九年级数学下册 2.7最大面积是多少课件 北师大版

合集下载

北师大版九年级数学下册2.4《二次函数的应用》课件

北师大版九年级数学下册2.4《二次函数的应用》课件

何值时,y的最大值是多少?
H
D
B
(2).y=xb=x
﹣1225
x+24

P┐ G A
N
=﹣12
40cm
x 2+24 x =﹣12(x-25)2+300.
25
25
想一想
何时面积最大
如图,在一个直角三角形的内部作一个矩形ABCD,其中
点A和点D分别在两直角边上,BC在斜边上.
(2).设矩形的面积为ym2,当x取 M C
(1).如果设矩形的一边AD =
M
30cm xcm
xcm,那么AB边的长度如何表示? D
C
解:(1)设 AB=bcm
易得 b=﹣4 x+40 3
┐ bcm
A
B
N
40cm
想一想
何时面积最大
如图,在一个直角三角形的内部作一个矩形ABCD,其中 AB和AD分别在两直角边上.
(2).设矩形的面积为ym2,当x取
所以,顶点坐标为:(﹣1,﹣7), 对称轴为x =﹣1
想一想
何时面积最大
例1:如图,在一个直角三角形的内部作一个 矩形ABCD,其中AB和AD分别在两直角边上.
M
30cm
D
C

A
B
N
40cm (1).设矩形的一边AB = xcm,那么AD边的长度如
何表示?
(2).设矩形的面积为ym2 ,当x取何值时,y的最大值
M
或用公式:
当 x=﹣ b =15 时,
2a
y最大值=
4ac-b2 4a
=300.
xcm
D
C
bcm

A
B
N

北师大版九年级数学下册第一章《三角函数的计算》优课件

北师大版九年级数学下册第一章《三角函数的计算》优课件
解:∵tanA=ABCC=23.4=0.8,∴∠A≈38°39′35″, ∠B≈51°20′25″.
(2)AB=9,BC=5.5,求 AC 和∠B.
解:AC= AB2-BC2= 92-5.52≈7.12,∵cosB=BACB =59.5,∴∠B≈52°19′48″.
16.(14 分)如图,为测量江两岸码头 B,D 之间的距离, 从山坡上高度为 50 米的点 A 处测得码头 B 的俯角∠EAB 为 15°,码头 D 的俯角∠EAD 为 45°,点 C 在线段 BD 的延 长线上,AC⊥BC,垂足为点 C,求江两岸码头 B,D 之间的 距离.(结果保留整数,参考数据:sin15°≈0.26,cos15°≈ 0.97,tan15°≈0.27)
sin48°30′28″+cos53°26′34″+tan32″. 解:原式≈1.3448.
利用用计算器由三角函数值求角
4.(4 分)已知 cosθ=0.2534,则锐角 θ 约为( C )
A.14.7° B.14°7′ C.75.3° D.75°3′ 5.(4 分)∠A 为锐角,且 sinA=25,则∠A 的取值 范围是( A ) A.0°<∠A<30° B.30°<∠A<45° C.45°<∠A<60° D.60°<∠A<90°
பைடு நூலகம்
这一 样个 的人 人所 才受 有的 学教 问育 。超
解:∵AE∥BC,∴∠ADC=∠EAD=45°,∠ABC= ∠EAB = 15 ° ,又 ∵AC⊥CD , ∴ CD = AC = 50( 米 ) , 又 ∵tan∠ABC=ABCC,∴BC=tan∠ACABC≈185.2(米),∴BD= 185.2-50≈135(米),即码头 B,D 之间的距离为 135 米.
A.16°1′ C.16.1°

北师大版数学九年级下册第2章_2.7最大面积是多少

北师大版数学九年级下册第2章_2.7最大面积是多少

正方形ABCD边长5cm,等腰三角形PQR中,PQ=PR=5cm, QR=8cm,点D、C、Q、R在同一直线l上,当C、Q两 点重合时,等腰△PQR以1cm/s的速度沿直线l向 左方向开始匀速运动,ts后正方形与等腰三角形 重合部分面积为Scm2,解答下列问题: (1)当t=3s时,求S的值; B A (2)当t=5s时,求S的值 (3) 当5s≤t≤8s时,求S 与t的函数关系式,并求 M P S的最大值。 (4) 当0s≤t≤13s时,求S 与t的函数关系式, l D Q C
如图,在一个直角三角形的内部作一个矩形ABCD,其中AB 和AD分别在两直角边上. M (1).设矩形的一边AB=xm,那么AD边的 长度如何表示? C D (2).设矩形的面积为ym2,当x取何值时,y 的最大值是多少? ┐ xm N A B 40m
3 2 3 2.y xb x x 30 x 30x 3 x 202 300. 4 4 42 b 4ac b 或用公式: 当x 20时, y 最 大 值 300. 2a 4a
15 7 x x x x 解 : 1.由4y 7x x 15得 . ,y . 4 2 2 x 15 7 x x x 2.窗户面积S 2xy 2x 2 4 2 y 2 7 2 15 7 15 225 x x x . 2 2 2 14 56 b 15 4ac b 2 225 或用公式: 当x 1.07时, y 最 大 值 4.02. 2a 14 4a 56
xm ym2 2m xm
如图,隧道的横截面由抛物线和长方形构成,长方形的长是8m,宽是2m 1 2 抛物线的解析式为 (1)一辆货运车车高4m,宽2m,它能通过该隧道吗? (2)如果该隧道内设双行道,中间遇车间隙为0.4m,那么这辆卡车是否可 以通过?

九年级数学北师大版初三下册--第二单元2.4《二次函数的应用(第三课时)》课件

九年级数学北师大版初三下册--第二单元2.4《二次函数的应用(第三课时)》课件

知2-讲
导引: 由题意知今年这种玩具每件的成本是去年的(1+0.7x) 倍,每件的出厂价是去年每件的出厂价的 (1+0.5x) 倍,今年的年销售量是去年年销售量的 (1+x)倍.
解:(1)(10+7x);(12+6x) (2)y=(12+6x)-(10+7x)=2-x, 即y与x的函数关系式为y=2-x. (3)W=2(1+x)(2-x)=-2x2+2x+4=-2(x-5)2+4.5, ∵0<x≤1,∴当x=0.5时,W有最大值. W最大值=4.5. 答:当x=0.5时,今年的年销售利润最大,最大年销 售利润为4.5万元.
知1-练
3 心理学家发现:学生对概念的接受能力y与提出概念 的时间x(min)之间是二次函数关系,当提出概念13 min时,学生对概念的接受能力最大,为59.9;当提 出概念30 min时,学生对概念的接受能力就剩下31, 则y与x满足的二次函数表达式为( D ) A.y=-(x-13)2+59.9 B.y=-0.1x2+2.6x+31 C.y=0.1x2-2.6x+76.8 D.y=-0.1x2+2.6x+43
(来自《教材》)
知2-练
2 某旅行社在五一期间接团去外地旅游,经计算,收益
y(元)与旅行团人数x(人)满足表达式y=-x2+100x+
28 400,要使收益最大,则此旅行团应有( C )
A.30人
B.40人
C.50人
D.55人
知2-练
3 (2016·咸宁)某网店销售某款童装,每件售价60元,每星 期可卖300件,为了促销,该网店决定降价销售.市场 调查反映:每降价1元,每星期可多卖30件.已知该款 童装每件成本价40元,设该款童装每件售价x元,每星 期的销售量为y件. (1)求y与x之间的函数表达式. (2)当每件售价定为多少元时,每星期的销售利润最大, 最大利润是多少元? (3)若该网店每星期想要获得不低于6 480元的利润,每 星期至少要销售该款童装多少件?

北师大版数学九年级下册3-9 弧长和扇形的面积 课件

北师大版数学九年级下册3-9 弧长和扇形的面积  课件

解:如图,将两个半圆变为同圆心的半圆. 过点 O 作 OM⊥AB 于点 M,连接 OB,OF, 则 MF=12EF=1 cm,BM=12AB=3 cm,
S 阴影=12πOB2-12πOF2 =12π(OB2-OF2) =12π[(OM2+32)-(OM2+12)] =4π(cm2).
[归纳总结] 重新组合求不规则图形的面积: 对于某些特殊图形,可适当变换图形的位置来求图形 中阴影部分的面积.本题中若不平移小半圆,则阴影部分 的面积很难求出.特殊法在使用过程中要注意其局限性, 不要以偏概全.同时要明确求不规则图形的面积还有割补 法、等面积替换法等.
(1)求⊙O 的半径; (2)求图中阴影部分的面积.
图 3-9-2
解:(1)连接 OC,则 OC⊥AB. ∵OA=OB,
11 ∴AC=BC=2AB=2×6 3=3 3.
在 Rt△AOC 中,OC= OA2-AC2= 62-(3 3)2=3,
∴⊙O 的半径为 3. (2)∵OC=12OB, ∴∠B=30°,∴∠COD=60°,
∴扇形 OCD 的面积为60·3π60·32=23π, ∴阴影部分的面积=SRt△OBC-S 扇形 OCD=12OC·CB-32π=9 2 3
[归纳总结] 由扇形面积的两个计算公式可以发现,已知 S 扇形,l,n,R 四个量中的任意两个量,均可以求出另外两个 量.同学们在解题时要根据不同问题,灵活选用合适的公式进 行计算.
例 4 教材补充例题如图 3-9-3,大半圆 O 的弦 AB 与 小半圆 O1 交于 E,F 两点,AB=6 cm,EF=2 cm,且 AB∥CD. 求阴影部分的面积.
图 3-9-3
[解析] 将两个半圆变为同圆心的半圆.作 OM⊥AB 于点 M,连接 OB,OF,构造直角三角形,利用所构造

北师大版数学九年级下册3.9《弧长及扇形的面积》说课稿

北师大版数学九年级下册3.9《弧长及扇形的面积》说课稿

北师大版数学九年级下册3.9《弧长及扇形的面积》说课稿一. 教材分析弧长及扇形的面积是北师大版数学九年级下册第3.9节的内容。

这部分内容是在学生已经掌握了圆的性质、扇形的定义以及弧长的计算方法的基础上进行讲解的。

本节课的主要内容是引导学生探究扇形的面积计算公式,并能够运用该公式解决实际问题。

教材通过实例和练习,帮助学生理解和掌握扇形面积的计算方法,提高他们的数学应用能力。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对圆的性质和弧长的计算方法有一定的了解。

然而,扇形面积的计算涉及到新的概念和思考方式,对于部分学生来说可能存在一定的难度。

因此,在教学过程中,我需要关注学生的学习情况,针对不同学生的需求进行引导和帮助,使他们能够顺利地理解和掌握扇形面积的计算方法。

三. 说教学目标1.知识与技能目标:引导学生探究并理解扇形的面积计算公式,使学生能够运用该公式计算扇形的面积。

2.过程与方法目标:通过观察、操作、交流和思考,培养学生的空间想象能力和几何思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们解决问题的积极性和合作精神。

四. 说教学重难点1.教学重点:引导学生探究扇形的面积计算公式,使学生能够理解和运用该公式。

2.教学难点:理解扇形面积计算公式的推导过程,掌握扇形面积的计算方法。

五. 说教学方法与手段在教学过程中,我将采用问题驱动法和合作学习法。

通过提出问题,引导学生进行观察、思考和交流,激发他们的学习兴趣和解决问题的欲望。

同时,我将运用多媒体课件和实物模型等教学手段,帮助学生直观地理解扇形面积的计算方法。

六. 说教学过程1.导入:通过展示一些与扇形相关的实例,如扇形统计图、扇形切割等,引导学生回顾扇形的定义和弧长的计算方法,为新课的学习做好铺垫。

2.探究扇形面积的计算公式:引导学生观察和分析扇形的特征,让学生通过小组合作的方式,自主探究扇形面积的计算公式。

在学生探究的过程中,给予适当的引导和帮助。

北师大版初中数学课本目录

北师大版初中数学课本目录

北师大版初中七-九年级数学目录数学北师大版七年级上册第一章丰富的图形世界1.1生活中的立体图形1.2展开与折叠1.3截一个几何体1.4从不同方向看1.5生活中的平面图形本章综合第二章有理数及其运算2.1数怎么不够用了2.2数轴2.3绝对值2.4有理数的加法2.5有理数的减法2.6 有理数的加减混合运算2.7水位的变化2.8有理数的乘法2.9有理数的除法2.10有理数的乘方2.11有理数的混合运算2.12计算器的使用本章综合第三章字母表示数3.1字母能表示什么3.2代数式3.3代数式求值3.4合并同类项3.5去括号3.6探索规律本章综合第四章平面图形及其位置关系4.1线段、射线、直线4.2比较线段的长短4.3角的度量与表示4.4角的比较4.5平行4.6垂直4.7有趣的七巧板本章综合第五章一元一次方程5.1你今年几岁了5.2解方程5.3日历中的方程5.4我变胖了5.5打折销售"希望工程"义演5.7能追上小明吗5.8教育储蓄本章综合第六章生活中的数据6.1认识100万6.2科学记数法6.3扇形统计图6.4你有信心吗6.5统计图的选择本章综合第七章可能性7.1一定摸到红球吗7.2转盘游戏"四位数"大本章综合数学北师大版七年级下册第一章整式的运算1.1整式1.2整式的加减1.3同底数幂的乘法1.4幂的乘方与积的乘方1.5同底数幂的除法1.6整式的乘法1.7平方差公式1.8完全平方公式1.9整式的除法本章综合第二章平行线与相交线2.1余角与补角2.2探索直线平行的条件2.3平行线的特征2.4用尺规作线段和角本章综合第三章生活中的数据3.1认识百万分之一3.2近似数和有效数字3.3世界新生儿图本章综合第四章概率4.1游戏公平吗4.2摸到红球的概率4.3停留在黑砖上的概率本章综合第五章三角形5.1认识三角形5.2图形的全等5.3全等三角形5.4探索三角形全等的条件5.5作三角形5.6利用三角形全等测距离5.7探索直角三角形全等的条件本章综合第六章变量之间的关系6.1小车下滑的时间6.2变化中的三角形6.3温度的变化6.4速度的变化本章综合第七章生活中的轴对称7.1轴对称现象7.2简单的轴对称图形7.3探索轴对称的性质7.4利用轴对称设计图案7.5镜子改变了什么7.6镶边与剪纸本章综合数学北师大版八年级上册第一章勾股定理1.1 探索勾股定理1.2 能得到直角三角形吗1.3 蚂蚁怎样走最近本章综合第二章实数2.1 数怎么又不够用了2.2 平方根2.3 立方根2.4 公园有多宽2.5 用计算器开方2.6实数本章综合第三章图形的平移与旋转3.1 生活中的平移3.2 简单的平移作图3.3 生活中的旋转3.4 简单的旋转作图3.5 它们是怎样变过来的3.6 简单的图案设计本章综合第四章四边形性质探索4.1 平行四边形的性质4.2 平行四边形的判别4.3 菱形4.4 矩形、正方形4.5 梯形4.6 探索多边形的内角和与外角和4.7中心对称图形本章综合第五章位置的确定5.1 确定位置5.2 平面直角坐标系5.3变化的鱼本章综合第六章一次函数6.1 函数6.2 一次函数6.3 一次函数的图象6.4 确定一次函数表达式6.5 一次函数图象的应用本章综合第七章二元一次方程组7.1谁的包裹多7.2解二元一次方程组7.3 鸡兔同笼7.4 增收节支7.5 里程碑上的数7.6 二元一次方程与一次函数本章综合第八章数据的代表8.1 平均数8.2 中位数与众数8.3 利用计算器求平均数本章综合学北师大版八年级下册第一章一元一次不等式和一元一次不等式组1.1 不等关系1.2 不等式的基本性质1.3 不等式的解集1.4 一元一次不等式1.5 一元一次不等式与一次函数1.6 一元一次不等式组本章综合第二章分解因式2.1 分解因式2.2 提公因式法2.3 运用公式法本章综合第三章分式3.1 分式3.2 分式的乘除法3.3 分式的加减法3.4 分式方程本章综合第四章相似图形4.1 线段的比4.2 黄金分割4.3 形状相同的图形4.4 相似多边形4.5 相似三角形4.6 探索三角形相似的条件4.7 测量旗杆的高度4.8 相似多边形的性质4.9 图形的放大与缩小本章综合第五章数据的收集与处理5.1 每周干家务活的时间5.2 数据的收集5.3 频数与频率5.4 数据的波动本章综合第六章证明〔一〕6.1 你能肯定吗6.2 定义与命题6.3 为什么它们平行6.4 如果两条直线平行6.5 三角形内角和定理的证明6.6 关注三角形的外角本章综合学北师大版九年级上册第一章证明〔二〕1.1你能证明它们吗1.2直角三角形1.3线段的垂直平分线1.4角平分线本章综合第二章一元二次方程2.1花边有多宽2.2配方法2.3公式法2.4分解因式法2.5为什么是0.618本章综合第三章证明〔三〕3.1平行四边形3.2特殊平行四边形本章综合第四章视图与投影4.1视图4.2太阳光与影子4.3灯光与影子本章综合第五章反比例函数5.1反比例函数5.2反比例函数的图象与性质5.3反比例函数的应用本章综合第六章频率与概率6.1频率与概率6.2投针试验6.3生日相同的概率6.4池塘有多少条鱼本章综合数学北师大版九年级下册第一章直角三角形的边角关系1.1从梯子的倾斜程度谈起1.2 30°、45°、60°角的三角函数值1.3三角函数的有关计算1.4船有触礁的危险吗1.5测量物体的高度本章综合第二章二次函数2.1二次函数所描述的关系2.2结识抛物线2.3刹车距离与二次函数2.4二次函数y=ax^2+bx+c的图象2.5用三种方式表示二次函数2.6何时获得最大利润2.7最大面积是多少2.8二次函数与一元二次方程本章综合第三章圆3.1车轮为什么做成圆形3.2圆的对称性3.3圆周角和圆心角的关系3.4确定圆的条件3.5直线和圆的位置关系3.6圆和圆的位置关系3.7弧长及扇形的面积3.8圆锥的侧面积本章综合第四章统计与概率4.150年的变化4.2哪种方式更合算4.3游戏公平吗本章综合。

完整版)北师大版初中数学目录

完整版)北师大版初中数学目录

完整版)北师大版初中数学目录北师大版初中数学目录七年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从不同方向看5.生活中的平面图形回顾与思考复题第二章有理数及其运算1.数怎么不够用了2.数轴3.绝对值4.有理数的加法5.有理数的减法6.有理数的加减混合运算7.水位的变化8.有理数的乘法9.有理数的除法10.有理数的乘方11.有理数的混合运算12.计算器的使用回顾与思考复题第三章字母表示数1.字母能表示什么2.代数式3.代数式求值4.合并同类项5.去括号6.探索规律回顾与思考复题第四章平面图形及其位置关系1.线段、射线、直线2.比较线段的长短3.角的度量与表示4.角的比较5.平行6.垂直7.有趣的七巧板8.图案设计回顾与思考复题第五章一元一次方程1.你今年几岁了2.解方程3.日历中的方程4.我变胖了5.打折销售6.“希望工程”义演7.能追上XXX吗8.教育储蓄回顾与思考复题第六章生活中的数据1.100万有多大2.科学记数法3.扇形统计图4.月球上有水吗5.统计图的选择回顾与思考复题第七章可能性1.一定摸到红球吗2.转盘游戏3.谁转出的四位数大回顾与思考复题课题研究:制成一个尽可能大的无盖长方体总复七年级下册第一章整式的运算1.整式2.整式的加减3.同底数幂的乘法4.幂的乘方与积的乘方5.同底数幂的除法6.整式的乘法7.平方差公式8.完全平方公式9.整流器式的除法回顾与思考复题第二章平行线与相交线1.台球桌面上的角2.探索直线平行的条件3.平行线的特征4.用尺规作线段和角回顾与思考复题第三章生活中的数据1.认识百万分之一2.近似数和有效数字3.世界新生儿图回顾与思考复题课题研究:制作“人口图”第四章概率1.游戏公平吗2.摸到红球的概率3.停留在黑砖上的概率回顾与思考复题第五章三角形1.认识三角形2.图形的全等3.图案设计4.全等三角形5.探索三角形全等的条件6.作三角形7.利用三角形全等测距离8.探索直角三角形全等的条件回顾与思考复题第六章变量之间的关系1.小车下滑的时间2.变化中的三角形3.温度的变化4.速度的变化回顾与思考复题第七章生活中的轴对称本章主要介绍轴对称现象和轴对称图形的性质,以及如何利用轴对称设计图案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.检验结果的合理性, 给出问题的解答.
用48米长的竹篱笆围建一矩形养鸡场,养 鸡场一面用砖砌成,另三面用竹篱笆围成,并 且在与砖墙相对的一面开2米宽的门(不用篱 笆),问养鸡场的边长为多少米时,养鸡场占地 面积最大?最大面积是多少?
xm
ym2
2m
xm
正方形ABCD边长5cm,等腰三角形PQR中,PQ=PR=5cm, QR=8cm,点D、C、Q、R在同一直线l上,当C、Q两 点重合时,等腰△PQR以1cm/s的速度沿直线l向 左方向开始匀速运动,ts后正方形与等腰三角形 重合部分面积为Scm2,解答下列问题: (1)当t=3s时,求S的值; B A (2)当t=3s时,求S的值; (3)当5s≤t≤8s时,求S P M 与t的函数关系式,并求 S的最大值。
如图,在一个直角三角形的内部作一个矩形ABCD, 其中点A和点D分别在两直角边上,BC在斜边上. M (1)设矩形的一边BC=xm,那么AB C H 边的长度如何表示? B (2)设矩形的面积为ym2,当x取何值 D G 时,y的值最大?最大值是多少? ┐
30m
P
何时窗户通过的光线最多
某建筑物的窗户如图所示,它的上半部是半圆,下 半部是矩形,制造窗框的材料总长(图中所有的黑线 的长度和)为15m.当x等于多少时,窗户通过的光线最 多(结果精确到0.01m)?此时,窗户的面积是多少? 15 7 x x x x 解: 1 由4 y 7 x x 15, 得y
M
30m
D ┐
C
bm
3 xm B A 解 : 1设AD bm,易得b x 30. 40m 4 3 2 3 3 2y xb x x 30 x 30 x x 202 300. 4 4 4 b 4ac b 2 或用公式 : 当x 20时, y最大值 300. 2a 4a
N
A N 解: 1 由勾股定理得MN 50m, PH 24m. 40m 12 设AB bm,易得b x 24. 25 12 12 2 2 12 x 25 300. 2y xb x x 24 x 24 x 25 25 25 2 b 4ac b 或用公式 : 当x 25时, y最大值 300. 2a 4a
第章
二次函数
何时面积最大
如图,在一个直角三角形的内部作一个矩形ABCD, 其中AB和AD分别在两直角边上. M (1) 设矩形的一边AB=xm,那么AD C 边的长度如何表示? D (2)设矩形的面积为ym2,当x取何值 ┐ 时,y的值最大?最大值是多少?
30m
A
40m
B
如图,在一个直角三角形的内部作一个矩形ABCD, 其中AB和AD分别在两直角边上. (1)设矩形的一边AB=xm,那么AD 边的长度如何表示? (2)设矩形的面积为ym2,当x取何值 时,y的值最大?最大值是多少?
N
何时面积最大
如图,在一个直角三角形的内部作一个矩形ABCD, 其中AB和AD分别在两直角边上. M (1)如果设矩形的一边AD=xcm,那 么AB边的长度如何表示? C D 2 (2)设矩形的面积为ym ,当x取何值 时,y的值最大?最大值是多少?
xcm
30cm

4 A bcm B 40cm 解 : 1设AB bcm,易得b x 40. 3 4 2 4 4 2y xb x x 40 x 40 x x 152 300. 3 3 3 b 4ac b 2 或用公式 : 当x 15时, y最大值 300. 2a 4a
l D Q C R
通过前面活动,这节课你学到了什么?
本节课我们进一步学习了用二次函数知识解决 最大面积问题,增强了应用数学知识的意识, 获得了利用数学方法解决实际问题的经验, 并进一步感受了数学建模思想和数学知识的 应用价值.
4
7 2 15 7 15 225 x x . x 2 2 2 14 56
2
y
“二次函数应用” 的思路
回顾上一节“最大利润”和本节“最大面积”解 决问题的过程,你能总结一下解决此类问题的基本 思路吗?与同伴交流. 1.理解问题; 2.分析问题中的变量和常量,以及它们之间的关系; 3.用数学的方式表示出它们之间的关系; 4.运用数学知识求解;
相关文档
最新文档