大”的顺序去括号乘法分配律、去括号法则①不要漏乘括号里面的项;②防止出现符号错误移项把含有未知数的移项刀方程的一边,其他项移到方程的另一边等式性质移项法则①移项要变号②不要漏项合并同类项把方程化为ax=b(a≠0)的形式合并同类项法则①系数相加减;②字母和字母的指数不变系数化为1 方程两边都除以未知数的系数等式性质①除数不能为0;②不要把分子、分母颠倒列方程解应用题步骤:1)写 2)审 3)设 4)找 5)列 6)解 7)验 8)答一元一次方程应用题归类:(1)和差倍分问题(2)调配问题(3)比例问题(4)配套问题(5)行程问题(6)工程问题(7)利息问题(8)盈不足问题(9)增长率问题(10)打折销售与利润率问题(11)年龄问题(12)数字问题(13)日历与数表问题(14)“超过的部分”问题(15)等积问题(16)方案设计问题第四章《图形认识初步》线段中点性质:如果点M 是线段AB 的中点,那么AM =BM.=12AB (请补图) 角平分线的性质:如果射线OM 平分AOB Ð,那么12AOM MOB AOB ???(请补图)七年级上册各章节经典练习题第一章 有理数1.下列说法正确的是( )A.有理数就是正有理数和负有理数B.最小的有理数是0C.有理数都可以在数轴上找到表示它的一个点D.整数不能写成分数形式2.下列几组数中,不相等的是( )A.-(+3)和+(-3)B.-5和-(+5)C.+(-7)和-(-7)D.-(-2)和∣-2∣3.有理数a 、b 在数轴上的位置如图所示,那么下列式子中成立的是( )A. a +b < 0B. a -b < 0C. 0>abD.0a b >4.点A 在数轴上距原点3个单位长度,将A 向右移动4个单位长度,再向左移7个单位长度,此时A 所对应的数是( )A.0B.-6C.0或-6D.0或65.计算2000-(2001+∣2000-2001∣)的结果为( )A.-2B.-2001C.-1D.20006.若-a 不是负数,那么a 一定是( )A.负数B.正数C.正数和零D.负数和零7.如果两个数的和为负数,那么这两个数( )A.都是正数B.都是负数C.至少有一个正数D.至少有一个负数8.已知c b a >>,且0=++c b a ,则c b a ,,的积( )A. 一定是正数B. 一定是负数C. 一定是非零数D. 不能确定9.已知(b+3)2+∣a-2∣=0,则b a 的值是( )A.-6B.6C.-9D.910.有一张厚度为0.1mm 的纸,如果将它连续对折10次后的厚度为( )A.1mmB.2mmC.102.4mmD.1024mm11.若有理数a 、b 满足ab >0,且a + b <0,则下列说法正确的是( )A .a 、b 可能一正一负B .a 、b 都是正数C .a 、b 都是负数D . a 、b 中可能有一个为012.如果=2a (2)3-,那么a 等于( )A.3B.-3C.9D.± 313.已知|a|=2,|b|=1,且ab <0,那么a+b 的值是( )A.1或-1B.1C.3或-3D.-314.下列说法正确的个数为( ) ○1若b a ≠,则︱a ︱≠︱b ︱ ○2若︱a ︱=︱b ︱,则a = b.○3若22b a =,则b a =. ○4若︱a ︱>︱b ︱, 则a > bA.0个B.2个C.3个D.4个15.观察下列算式:,, , , , , , , 2562128264232216282422287654321======== 根据上述算式中的规律,你认为202的末位数字是( )A.2B.4C.6D.816.若∣x +2y ∣+(y -3)2=0,那么x 2+xy +y 2的值为( )A.27B.-27C.12D.-1217.2011(1)-是( )A.最大负整数B.绝对值最小的有理数C.-2003D.最大的负数18.已知5=x ,2=y ,则y x +的值( )A.3±B.7±C.3或7D.3±或7±19.若a 2 = b 2, 则下列说法中正确的有 ( )⑴a = b ⑵a = -b ⑶ a = ±b ⑷ a = b = 0 ⑸|a | = |b | ⑹ a 3 = ±b 3A.2个B.3个C.4个D.5个20.下列不等式()3322-〉-, ()2222〈-, ()2222-〉-, ()()2322-〉- 大小关系正确的有( )A.1个B.2个C.3个D. 4个21.654321-+-+-+……+1999-2000的结果不可能是( )A.奇数B.偶数C.负数D.整数22.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水。