2015年辽宁葫芦岛中考数学试卷
2015年辽宁省锦州市中考数学试卷含答案

2015年辽宁省锦州市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.2015的相反数是()A.2015 B.﹣2015 C.D.﹣2.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零3.如图是由四个相同的小正方体组成的立体图形,它的左视图为()A.B.C.D.4.下列二次根式中属于最简二次根式的是()A.B.C.D.5.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.6.如图,不等式组的解集在数轴上表示正确的是()A.B.C.D.7.一元二次方程x2﹣2x+1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.(3分)如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为()A.(2,2),(3,2)B.(2,4),(3,1)C.(2,2),(3,1)D.(3,1),(2,2)二、填空题(本大题共8小题,每小题3分,共24分)9.已知地球上海洋面积约为316000000km2,316000000这个数用科学记数法可表示为.10.数据4,7,7,8,9的众数是.11.如图,已知l1∥l2,∠A=40°,∠1=60°,∠2=.12.分解因式:m2n﹣2mn+n=.13.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.5014.如图,点A在双曲线y=上,AB⊥x轴于点B,且△AOB的面积是2,则k的值是.14题图16题图15.制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x个零件,则可列方程为.16.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(27,9),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则第4个正方形的边长是,S3的值为.三、解答题(本大题共2小题,每小题8分,共16分)17.先化简,再求值:(1+)÷,其中:x=3﹣3.(1)线段AB与线段CD关于直线对称,则对称轴是;(2)平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(1,2),画出平移后的线段A1B1,并写出点B1的坐标为.四、解答题(本大题共2小题,每小题10分,共20分)19.2015年5月,某校组织了以“德润书香”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种,现从中随机抽取部分作品,对其份数和成绩进行整理,制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共900份,比赛成绩达到90分以上(含90分)的为优秀作品,据此估计该校参赛作品中,优秀作品有多少份?20.育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.(1)小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.21.如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=AB,连接EF,判断四边形ADEF的形状,并加以证明.22.如图,三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(参考数据:≈1.414,结果精确到0.1)六、解答题(本大题共2小题,每小题10分,共20分)23.如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.24.开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元(2)请直接写出y与x之间的函数关系式;(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?七、解答题(本题12分)25.如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是;(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.八、解答题(本题14分)26.如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过点A(﹣1,0)和点B(4,0),且与y轴交于点C,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点,连接CA,CD,PD,PB.(1)求该抛物线的解析式;(2)当△PDB的面积等于△CAD的面积时,求点P的坐标;(3)当m>0,n>0时,过点P作直线PE⊥y轴于点E交直线BC于点F,过点F作FG⊥x轴于点G,连接EG,请直接写出随着点P的运动,线段EG的最小值.2015年辽宁省锦州市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.B.2.D.3.A.4.D.5.C.6.B.7.A.8.C.二、填空题(本大题共8小题,每小题3分,共24分)9.3.16×108.10.7.11.100°.12.n(m﹣1)213.0.5.14.﹣4.15.=.16.、.三、解答题(本大题共2小题,每小题8分,共16分)17.解:原式=•=•=x+1,18.解:(1)∵A(﹣5,1),C(﹣5,﹣1),∴AC⊥x轴,且到x轴的距离相等,同理BD⊥x轴,且到x轴的距离相等,∴线段AB和线段CD关于x轴对称,故答案为:x轴;(2)∵A(﹣5,1),A1(1,2),∴相当于把A点先向右平移6个单位,再向上平移一个单位,∵B(﹣2,3),∴平移后得到B1的坐标为(4,4),线段A1B1如图所示,故答案为:(4,4).19.解:(1)根据题意得:24÷20%=120(份),得80分的作品数为120﹣(6+24+36+12)=42(份),补全统计图,如图所示;(2)根据题意得:900×=360(份),则据此估计该校参赛作品中,优秀作品有360份.20.解:(1)∵有2名男生和1名女生,∴主持人是男生的概率=,主持人是女生的概率=;20题图21题图22题图23题图(2)画出树状图如图:一共有6种情况,恰好是1名男生和1名女生的有4种情况,所以,P(恰好是1名男生和1名女生)==.21.解:∵点D,E分别是边BC,AC的中点,∴DE∥BF,DE=AB,∵AF=AB,∴DE=AF,∴四边形ADEF是平行四边形.22.解:过B作BD⊥AP于D,由已知条件得:AB=20×2=40,∠P=75°﹣30°=45°,在Rt△ABD中,∵AB=40,∠A=30,∴BD=AB=20,在Rt△BDP中,∵∠P=45°,∴PB=BD=20.六、解答题(本大题共2小题,每小题10分,共20分)23.(1)证明:∵∠A+∠DEC=180°,∠FED+∠DEC=180°,∴∠FED=∠A,∵∠B+∠FED=90°,∴∠B+∠A=90°,∴∠BCA=90°,∴BC是⊙O的切线;(2)解:∵∠CFA=∠DFE,∠FED=∠A,∴△FED∽△FAC,∴=,∴=,解得:AC=9,即⊙O的直径为9.24.解:(1)图中线段AB所表示的实际意义是:购买不超过10本此种笔记本时售价为5元/本.故答案为:购买不超过10本此种笔记本时售价为5元/本.(2)①当0<x≤10时,y与x之间的函数关系式y=5,②当10<x≤20时,设=kx+b把B(10,5),C(20,4)代入得,解得.所以y与x之间的函数关系式y=﹣0.1x+6.③当20<x时,y与x之间的函数关系式为:y=4.(3)W=(﹣0.1x+6﹣3)x=﹣0.1×(x﹣15)2+22.5.答:当小明购买15本时,该文具批发部在这次买卖中所获的利润最大,最大利润是22.5元.25.解:(1)正方形ABCD的对角线AC,BD交于点P,∴PA=PD,∠PAE=∠PDF=45°,∵∠APE+∠EPD=∠DPF+∠EPD=90°,∴∠APE=∠DPF,在△APE和△DPF中∴△APE≌△DPF(ASA),∴AE=DF,∴DE+DF=AD,(2)如图②,取AD的中点M,连接PM,∵四边形ABCD为∠ADC=120°的菱形,∴BD=AD,∠DAP=30°,∠ADP=∠CDP=60°,∴PM=PD,∠PME=∠PDF=60°,∵∠PAM=30°,∴∠MPD=60°,∵∠QPN=60°,∴∠MPE=∠FPD,在△MPE和△FPD中,∴△MPE≌△FPD(ASA)∴ME=DF,∴DE+DF=AD,(3)如图3在整个运动变化过程中,①当点E落在AD上时,DE+DF=AD,②当点E落在AD的延长线上时,DE+DF逐渐增大,当点F与点C重合时DE+DF最大,即AD<DE+DF≤AD.26.解:(1)把A(﹣1,0),B(4,0)两点的坐标代入y=ax2+bx+2中,可得解得∴抛物线的解析式为:y=﹣0.5x2+1.5x+2.(2)∵抛物线的解析式为y=﹣0.5x2+1.5x+2,∴点C的坐标是(0.2),∵点A(﹣1,0)、点D(2,0),∴AD=2﹣(﹣1)=3,∴△CAD的面积=,∴△PDB的面积=3,∵点B(4,0)、点D(2,0),∴BD=2,∴|n|=3×2÷2=3,∴n=3或﹣3,∴点P的坐标是(,3)或(﹣,3).②当n=﹣3时,0.5m2+1.5m+2=﹣3,整理,可得m2+3m+10=0,∵△=32﹣4×1×10=﹣31<0,∴方程无解.综上,可得点P的坐标是(,3)或(﹣,3).(3)如图1,设BC所在的直线的解析式是:y=mx+n,∵点C的坐标是(0,2),点B的坐标是(4,0),∴解得∴BC所在的直线的解析式是:y=﹣0.5x+2,∵点P的坐标是(m,n),∴点F的坐标是(m,﹣0.5m+2),∴EG2=m2+(﹣0.5m+2)2=1.25m2﹣2m+4=1.25+3.2,∵m>0,∴m=时,线段EG的最小值是:=,即线段EG的最小值是.。
备考2023年中考数学一轮复习-统计与概率_概率_随机事件-单选题专训及答案

备考2023年中考数学一轮复习-统计与概率_概率_随机事件-单选题专训及答案随机事件单选题专训1、(2015锦州.中考真卷) 下列事件中,属于必然事件的是()A . 明天我市下雨B . 抛一枚硬币,正面朝下C . 购买一张福利彩票中奖了D . 掷一枚骰子,向上一面的数字一定大于零2、(2015葫芦岛.中考真卷) 下列事件属于必然事件的是()A . 蒙上眼睛射击正中靶心B . 买一张彩票一定中奖C . 打开电视机,电视正在播放新闻联播D . 月球绕着地球转3、(2011徐州.中考真卷) 下列事件中属于随机事件的是()A . 抛出的篮球会落下B . 从装有黑球,白球的袋里摸出红球C . 367人中有2人是同月同日出生D . 买1张彩票,中500万大奖4、(2015徐州.中考真卷) 一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A . 至少有1个球是黑球B . 至少有1个球是白球C . 至少有2个球是黑球D . 至少有2个球是白球5、(2019朝阳.中考模拟) 下列事件中,属于必然事件的是()A . “世界杯新秀”姆巴佩发点球 100%进球B . 任意购买一张车票,座位刚好挨着窗口C . 三角形内角和为180°D . 叙利亚不会发生战争6、(2017大石桥.中考模拟) 下列事件是必然事件的是()A . 任意购买一张电影票,座位号是奇数B . 打开电视,正在播出“奔跑吧,兄弟”C . 13名同学中至少有两名同学出生的月份相同D . 抛掷一枚硬币,反面朝上7、(2019长春.中考模拟) 下列事件是随机事件的是()A . 人长生不老B . 明天就是5月1日C . 一个星期有七天D . 2020年奥运会中国队将获得45枚金牌8、(2017丹阳.中考模拟) 下列事件中,是必然事件的为()A . 明天会下雨B . 打开电视机,正在播放动画片C . 三角形内角和为180°D . 经过一个路口,信号灯刚好是红灯9、(2017泰兴.中考模拟) 口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A . 随机摸出1个球,是白球B . 随机摸出1个球,是红球C . 随机摸出1个球,是红球或黄球 D . 随机摸出2个球,都是黄球10、(2017徐州.中考模拟) 下列事件:①在体育中考中,小明考了满分;②经过有交通信号灯的路口,遇到红灯;③抛掷两枚正方体骰子,点数和大于1;④度量任一三角形,其外角和都是180°,其中必然事件是()A . ①B . ②C . ③D . ④11、(2017梁溪.中考模拟) 下列事件中,是不可能事件的是()A . 抛掷2枚正方体骰子,都是6点朝上B . 抛掷2枚硬币,朝上的都是反面C . 从只装有红球的袋子中摸出白球D . 从只装有红、篮球的袋子中摸出篮球12、(2019北仑.中考模拟) 若实数a<0,则下列事件中是必然事件的是()A . a3>0B . 3a>0C . a+3<0D . a﹣3<013、(2012杭州.中考真卷) 一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A . 摸到红球是必然事件B . 摸到白球是不可能事件C . 摸到红球比摸到白球的可能性相等D . 摸到红球比摸到白球的可能性大14、(2020长葛.中考模拟) 下列事件中,属于必然事件的是()A . 2020年的元旦是晴天B . 太阳从东边升起C . 打开电视正在播放新闻联播 D . 在一个没有红球的盒子里,摸到红球15、(2020武汉.中考模拟) 下列事件是必然事件的是()A . 某种彩票中奖率为1%,则买100张这种彩票必然中奖B . 今晚努力学习,明天考试必然考出好成绩C . 从装有2个红球、3个白球的袋中随机摸出4个球,则一定会摸出红球D . 抛掷一枚普通的骰子所得的点数一定小于616、(2017武汉.中考模拟) 下列事件中是不可能事件的是()A . 降雨时水位上升B . 在南极点找到东西方向C . 体育运动时消耗卡路里D . 体育运动中肌肉拉伤17、(2015阳新.中考模拟) 下列事件中,为必然事件是()A . 度量三角形的内角和,结果是360°B . 从仅装有5个黑球的口袋中摸出一球是黑球 C . 购买中奖率为1%的100张彩票,结果中奖 D . 汽车累积行驶1万千米,从未出现故障18、(2015随州.中考真卷) 下列说法正确的是()A . “购买1张彩票就中奖”是不可能事件B . “掷一次骰子,向上一面的点数是6”是随机事件C . 了解我国青年人喜欢的电视节目应作全面调查D .甲、乙两组数据,若S甲2>S乙2,则乙组数据波动大19、(2017邵东.中考模拟) 下列事件中,是必然事件的是()A . 经过长期努力学习,你会成为科学家B . 抛出的篮球会下落C . 打开电视机,正在直播NBAD . 从一批灯泡中任意拿一个灯泡,能正常发光20、(2019南山.中考模拟) 下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同若方差S甲2=0.1,S乙2=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确的说法有()个.A . 4B . 3C . 2D . 121、(2018东莞.中考模拟) (2017八下·泰兴期末) 一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是( )A . 至少有1个球是红球B . 至少有1个球是白球C . 至少有2个球是红球D . 至少有2个球是白球22、(2017平南.中考模拟) 下列说法中正确的是()A . 掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为B . “对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C . “同位角相等”这一事件是不可能事件D . “钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件23、(2017重庆.中考模拟) 一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A . 摸出的四个球中至少有一个球是白球B . 摸出的四个球中至少有一个球是黑球C . 摸出的四个球中至少有两个球是黑球D . 摸出的四个球中至少有两个球是白球24、(2018广元.中考真卷) “若是实数,则≥0”这一事件是()A . 必然事件B . 不可能事件C . 不确定事件D . 随机事件25、(2020南漳.中考模拟) 下列事件中,属于随机事件的是()A . 方程在实数范围内有解B . 在平面上画一个矩形,这个矩形一定是轴对称图形 C . 在一副扑克牌中抽取一张牌,抽出的牌是黑桃A D . 十边形有15条对角线26、(2020山西.中考模拟) 在一个不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是必然事件的是( )A . 摸出的是3个白球B . 摸出的是3个黑球C . 摸出的球中至少有1个是黑球D . 摸出的是2个白球、1个黑球27、(2020枣阳.中考模拟) 下列事件中,是必然事件的是()A . 车辆随机到达一个路口,遇到红灯B . 将油滴在水中,油会浮在水面上C . 如果,那么a=bD . 掷一枚质地均匀的硬币,一定正面向上28、(2020武汉.中考模拟) “投掷一枚硬币,正面朝上”这一事件是()A . 必然事件B . 随机事件C . 不可能事件D . 确定事件29、(2020呼伦贝尔.中考真卷) 下列事件是必然事件的是()A . 任意一个五边形的外角和为540°B . 抛掷一枚均匀的硬币100次,正面朝上的次数为50次C . 13个人参加一个集会,他们中至少有两个人的出生月份是相同的D . 太阳从西方升起30、(2021崇明.中考模拟) 在等腰三角形、等腰梯形、平行四边形、矩形中任选两个不同的图形,那么下列事件中为不可能事件的是()A . 这两个图形都是轴对称图形B . 这两个图形都不是轴对称图形C . 这两个图形都是中心对称图形D . 这两个图形都不是中心对称图形随机事件单选题答案1.答案:D2.答案:D3.答案:D4.答案:A5.答案:C6.答案:C7.答案:D8.答案:C9.答案:B10.答案:C11.答案:C12.答案:D13.答案:D14.答案:B15.答案:C16.答案:B17.答案:B18.答案:B19.答案:B20.答案:D21.答案:B22.答案:B23.答案:B24.答案:A25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。
辽宁省2015年十城市中考数学试卷及答案_4

2015年辽宁省本溪市中考数学试卷一、选择题(每题3分,共24分)1、2-的相反数是( )A 、12-B 、12C 、2D 、±22、如图是某几何体得三视图,则这个几何体是( )A 、球B 、圆锥C 、圆柱D 、三棱体3 )A 、2B 、4C 、15D 、164、一元二次方程2104x x -+=的根( ) A 、121122x x ==-, , B 、1222x x ==-, C 、1212x x ==- D 、1212x x == 5、在一次数学竞赛中,某小组6名同学的成绩(单位:分)分别是69、75、86、92、95、88.这组数据的中位数是( )A 、79B 、86C 、92D 、876、如图,在Rt △ABC 中,∠C=90°,AB=10,BC=8,DE 是△ABC 的中位线,则DE 的长度是( )A 、3B 、4C 、4.8D 、57、反比例函数(0)k y k x=≠的图象如图所示,若点A (11x y ,)、B (22x y ,)、C (33x y ,)是这个函数图象上的三点,且1230x x x >>>,则123y y y 、、的大小关系( )A 、312y y y <<B 、213y y y <<C 、321y y y <<D 、123y y y <<8、如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值( )A 、2B 、4C 、D 、二、填空题(每题3分,共24分)9、函数14y x =-中的自变量x 的取值范围__________。
10、掷一枚质地均匀的正方体骰子,骰子的六个面上分别有1至6的点数,则向上一面的点数是偶数的概率__________。
11、如图:AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠AEF .EG ⊥FG于点G ,若∠BEM=50°,则∠CFG= __________。
【初中数学】2015-2016学年辽宁省葫芦岛市建昌县八年级(下)期末数学试卷(解析版) 人教版

2015-2016学年辽宁省葫芦岛市建昌县八年级(下)期末数学试卷一、选择题(共10小题,每小题2分,满分20分)1.化简的正确结果是()A.10 B.100 C.﹣10 D.﹣1002.在▱ABCD中,AB=3,BC=4,AC=5,则▱ABCD的面积为()A.6 B.12 C.18 D.243.一直角三角形的两边长分别为3和4.则第三边的长为()A.5 B.C.D.5或4.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.A.平均数B.中位数C.众数 D.方差6.已知,如图,正方形中的阴影部分是由四个直角边长都是1和3的直角三角形组成的,那么正方形面积是阴影部分面积的()A.2 B.3 C.4 D.57.下列命题中,错误的是()A.两组对角分别相等的四边形是平行四边形B.有三个角是直角的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.一组对边平行的四边形是平行四边形8.已知,如图,OA=OB,那么数轴上的点A所表示的数是()A.B.C.﹣D.﹣9.若点A(2,4)在函数y=kx﹣2的图象上,则下列各点在此函数图象上的是()A.(1,1)B.(﹣1,1)C.(﹣2,﹣2)D.(2,﹣2)10.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则每分出水()A.升B.4升C.5升D.升二、填空题(共8小题,每小题2分,满分16分)11.若二次根式有意义,则x的取值范围是.12.数据1、5、6、5、6、5、6、6的众数是,方差是.13.把直线y=x+3沿y轴向下平移3个单位长度,所得直线的解析式为.14.在数据﹣2、﹣1、0、5、6中插入一个数据x,使得这组数据的中位数是2,则x=.15.在平面直角坐标系中点A(,1)到原点的距离是.16.如图,在▱ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是.17.在二次根式、、、,,中,是最简二次根式的共有个.18.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=9,S2=4,S3=8,S4=10,则S=.三、解答题(本大题共8小题,共64分)19.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,求这个一次函数的解析式.20.老师在计算学期总平均分的时候按照如下标准:作业占10%,测验占30%,期中考试25%35%320cm,在无风的天气里,彩旗自然下垂,如图①.求彩旗下垂时最低处离地面的最小高度h.(彩旗完全展平时的尺寸是如图②所示的长方形.单位:cm)22.已知,如图,在四边形ABCD中,AD∥BC,点E在CB的延长线上,连接DE,交AB 于点F,连接DB,且∠AFD=∠DBE,∠DBE=∠CDE.(1)求证:四边形ABCD是平行四边形;(2)当BD平分∠ABC时,求证:四边形ABCD是菱形.23.已知:如图,请在边长为1的小正方形组成的网格中画△ABC,使它的顶点都在格点上,且三边长分别为2,2,4,并求△ABC的面积和最长边上的高.24.如图,直线y=kx+6与x轴、y轴分别交于点E、F,点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)探究:在(2)的情况下,当点P运动到什么位置时,△OPA的面积为,并说明理由.25.如图1,▱ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).26.已知正方形ABCD的边长为4,E是CD上一个动点,以CE为一条直角边作等腰直角三角形CEF,连接BF、BD、FD.(1)BD与CF的位置关系是.(2)①如图,当CE=4(即点E与点D重合)时,△BDF的面积为.②如图,当CE=2(即点E为CD中点)时,△BDF的面积为.③如图,当CE=3时,△BDF的面积为.(3)如图,根据上述计算的结果,当E是CD上任意一点时,请提出你对△BDF面积与正方形ABCD的面积之间关系的猜想,并证明你的猜想.2015-2016学年辽宁省葫芦岛市建昌县八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.化简的正确结果是()A.10 B.100 C.﹣10 D.﹣100【考点】二次根式的性质与化简.【分析】根据二次根式的性质解答即可.【解答】解:=10,故选:A.2.在▱ABCD中,AB=3,BC=4,AC=5,则▱ABCD的面积为()A.6 B.12 C.18 D.24【考点】平行四边形的性质.【分析】由AB=3,BC=4,AC=5,由勾股定理的逆定理判定△ABC是直角三角形,得出四边形ABCD是矩形,继而求得▱ABCD的面积.【解答】解:如图所示:∵AB=3,BC=4,AC=5,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形,∴∴S▱ABCD=AB•BC=3×4=12.故选:B.3.一直角三角形的两边长分别为3和4.则第三边的长为()A.5 B.C.D.5或【考点】勾股定理.【分析】本题中没有指明哪个是直角边哪个是斜边,故应该分情况进行分析.【解答】解:(1)当两边均为直角边时,由勾股定理得,第三边为5,(2)当4为斜边时,由勾股定理得,第三边为,故选:D.4.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y (米)与时间t (分钟)之间关系的大致图象是( )A .B .C .D .【考点】函数的图象. 【分析】生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小.【解答】解:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零.故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来时的方向不同,故B 符合要求. 故选B .A .平均数B .中位数C .众数D .方差 【考点】统计量的选择.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响, 故选B .6.已知,如图,正方形中的阴影部分是由四个直角边长都是1和3的直角三角形组成的,那么正方形面积是阴影部分面积的( )A .2B .3C .4D .5【考点】勾股定理.【分析】先求出正方形的边长,再求出正方形的面积和阴影部分的面积,即可得出两者的关系.【解答】解:由勾股定理得: =3,∴S 正方形=(3)2=18,S=4××3×1=6,18÷6=3(倍);阴影故选:B.7.下列命题中,错误的是()A.两组对角分别相等的四边形是平行四边形B.有三个角是直角的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.一组对边平行的四边形是平行四边形【考点】命题与定理.【分析】分别根据平行四边形、矩形及菱形的判定定理对各选项进行逐一判断即可.【解答】解:A、两组对角分别相等的四边形是平行四边形,故本选项正确;B、有三个角是直角的四边形是矩形,故本选项正确;C、对角线互相垂直的平行四边形是菱形,故本选项正确;D、一组对边平行的四边形是平行四边形或梯形,故本选项错误.故选D.8.已知,如图,OA=OB,那么数轴上的点A所表示的数是()A.B.C.﹣D.﹣【考点】实数与数轴.【分析】首先根据勾股定理得:OB=.即OA=.又点A在数轴的负半轴上,则点A对应的数是﹣.【解答】解:由图可知,OC=2,作BC⊥OC,垂足为C,取BC=1,故OB=OA===,∵A在x的负半轴上,∴数轴上点A所表示的数是﹣,故选C.9.若点A(2,4)在函数y=kx﹣2的图象上,则下列各点在此函数图象上的是()A.(1,1)B.(﹣1,1)C.(﹣2,﹣2)D.(2,﹣2)【考点】一次函数图象上点的坐标特征.【分析】将点A(2,4)代入函数解析式求出k的值,再把各点的坐标代入解析式,逐一检验即可.【解答】解:∵点A(2,4)在函数y=kx﹣2的图象上,∴2k﹣2=4,解得k=3,∴此函数的解析式为:y=3x﹣2,A、∵3×1﹣2=1,∴此点在函数图象上,故本选项正确;B、∵3×(﹣1)﹣2=﹣5≠1,∴此点在不函数图象上,故本选项错误;C、∵3×(﹣2)﹣2=﹣7≠﹣2,∴此点在不函数图象上,故本选项错误;D、∵3×2﹣2=4≠﹣2,∴此点在不函数图象上,故本选项错误.故选A.10.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则每分出水()A.升B.4升C.5升D.升【考点】一次函数的应用.【分析】观察函数图象找出数据,根据“每分钟进水量=总进水量÷放水时间”算出每分钟的进水量,再根据“每分钟的出水量=每分钟的进水量﹣每分钟增加的水量”即可算出结论.【解答】解:每分钟的进水量为:20÷4=5(升),每分钟的出水量为:5﹣(30﹣20)÷(12﹣4)=(升).故选A.二、填空题(共8小题,每小题2分,满分16分)11.若二次根式有意义,则x的取值范围是x≥2.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件,可得x﹣2≥0,解不等式求范围.【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.12.数据1、5、6、5、6、5、6、6的众数是6,方差是 2.5.【考点】方差;众数.【分析】(1)根据众数的概念,找出数据中出现次数最多的数即为所求;(2)先求平均数,然后根据方差公式计算.【解答】解:(1)1、5、6、5、6、5、6、6中,6出现了四次,次数最多,故6为众数;(2)1、5、6、5、6、5、6、6的平均数为(1+5+6+5+6+5+6+6)=5,则S2= [(1﹣5)2+2×(5﹣5)2+4×(6﹣5)2]=2.5.故填6;2.5.13.把直线y=x+3沿y轴向下平移3个单位长度,所得直线的解析式为y=x.【考点】一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答.【解答】解:由上加下减”的原则可知,将直线y=x+3沿y轴向下平移3个单位后的直线所对应的函数解析式是:y=x.故答案为:y=x14.在数据﹣2、﹣1、0、5、6中插入一个数据x,使得这组数据的中位数是2,则x=4.【考点】中位数.【分析】先把这组数据按照从小到大的顺序排列,然后根据中位数为2求解.【解答】解:这组数据按照从小到大的顺序排列为:﹣2、﹣1、0、5、6,∵中位数为2,∴x在0和5之间,即﹣2、﹣1、0、x、5、6,则(0+x)÷2=2,解得:x=4.故答案为:4.15.在平面直角坐标系中点A(,1)到原点的距离是2.【考点】两点间的距离公式.【分析】求出与1的平方和的算术平方根即可.【解答】解:点A(,1)到原点的距离是=2.故答案为:2.16.如图,在▱ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是3<x<11.【考点】平行四边形的性质;三角形三边关系.【分析】根据平行四边形的性质易知OA=7,OB=4,根据三角形三边关系确定范围.【解答】解:∵ABCD是平行四边形,AC=14,BD=8,∴OA=AC=7,OB=BD=4,∴7﹣4<x<7+4,即3<x<11.故答案为:3<x<11.17.在二次根式、、、,,中,是最简二次根式的共有3个.【考点】最简二次根式.【分析】结合选项根据最简二次根式的概念求解即可.【解答】解:二次根式、、、,,中,是最简二次根式的是、,,故答案为:318.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=9,S2=4,S3=8,S4=10,则S=31.【考点】勾股定理.【分析】利用勾股定理,根据图形得到S1+S2+S3+S4=S,求出即可.【解答】解:∵所有三角形都是直角三角形,所有四边形都是正方形,∴S=S1+S2+S3+S4=9+4+8+10=31,故答案为:31.三、解答题(本大题共8小题,共64分)19.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,求这个一次函数的解析式.【考点】两条直线相交或平行问题.【分析】首先求得B的坐标,然后利用待定系数法即可求得一次函数的解析式.【解答】解:在y=2x中,令x=1,解得y=2,则B的坐标是(1,2),设一次函数的解析式是y=kx+b,∵一次函数经过(1,2),(0,3)两点,∴,解得:.∴一次函数的解析式是y=﹣x+3;20.老师在计算学期总平均分的时候按照如下标准:作业占10%,测验占30%,期中考试【考点】加权平均数.【分析】把不同的成绩分别乘以对应的权重后求和再除以权的和即可.【解答】解:小丽:80×10%+75×30%+71×25%+88×35%=79.05(分),小明:76×10%+80×30%+68×25%+90×35%=80.1(分).答:小丽的总平均分是79.05分,小明的总平均分为80.1分.21.将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm,在无风的天气里,彩旗自然下垂,如图①.求彩旗下垂时最低处离地面的最小高度h.(彩旗完全展平时的尺寸是如图②所示的长方形.单位:cm)【考点】勾股定理的应用.【分析】根据图形标出的长度,先构造直角三角形,根据勾股定理就可求出彩旗的对角线的长,继而求出h的值.【解答】解:彩旗下垂时最低处离地面的最小高度h也就是旗杆的高度减去彩旗的对角线的长,彩旗的对角线长为:=150,所以h=320﹣150=170cm.彩旗下垂时最低处离地面的最小高度h为170cm.22.已知,如图,在四边形ABCD中,AD∥BC,点E在CB的延长线上,连接DE,交AB 于点F,连接DB,且∠AFD=∠DBE,∠DBE=∠CDE.(1)求证:四边形ABCD是平行四边形;(2)当BD平分∠ABC时,求证:四边形ABCD是菱形.【考点】菱形的判定;平行四边形的判定与性质.【分析】(1)欲证明四边形ABCD是平行四边形,结合已知条件,只需推知AB∥DC即可;(2)有(1)可知:∠DBE=∠CDE,利用角平分线的性质和平行线的判定以及平行四边形的判定方法证明四边形ABCD为平行四边形,再证明AB=AD即可证明:四边形ABCD是菱形.【解答】(1)证明:∵∠AFD=∠DBE,∠DBE=∠CDE,∴∠AFD=∠CDE,∴AB∥DC.又∵AD∥BC,∴四边形ABCD是平行四边形.(2)证明:∵AD∥BC,∴∠ADB=∠1.又∵BD平分∠ABC,∴∠1=∠2,∴∠ADB=∠2,∴AB=AD,而四边形ABCD是平行四边形,∴四边形ABCD是菱形.23.已知:如图,请在边长为1的小正方形组成的网格中画△ABC,使它的顶点都在格点上,且三边长分别为2,2,4,并求△ABC的面积和最长边上的高.【考点】作图—复杂作图;二次根式的应用;勾股定理.【分析】(1)根据题意画出图形即可;(2)根据三角形的面积=正方形的面积﹣三个角上三角形的面,然后设BC上的高为长为x,可得•x•2=2,解出x的值即可.【解答】解:(1)右图中的△ABC即为所求;=×2×2=2,(2)S△ABC设BA上的高为长为x,则•x•2=2,解得:x=.∴最长边AB上的高为.24.如图,直线y=kx+6与x轴、y轴分别交于点E、F,点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)探究:在(2)的情况下,当点P运动到什么位置时,△OPA的面积为,并说明理由.【考点】一次函数综合题.【分析】(1)将点E坐标(﹣8,0)代入直线y=kx+6就可以求出k值,从而求出直线的解析式;(2)由点A的坐标为(﹣6,0)可以求出OA=6,求△OPA的面积时,可看作以OA为底边,高是P点的纵坐标的绝对值.再根据三角形的面积公式就可以表示出△OPA.从而求出其关系式;根据P点的移动范围就可以求出x的取值范围.(3)根据△OPA的面积为代入(2)的解析式求出x的值,再求出y的值就可以求出P点的位置.【解答】解:(1)∵点E(﹣8,0)在直线y=kx+6上,∴0=﹣8k+6,∴k=;(2)∵k=,∴直线的解析式为:y=x+6,∵P点在y=x+6上,设P(x,x+6),∴△OPA以OA为底的边上的高是|x+6|,当点P在第二象限时,|x+6|=x+6,∵点A的坐标为(﹣6,0),∴OA=6.∴S==x+18.∵P点在第二象限,∴﹣8<x<0;(3)设点P(m,n)时,其面积S=,则,解得|n|=,则n1=或者n2=﹣(舍去),当n=时,=m+6,则m=﹣,故P(﹣,)时,三角形OPA的面积为.25.如图1,▱ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).【考点】平行四边形的判定与性质;全等三角形的判定与性质. 【分析】(1)由四边形ABCD 是平行四边形,得到AD ∥BC ,根据平行四边形的性质得到∠EAO=∠FCO ,证出△OAE ≌△OCF ,得到OE=OF ,同理OG=OH ,根据对角线互相平分的四边形是平行四边形得到结论;(2)根据两组对边分别平行的四边形是平行四边形即可得到结论. 【解答】(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠EAO=∠FCO ,在△OAE 与△OCF 中,∴△OAE ≌△OCF , ∴OE=OF , 同理OG=OH ,∴四边形EGFH 是平行四边形;(2)解:与四边形AGHD 面积相等的所有平行四边形有▱GBCH ,▱ABFE ,▱EFCD ,▱EGFH ; ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD , ∵EF ∥AB ,GH ∥BC ,∴四边形GBCH ,ABFE ,EFCD ,EGFH 为平行四边形, ∵EF 过点O ,GH 过点O , ∵OE=OF ,OG=OH ,∴▱GBCH ,▱ABFE ,▱EFCD ,▱EGFH ,▱ACHD 它们面积=▱ABCD 的面积,∴与四边形AGHD 面积相等的所有平行四边形有▱GBCH ,▱ABFE ,▱EFCD ,▱EGFH .26.已知正方形ABCD 的边长为4,E 是CD 上一个动点,以CE 为一条直角边作等腰直角三角形CEF ,连接BF 、BD 、FD .(1)BD 与CF 的位置关系是 平行 .(2)①如图,当CE=4(即点E 与点D 重合)时,△BDF 的面积为 8 . ②如图,当CE=2(即点E 为CD 中点)时,△BDF 的面积为 8 . ③如图,当CE=3时,△BDF 的面积为 8 .(3)如图,根据上述计算的结果,当E 是CD 上任意一点时,请提出你对△BDF 面积与正方形ABCD 的面积之间关系的猜想,并证明你的猜想.【考点】正方形的性质;三角形的面积;等腰直角三角形;平行四边形的判定与性质. 【分析】(1)证A 、D 、F 共线,根据平行四边形的判定推出平行四边形BCFD 即可; (2)①根据三角形的面积公式求出即可;②③根据S △BDF =S 四边形BCDF ﹣S △BCF =S △BCD +S △CDF ﹣S △BCF 代入求出即可;(3)由(2)求出了△BDF 的面积,求出正方形的面积,即可得出答案. 【解答】解:(1)正方形ABCD ,等腰直角三角形CEF , ∴∠ADC=∠FDC=90°, ∴∠ADC +∠FDC=180°, 即A 、D 、F 三点共线, ∵DF ∥CB ,DF=CD=BC ,∴四边形BCFD 是平行四边形, ∴FC ∥BD ,故答案为:平行.(2)①△BDF 的面积是DF ×AB=×4×4=8, 故答案为:8.②△BDF 的面积是:S 四边形BCFD ﹣S △BCF =S △BDC +S △CDF ﹣S △BCF=BC ×DC +CD ×EF ﹣BC ×CE=×4×+×4×2﹣×4×2=8,故答案为:8.③与②求法类似:△BDF 的面积是S △BDC +S △CDF ﹣S △BCF=BC ×CD +CD ×EF ﹣CB ×EF=×4×4+×4×3﹣×4×3 =8,故答案为:8.(3)△BDF 面积与正方形ABCD 的面积之间关系是S △BDF =S 正方形ABCD . 证明:∵S △BDF =8,S 正方形ABCD =BC ×CD=4×4=16,∴S △BDF =S 正方形ABCD .2016年10月24日。
辽宁省葫芦岛市中考数学试卷及答案

辽宁省葫芦岛市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内.每小题2 分,共20 分)1.在下列各组根式中,是同类二次根式的是()2.在平面直角坐标系中,点P(-1,1)关于x 轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知⊙O 1和⊙O 2的半径分别为1 和5,圆心距为3,则两圆的位置关系是()A.相交B.内含C.内切D.外切4.在下面四种正多边形中,用同一种图形不能平面镶嵌的是()5.已知2 是关于x 的方程的一个根,则2a- 1的值是()A.3 B.4 C.5 D.66.关于x 的方程有两个不相等的实数根,则k 的取值范围是()A.k>-1 B.k≥-1 C.k>1 D.k≥07.如图,在同心圆中,两圆半径分别为2、1,∠AOB=120°,则阴影部分的面积为()A.4π B.2π C.D.π8.已知一次函数y=kx+b 的图象经过第一、二、四象限,则反比例函数的图象在A.第一、二象限B.第三、四象限()C.第一、三象限D.第二、四象限9.已知圆锥的侧面展开图的面积是15π cm 2,母线长是5cm,则圆锥的底面半径为()A.3/2cm B.3cm C.4cm D.6cm10.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是()A.甲比乙快B.乙比甲快C.甲、乙同速D.不一定二、填空题(每小题2 分,共20 分)11.在函数中,自变量x 的取值范围是_______________ .12.若方程的两根分别为13.一组数据9,5,7,8,6,8 的众数和中位数依次是_______________ .14.如图,AB 是⊙O 的直径,弦CD⊥AB,E 为垂足,若AB=9,BE=1,则CD=________.15.如果一个正多边形的内角和是900°,则这个多边形是正______边形.16.已知圆的直径为13cm,圆心到直线l 的距离为6cm,那么直线l 和这个圆的公共点的个数是____________.17.用换元法解方程,若设,则原方程可化成关于y 的整式方程为__________.18.如图,在△ABC 中,∠C=90°,AB=10,AC=8,以AC 为直径作圆与斜边交于点P,则BP 的长为__________ .19.如图,施工工地的水平地面上,有三根外径都是1 米的水泥管,两两相切地堆放在一起,则其最高点到地面的距离是__________.20.在半径为1 的⊙O 中,弦AB、AC 分别是3和2 ,则∠BAC的度数为__________.三、(第21 题6 分,第22 题6 分,第23 题10 分,共22 分)21.当x=2,y=3 时,求代数式的值.22.如图,已知:AB.求作:(1)确定AB 的圆心O.(2)过点A 且与⊙O 相切的直线.(注:作图要求利用直尺和圆规,不写作法,但要求保留作图痕迹)23.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900 名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100 分)进行统计.请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中的样本容量是多少?答:_____________________________________________ .(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)答:_____________________________________________ .(5)若成绩在90 分以上(不含90 分)为优秀,则该校成绩优秀的约为多少人?答:_____________________________________________ .四、(10 分)24.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD 和高度DC 都可直接测得,从A、D、C 三点可看到塔顶端H.可供使用的测量工具有皮尺、测倾器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D 间距离,用m 表示;如果测D、C 间距离,用n 表示;如果测角,用α、β、γ 表示).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计).五、(10 分)25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30 万元;(3)求第8 个月公司所获利润是多少万元?六、(12 分)26.某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这样的情况下,如果确保每周 4 万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?七、(12 分)27.(1)如图(a),已知直线AB 过圆心O,交⊙O 于A、B,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C、D,交AB 于E,且与AF 垂直,垂足为G,连结AC、AD.求证:①∠BAD=∠CAG;②AC·AD=AE·AF.(2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变.①请你在图(b)中画出变化后的图形,并对照图(a),标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明八、(14 分)28.已知:如图,⊙D 交y 轴于A、B,交x 轴于C,过点C 的直线:与y 轴交于P.(1)求证:PC 是⊙D 的切线;(2)判断在直线PC 上是否存在点E,使得S △ EOP=4S △ CDO,若存在,求出点E 的坐标;若不存在,请说明理由;(3)当直线PC 绕点P 转动时,与劣弧交于点F(不与A、C 重合),连结OF,设PF=m,OF=n,求m、n 之间满足的函数关系式,并写出自变量n 的取值范围.。
辽宁省葫芦岛市2015年中考数学真题试题(含解析)

辽宁省葫芦岛市2015年中考数学试卷一.选择题(每小题3分,共30分,在每小题给出的四个选项中只有一个是符合题意的)1.(2015•葫芦岛)﹣的绝对值是()A.﹣B.C.2 D.﹣2考点:绝对值.分析:根据一个负数的绝对值是它的相反数进行解答即可.解答:解:|﹣|=,故选:B.点评:本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(2015•葫芦岛)下列图形属于中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的定义即可作出判断.解答:解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是中心对称图形,故选项错误;C、是中心对称图形,故选项正确;D、是轴对称图形,不是中心对称图形,故选项错误.故选C.点评:本题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(2015•葫芦岛)从正面观察下面几何体,能看到的平面图形是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个正方形,在中间,第二层从左到右有3个正方形.故选A.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(2015•葫芦岛)不等式组的解集在数轴上表示正确的是()A.B. C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解答:解:解不等式①得:x>﹣1;解不等式②得:x≤2,所以不等式组在数轴上的解集为:故选C点评:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥,≤”要用实心圆点表示;“<,>”要用空心圆点表示.5.(2015•葫芦岛)张老师随机抽取6名学生,测试他们的打字能力,测得他们每分钟打字个数分别为:100,80,70,80,90,95,那么这组数据的中位数是()A.80 B.90 C.85 D.75考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按从小到大的顺序排列为:70,80,80,90,95,100,则中位数为:=85.故选C.点评:本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(2015•葫芦岛)下列事件属于必然事件的是()A.蒙上眼睛射击正中靶心B.买一张彩票一定中奖C.打开电视机,电视正在播放新闻联播D.月球绕着地球转考点:随机事件.分析:必然事件就是一定发生的事件,根据定义即可判断.解答:解:A、蒙上眼睛射击正中靶心是随机事件,故选项错误;B、买一张彩票一定中奖是不可能事件,错误;C、打开电视机,电视正在播放新闻联播是随机事件,故选项错误;D、月球绕着地球转是必然事件,正确;故选D点评:本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(2015•葫芦岛)如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,则的长是()A.πB.πC.πD.π考点:弧长的计算;圆周角定理.分析:根据圆周角得出圆心角为90°,再利用弧长公式计算即可.解答:解:因为⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,所以可得圆心角∠BOC=90°,所以的长=,故选B.点评:此题考查弧长公式,关键是根据圆周角得出圆心角为90°.8.(2015•葫芦岛)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°考点:多边形内角与外角;三角形内角和定理.分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.解答:解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.点评:本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.9.(2015•葫芦岛)已知k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系;解一元二次方程-因式分解法.分析:首先利用因式分解法解一元二次方程求出k和b的值,然后判断函数y=x﹣的图象不经过的象限即可.解答:解:∵k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b,∴k=,b=﹣,∴函数y=x﹣的图象不经过第二象限,故选B.点评:本题主要考查了一次函数图象与系数的关系以及因式分解法解一元二次方程的知识,解答本题的关键是利用因式分解法求出k和b的值,此题难度不大.10.(2015•葫芦岛)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AE F的面积为y,能大致刻画y与x的函数关系的图象是()A .B .C .D .考点: 动点问题的函数图象.专题: 应用题.分析: 分F 在线段PD 上,以及线段DQ 上两种情况,表示出y 与x 的函数解析式,即可做出判断. 解答: 解:当F 在PD 上运动时,△AEF 的面积为y=AE•AD=2x(0≤x≤2),当F 在DQ 上运动时,△AEF 的面积为y=AE•AF=x (x ﹣2)=x 2﹣x (2<x≤4),图象为:故选A点评: 此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y 与x 的函数解析式.二.填空题(每小题3分,共24分)11. (2015•葫芦岛)若代数式有意义,则实数x 的取值范围是 x≥0且x≠1 .考点: 二次根式有意义的条件;分式有意义的条件.分析: 利用二次根式有意义的条件以及分式有意义的条件得出即可.解答: 解:∵有意义,∴x≥0,x ﹣1≠0,∴实数x 的取值范围是:x≥0且x≠1.故答案为:x≥0且x≠1.点评: 此题主要考查了二次根式有意义以及分式有意义的条件,正确把握定义是解题关键.12. (2015•葫芦岛)根据最新年度报告,全球互联网用户达到3 200 000 000人,请将3 200 000000用科学记数法表示 3.2×109 .考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n 的值,由于3 200 000 000有10位,所以可以确定n=9.解答:解:3200000000=3.2×109,故答案为:3.2×109.点评:本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法.13.(2015•葫芦岛)分解因式:4m2﹣9n2= (2m+3n)(2m﹣3n).考点:因式分解-运用公式法.分析:直接利用平方差公式分解因式得出即可.解答:解:4m2﹣9n2=(2m+3n)(2m﹣3n).故答案为:(2m+3n)(2m﹣3n).点评:此题主要考查了运用公式法分解因式,正确应用平方差公式是解题关键.14.(2015•葫芦岛)若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范围是m<.考点:根的判别式;一元二次方程的定义.分析:据关于x的一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,得出△=16﹣4(m﹣1)×(﹣5)<0,从而求出m的取值范围.解答:解:∵一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,∴△=16﹣4(m﹣1)×(﹣5)<0,且m﹣1≠0,∴m<.故答案为:m<.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(2015•葫芦岛)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.8环,方差分别是:S甲2=1,S乙2=0.8,则射击成绩较稳定的是乙.(填“甲”或“乙”)考点:方差;算术平均数.分析:直接根据方差的意义求解.解答:解:∵S甲2=1,S乙2=0.8,1<0.8,∴射击成绩比较稳定的是乙,故答案为:乙.点评:本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好16.(2015•葫芦岛)如图,在菱形ABCD中,AB=10,AC=12,则它的面积是96 .考点:菱形的性质.分析:首先根据勾股定理可求出BO的长,进而求出BD的长,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.解答:解:∵四边形ABCD是菱形,∴AC⊥BD,∵AC=12,∴AO=6,∵AB=10,∴BO==8,∴BD=16,∴菱形的面积S=AC•BD=×16×12=96.故答案为:96.点评:本题考查了菱形的性质以及勾股定理的运用,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.17.(2015•葫芦岛)如图,一次函数y=kx+2与反比例函数y=(x>0)的图象交于点A,与y轴交于点M,与x轴交于点N,且AM:MN=1:2,则k= .考点:反比例函数与一次函数的交点问题.分析:利用相似三角形的判定与性质得出A点坐标,进而代入一次函数解析式得出答案.解答:解:过点A作AD⊥x轴,由题意可得:MO∥AO,则△NOM∽△NDA,∵AM:MN=1:2,∴==,∵一次函数y=kx+2,与y轴交点为;(0,2),∴MO=2,∴AD=3,∴y=3时,3=,解得:x=,∴A(,3),将A点代入y=kx+2得:3=k+2,解得:k=.故答案为:.点评:此题主要考查了反比例函数与一次函数交点问题以及相似三角形的判定与性质等知识,得出A点坐标是解题关键.18.(2015•葫芦岛)如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形AB n C n C n﹣1的面积为.考点:相似多边形的性质.专题:规律型.分析:根据已知和矩形的性质可分别求得AC,AC1,AC2的长,从而可发现规律,根据规律即可求得第n个矩形的面积.解答:解:∵四边形ABCD是矩形,∴AD⊥DC,∴AC===,∵按逆时针方向作矩形ABCD的相似矩形AB1C1C,∴矩形AB1C1C的边长和矩形ABCD的边长的比为:2∴矩形AB1C1C的面积和矩形ABCD的面积的比5:4,∵矩形ABCD的面积=2×1=2,∴矩形AB1C1C的面积=,依此类推,矩形AB2C2C1的面积和矩形AB1C1C的面积的比5:4∴矩形AB2C2C1的面积=∴矩形AB3C3C2的面积=,按此规律第n个矩形的面积为:故答案为:.点评:本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律.三.解答题19.(10分)(2015•葫芦岛)先化简,再求值:(﹣)÷,其中x=3.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解答:解:原式=•=•=,当x=3时,原式=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(12分)(2015•葫芦岛)某超市计划经销一些特产,经销前,围绕“A:绥中白梨,B:虹螺岘干豆腐,C:绥中六股河鸭蛋,D:兴城红崖子花生”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.请根据所给信息解答以下问题:(1)请补全扇形统计图和条形统计图;(2)若全市有280万市民,估计全市最喜欢“虹螺岘干豆腐”的市民约有多少万人?(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到“A”的概率为.考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.分析:(1)根据A的人数与所占的百分比列式求出随机抽取的总人数,再求出B的人数,最后补全两个统计图即可;(2)用全市的总人数乘以B所占的百分比,计算即可得解;(3)画出树状图,然后根据概率公式列式计算即可得解.解答:解:(1)被抽查的总人数:290÷29%=1000,B的人数:1000﹣290﹣180﹣120=410,C所占的百分比:180÷1000=18%;(2)280×41%=114.8(万人),答:最喜欢“虹螺岘干豆腐”的市民约有114.8万人;(3)根据题意作出树状图如下:一共有16种情况,两次都摸到“A”的有1种情况,所以P(A,A)=.故答案为:.点评:本题考查了列表法和树状图法,扇形统计图和条形统计图,用到的知识点为:概率=所求情况数与总情况数之比.21.(12分)(2015•葫芦岛)如图,小岛A在港口B的北偏东50°方向,小岛C在港口B的北偏西25°方向,一艘轮船以每小时20海里的速度从港口B出发向小岛A航行,经过5小时到达小岛A,这时测得小岛C在小岛A的北偏西70°方向,求小岛A距离小岛C有多少海里?(最后结果精确到1海里,参考数据:≈1.1414,≈1.732)考点:解直角三角形的应用-方向角问题.分析:过点B作BD⊥AC,垂足为点D,根据题意求出∠ABC和∠BAC的度数以及AB的长,再求出AD 和BD的长,结合CD=BD,即可求出AC的长.解答:解:由题意得,∠ABC=25°+50°=75°,∠BAC=180°﹣70°﹣50°=60°,∴在△ABC中,∠C=45°,过点B作BD⊥AC,垂足为点D,∵AB=20×5=100,在Rt△ABD中,∠BAD=60°,∴BD=ABsin60°=100×=50,∴AD=ABcos60°=100×=50,在Rt△BCD中,∠C=45°,∴CD=BD=50,∴AC=AD+CD=50+50≈137(海里),答:小岛A距离小岛C约是137海里.点评:此题考查了解直角三角形的应用﹣方向角问题的知识,解答此类题目的关键是构造出直角三角形,利用解直角三角形的相关知识解答,此题难度不大.22.(12分)(2015•葫芦岛)某中学要进行理、化实验加试,需用九年级两个班级的学生整理实验器材.已知一班单独整理需要30分钟完成.(1)如果一班与二班共同整理15分钟后,一班另有任务需要离开,剩余工作由二班单独整理15分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?(2)如果一、二的工作效率不变,先由二班单独整理,时间不超过20分钟,剩余工作再由一班独立完成,那么整理完这批器材一班至少还需要多少分钟?考点:分式方程的应用;一元一次不等式的应用.分析:(1)设二班单独整理这批实验器材需要x分钟,则15(+)+=1,求出x的值,再进行检验即可;(2)设一班需要m分钟,则+≥1,求出m的取值范围即可.解答:解:(1)设二班单独整理这批实验器材需要x分钟,则15(+)+=1,解得x=60.经检验,x=60是原分式方程的根.答:二班单独整理这批实验器材需要60分钟;(2)方法一:设一班需要m分钟,则+≥1,解得m≥20,答:一班至少需要20分钟.方法二:设一班需要m分钟,则+=1,解得m=20.答:一班至少需要20分钟.点评:本题考查的是分式方程的应用,根据题意列出关于x的方程是解答此题的关键.23.(12分)(2015•葫芦岛)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?考点:切线的判定与性质;勾股定理;解直角三角形.分析:(1)过点O作OM⊥AB,垂足是M,证明OM等于圆的半径OD即可;(2)过点O作ON⊥BE,垂足是N,连接OF,则四边形OMBN是矩形,在直角△OBM利用三角函数求得OM和BM的长,则BN和ON即可求得,在直角△ONF中利用勾股定理求得NF,则BF即可求解.解答:解:(1)过点O作OM⊥AB,垂足是M.∵⊙O与AC相切于点D.∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等边三角形,∴∠DAO=∠NAO,∴OM=OD.∴AB与⊙O相切;(2)过点O作ON⊥BE,垂足是N,连接OF.∵O是BC的中点,∴OB=2.在直角△OBM中,∠MBO=60du6,∴OM=OB•sin60°=,BM=OB•cos60°=1.∵BE⊥AB,∴四边形OMBN是矩形.∴ON=BM=1,BN=OM=.∵OF=OM=,由勾股定理得NF=.∴BF=BN+NF=+.点评:本题考查了切线的性质与判定,以及等边三角形的性质,正确作出辅助线构造矩形是解决本题的关键.24.(12分)(2015•葫芦岛)小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x元.(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:y甲= 10x+40 ,y乙= 10x+20 ;(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?考点:二次函数的应用.分析:(1)根据题意可以列出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式;(2)根据每周甲商品的销售量不低于乙商品的销售量的,列出不等式求出x的取值范围,根据题意列出二次函数的解析式,根据二次函数的性质求出对称轴方程,得到答案.解答:解:(1)由题意得,y甲=10x+40;y乙=10x+20;(2)由题意得,W=(10﹣x)(10x+40)+(20﹣x)(10x+20)=﹣20x2+240x+800,由题意得,10x+40≥(10x+20)解得x≤2,W=﹣20x2+240x+800=﹣20(x﹣6)2+1520,∵a=﹣20<0,∴当x<6时,y随x增大而增大,∴当x=2时,W的值最大.答:当x定为2元时,才能使小明每周销售甲、乙两种商品获得的总利润最大.点评:本题考查的是二次函数的应用,正确列出二次函数的关系式,掌握二次函数的性质是解题的关键.25.(12分)(2015•葫芦岛)在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.考点:四边形综合题.分析:(1)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得∠HAD=90°,即可求得AG ⊥GD,AG=GD;(2)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得△HAD是等边三角形,即可证得AG⊥GD,AG=DG;(3)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得△HAD是等腰三角形,即可证得DG=AGtan.解答:(1)AG⊥DG,AG=DG,证明:延长DG与BC交于H,连接AH、AD,∵四边形DCEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DCF=90°,∴∠DCB=90°,∴∠ACD=45°,∴∠ABH=∠ACD=45°,在△ABH和△ACD中∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∵∠BAH+∠HAC=90°,∴∠CAD+∠HAC=90°,即∠HAD=90°,∴AG⊥GD,AG=GD;(2)AG⊥GD,AG=DG;证明:延长DG与BC交于H,连接AH、AD,∵四边形DCEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=60,∴∠ABC=60°,∠ACD=60°,∴∠ABC=∠ACD=60°,在△ABH和△ACD中∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=60°;∴A G⊥HD,∠HAG=∠DAG=30°,∴tan∠DAG=tan30°==,∴AG=DG.(3)DG=AGtan;证明:延长DG与BC交于H,连接AH、AD,∵四边形DCEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=α,∴∠ABC=90°﹣,∠ACD=90°﹣,∴∠ABC=∠ACD,在△ABH和△ACD中∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=α;∴AG⊥HD,∠HAG=∠DAG=,∴tan∠DAG=tan=,∴DG=AGtan.点评:本题是四边形的综合题,考查了正方形的性质,菱形的性质,三角形求得的判定和性质,等腰三角形三线合一的性质以及直角三角函数等,作出辅助线构建全等三角形是解题的关键.(2015•葫芦岛)如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c (14分)26.经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC 面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.考点:二次函数综合题.分析:(1)首先根据直线y=﹣x+3与x轴交于点C,与y轴交于点B,求出点B的坐标是(0,3),点C的坐标是(4,0);然后根据抛物线y=ax2+x+c经过B、C两点,求出a\c的值是多少,即可求出抛物线的解析式.(2)首先过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,然后设点E的坐标是(x,﹣x2+x+3),则点M的坐标是(x,﹣x+3),求出EM的值是多少;最后根据三角形的面积的求法,求出S△ABC,进而判断出当△BEC面积最大时,点E的坐标和△BEC面积的最大值各是多少即可.(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.然后分三种情况讨论,根据平行四边形的特征,求出使得以P、Q、A、M为顶点的四边形是平行四边形的点P的坐标是多少即可.解答:解:(1)∵直线y=﹣x+3与x轴交于点C,与y轴交于点B,∴点B的坐标是(0,3),点C的坐标是(4,0),∵抛物线y=ax2+x+c经过B、C两点,∴解得∴y=﹣x2+x+3.(2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,,∵点E是直线BC上方抛物线上的一动点,∴设点E的坐标是(x,﹣x2+x+3),则点M的坐标是(x,﹣x+3),∴EM=﹣x2+x+3﹣(﹣x+3)=﹣x2+x,∴S△ABC=S△BEM+S△MEC==×(﹣x2+x)×4=﹣x2+3x=﹣(x﹣2)2+3,∴当x=2时,即点E的坐标是(2,3)时,△BEC的面积最大,最大面积是3.(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.①如图2,,由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+3上,∴点M的坐标是(2,),又∵点A的坐标是(﹣2,0),∴AM==,∴AM所在的直线的斜率是:;∵y=﹣x2+x+3的对称轴是x=1,∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+3),则解得或,∵x<0,∴点P的坐标是(﹣3,﹣).②如图3,,由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+3上,∴点M的坐标是(2,),又∵点A的坐标是(﹣2,0),∴AM==,∴AM所在的直线的斜率是:;∵y=﹣x2+x+3的对称轴是x=1,∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+3),则解得或,∵x>0,∴点P的坐标是(5,﹣).③如图4,,由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+3上,∴点M的坐标是(2,),又∵点A的坐标是(﹣2,0),∴AM==,∵y=﹣x2+x+3的对称轴是x=1,∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+3),则解得,∴点P的坐标是(﹣1,).综上,可得在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣3,﹣)、(5,﹣)、(﹣1,).点评:(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了函数解析式的求法,以及二次函数的最值的求法,要熟练掌握.(3)此题还考查了三角形的面积的求法,要熟练掌握.。
葫芦岛数学中考答案

葫芦岛数学中考答案【篇一:2016年辽宁省葫芦岛市中考数学试卷(word解析版)】p> 一、选择题(本题共10小题,每小题3分,共30分)1.(3分)(2016?葫芦岛)4的相反数是()a.4 b.﹣4 c. d.2.(3分)(2016?葫芦岛)下列运算正确的是()﹣13.(3分)(2016?葫芦岛)下列图形既是轴对称图形又是中心对称图形的是()a. b. c. d.4.(3分)(2016?葫芦岛)如图是由5个相同的小正方体构成的几何体,其左视图是()a. b. c. d.5.(3分)(2016?葫芦岛)九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为2.20米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的()a.方差 b.众数 c.平均数 d.中位数6.(3分)(2016?葫芦岛)下列一元二次方程中有两个相等实数根的是()a.2x﹣6x+1=0 b.3x﹣x﹣5=0 c.x+x=0 d.x﹣4x+4=07.(3分)(2016?葫芦岛)在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为,则袋中白球的个数为()a.2 b.3 c.4 d.128.(3分)(2016?葫芦岛)a,b两种机器人都被用来搬运化工原料,a型机器人比b型机器人每小时多搬运40千克,a型机器人搬运1200千克所用时间与b型机器人搬运800千a.c.== b. d.== 22229.(3分)(2016?葫芦岛)如图,在△abc中,点d,e分别是边ab,ac的中点,af⊥a.4 b.8 c.2 d.410.(3分)(2016?葫芦岛)甲、乙两车从a城出发前往b城,在整个行驶过程中,汽车离开a城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ②乙车用了3h到达b城③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km.a.1个 b.2个 c.3个 d.4个二、填空题(本题共8小题,每小题3分,共24分)11.(3分)(2016?葫芦岛)在“2016丝绸之路”国际投资贸易洽谈会上,我省销售的产品和合作项目签约金额为730000000元,将730000000用科学记数法表示为.12.(3分)(2016?葫芦岛)分解因式:a﹣4a=.14.(3分)(2016?葫芦岛)如图,一只蚂蚁在正方形abcd区域内爬行,点o是对角线的的概率为. 316.(3分)(2016?葫芦岛)如图,四边形oabc为矩形,点a,c分别在x轴和y轴上,连接ac,点b的坐标为(4,3),∠cao的平分线与y轴相交于点d,则点d的坐标为.,18.(3分)(2016?葫芦岛)如图,点a1(2,2)在直线y=x上,过点a1作a1b1∥y轴交直线y=x于点b1,以点a1为直角顶点,a1b1为直角边在a1b1的右侧作等腰直角△a1b1c1,再过点c1作a2b2∥y轴,分别交直线y=x和y=x于a2,b2两点,以点a2为直角顶点,a2b2为直角边在a2b2的右侧作等腰直角△a2b2c2…,按此规律进行下去,则等腰直角△anbncn的面积为.(用含正整数n的代数式表示)三、解答题(第19小题10分,第20-25小题各12分,第26小题14分,共96分)20.(12分)(2016?葫芦岛)某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.21.(12分)(2016?葫芦岛)在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?23.(12分)(2016?葫芦岛)如图,在△abc中,ab=ac,以ab为直径的⊙o分别交线段bc,ac于点d,e,过点d作df⊥ac,垂足为f,线段fd,ab的延长线相交于点g.(1)求证:df是⊙o的切线;(2)若cf=1,df=,求图中阴影部分的面积.24.(12分)(2016?葫芦岛)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?(1)请直接写出线段af,ae的数量关系;(2)将△ced绕点c逆时针旋转,当点e在线段bc上时,如图②,连接ae,请判断线段af,ae的数量关系,并证明你的结论;(3)在图②的基础上,将△ced绕点c继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.26.(14分)(2016?葫芦岛)如图,抛物线y=﹣x+bx+c与x轴交于点a,点b,与y轴交于点c,点b坐标为(6,0),点c坐标为(0,6),点d是抛物线的顶点,过点d作x轴的垂线,垂足为e,连接bd.(1)求抛物线的解析式及点d的坐标;(2)点f是抛物线上的动点,当∠fba=∠bde时,求点f的坐标;(3)若点m是抛物线上的动点,过点m作mn∥x轴与抛物线交于点n,点p在x轴上,点q在平面内,以线段mn为对角线作正方形mpnq,请直接写出点q的坐标. 2【篇二:辽宁省葫芦岛市2015年中考数学试题(word版,含解析)】ass=txt>1.(2015?葫芦岛)﹣的绝对值是()a.﹣ b.一.选择题(每小题3分,共30分,在每小题给出的四个选项中只有一个是符合题意的) c. 2 d.﹣2考点:绝对值.分析:根据一个负数的绝对值是它的相反数进行解答即可.解答:解:|﹣|=,故选:b.点评:本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键. 2.(2015?葫芦岛)下列图形属于中心对称图形的是()a.b.c.d.考点:中心对称图形.分析:根据中心对称图形的定义即可作出判断.解答:解:a、是轴对称图形,不是中心对称图形,故选项错误;b、不是中心对称图形,故选项错误;c、是中心对称图形,故选项正确;d、是轴对称图形,不是中心对称图形,故选项错误.故选c.点评:本题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(2015?葫芦岛)从正面观察下面几何体,能看到的平面图形是()a.b.c.d.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个正方形,在中间,第二层从左到右有3个正方形.故选a.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(2015?葫芦岛)不等式组的解集在数轴上表示正确的是() a.c. d.b.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解答:解:解不等式①得:x>﹣1;解不等式②得:x≤2,所以不等式组在数轴上的解集为:故选c点评:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥,≤”要用实心圆点表示;“<,>”要用空心圆点表示.5.(2015?葫芦岛)张老师随机抽取6名学生,测试他们的打字能力,测得他们每分钟打字个数分别为:100,80,70,80,90,95,那么这组数据的中位数是()a. 80 b. 90 c. 85 d. 75考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按从小到大的顺序排列为:70,80,80,90,95,100,则中位数为:故选c. =85.点评:本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(2015?葫芦岛)下列事件属于必然事件的是()a.蒙上眼睛射击正中靶心b.买一张彩票一定中奖c.打开电视机,电视正在播放新闻联播d.月球绕着地球转考点:随机事件.分析:必然事件就是一定发生的事件,根据定义即可判断.解答:解:a、蒙上眼睛射击正中靶心是随机事件,故选项错误;b、买一张彩票一定中奖是不可能事件,错误;c、打开电视机,电视正在播放新闻联播是随机事件,故选项错误;d、月球绕着地球转是必然事件,正确;故选d点评:本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. a.考点:弧长的计算;圆周角定理.故选b.考点:多边形内角与外角;三角形内角和定理.∵∠bcd、∠cde的平分线在五边形内相交于点o,故选:a.点评:本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.9.(2015?葫芦岛)已知k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()a.第一象限 b.第二象限 c.第三象限 d.第四象限考点:一次函数图象与系数的关系;解一元二次方程-因式分解法.分析:首先利用因式分解法解一元二次方程求出k和b的值,然后判断函数y=x﹣的图象不经过的象限即可.解答:解:∵k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b,∴k=,b=﹣,∴函数y=x﹣的图象不经过第二象限,故选b.点评:本题主要考查了一次函数图象与系数的关系以及因式分解法解一元二次方程的知识,解答本题的关键是利用因式分解法求出k和b的值,此题难度不大.10.(2015?葫芦岛)如图,正方形abcd的边长为4,点p、q分别是cd、ad的中点,动点e从点a向点b运动,到点b时停止运动;同时,动点f从点p出发,沿p→d→q运动,点e、f的运动速度相同.设点e的运动路程为x,△aef的面积为y,能大致刻画y与x的函数关系的图象是()a.b.c.d.考点:动点问题的函数图象.专题:应用题.分析:分f在线段pd上,以及线段dq上两种情况,表示出y与x的函数解析式,即可做出判断.解答:解:当f在pd上运动时,△aef的面积为y=ae?ad=2x(0≤x≤2),当f在dq上运动时,△aef的面积为y=ae?af=x(x﹣2)=x﹣x(2<x≤4),图象为:2故选a点评:此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y与x的函数解析式.二.填空题(每小题3分,共24分)11.(2015?葫芦岛)若代数式有意义,则实数x的取值范围是考点:二次根式有意义的条件;分式有意义的条件.分析:利用二次根式有意义的条件以及分式有意义的条件得出即可.解答:解:∵有意义,【篇三:2014年辽宁省葫芦岛市中考数学试卷】ass=txt>一.选择题(本大题共10个小题,每小题2分,共20分) 1.(2分)(2014?葫芦岛)在2,﹣2,0,﹣四个数中,最小的数是()2.(2分)(2014?葫芦岛)如图所示的几何体中,它的主视图是()4.(2分)(2014?葫芦岛)如图,桌面上有木条b227.(2分)(2014?葫芦岛)观察图中尺规作图痕迹,下列结论错误的是()38.(2分)(2014?葫芦岛)某体育场计划修建一个容积一定的长方体游泳池,设容积为a(m),2泳池的底面积s(m)与其深度x(m)之间的函数关系式为s=(x>0),该函数的图象大致是()9.(2分)(2014?葫芦岛)如图,边长为a的正六边形内有一边长为a的正三角形,则()=10.(2分)(2014?葫芦岛)如图,用两根等长的金属丝,各自首尾相接,分别围成正方形abcd和扇形a1d1c1,使a1d1=ad,d1c1=dc,正方形面积为p,扇形面积为q,那么p和q的关系是()二.填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中的横线上) 11.(3分)(2014?葫芦岛)化简:12.(3分)(2014?葫芦岛)已知a、b为两个连续的整数,且,则a+b=.13.(3分)(2014?葫芦岛)如图,ae,bd交于点c,ba⊥ae于点a,ed⊥bd于点d,若ac=4,ab=3,cd=2,则ce==.14.(3分)(2014?葫芦岛)若m+n=2,mn=1,则m+n=.15.(3分)(2014?葫芦岛)如图,矩形abcd中,点m是cd的中点,点p是ab上的一动点,若ad=1,ab=2,则pa+pb+pm的最小值是.2216.(3分)(2014?葫芦岛)如图,正三角形abc的边长为2,点a,b在半径为的圆上,点c在圆内,将正三角形abc绕点a逆时针旋转,当点c第一次落在圆上时,点c运动的路线长是.三.解答题(本大题共9个小题,共82分,街答应写出文字说明,证明过程或演算步骤)17.(8分)(2014?葫芦岛)先化简,再求值:,其中x=2005. 18.(8分)(2014?葫芦岛)某演讲比赛中只有甲、乙、丙三位同学进行决赛,他们通过抽签决定演讲顺序,用列表法或画树状图法求:(1)第二个出场为甲的概率;(2)丙在乙前面出场的概率. 2222(1)小静的解法是从步骤开始出现错误的.22(2)用配方法解第n个方程x+2nx﹣8n=0.(用含有n的式子表示方程的根)20.(8分)(2014?葫芦岛)如图,在△abc中,ab=ac,点d(不与点b重合)在bc上,点e是ab的中点,过点a 作af∥bc交de延长线于点f,连接ad,bf.(1)求证:△aef≌△bed.(2)若bd=cd,求证:四边形afbd是矩形.2222221.(9分)(2014?葫芦岛)如图1,长为60km的某段线路ab上有甲、乙两车,分别从南站a和北站b同时出发相向而行,到达b、a后立刻返回到出发站停止,速度均为30km/h,设甲车,乙车距南站a的路程分别为y甲,y乙(km)行驶时间为t(h).(1)图2已画出y甲与t的函数图象,其中a=,b=,c=.(2)分别写出0≤t≤2及2<t≤4时,y乙与时间t之间的函数关系式.(3)在图2中补画y乙与t之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数.22.(10分)(2014?葫芦岛)某体院要了解篮球专业学生投篮的命中率,对学生进行定点投篮测试,规定每人投篮20次,测试结束后随机抽查了一部分学生投中的次数,并分为五类,Ⅰ:投中11次;Ⅱ投中12次;Ⅲ:投中13次;Ⅳ:投中14次;Ⅴ:投中15次.根据调查结果绘制了下面尚不完整的统计图1、图2:回答下列问题:(1)本次抽查了名学生,图2中的m=.(2)补全条形统计图,并指出中位数在哪一类.(2)求a,b间的距离;(1)若l经过点o(0,0)和b(1,0),则b=,c=;它还经过的另一格点的坐标为.(2)若l经过点h(﹣1,1)和g(0,1),求它的解析式及顶点坐标;通过计算说明点d(1,2)是否在l上.(3)若l经过这九个格点中的三个,直接写出所有满足这样的抛物线的条数.2。
葫芦岛市2015-2016学年九年级上期中数学试卷含答案解析

一、选择题(每题 3 分共 30 分) 1.下列汽车标志图案中属于中心对称图形的是( )
A.
B.
C.
D.
2.用配方法解方程 x2+2x﹣5=0 时,原方程应变形为( ) A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9
A.0.5 B.1.5 C.2.5 D.3.5
5.如图,在方格纸上△DEF 是由△ABC 绕定点 P 顺时针旋转得到的.如果用(2,1)表示 方格纸上 A 点的位置,(1,2)表示 B 点的位置,那么点 P 的位置为( )
A.(5,2) B.(2,5) C.(2,1) D.(1,2) 6.如图,在平面直角坐标系中,过格点 A,B,C 作一圆弧,点 B 与下列格点的连线中, 能够与该圆弧相切的是( )
第 1 页(共 28 页)
A.点(0,3) B.点(2,3) C.点(5,1) D.点(6,1) 7.⊙O 是等边△ABC 的外接圆,⊙O 的半径为 2,则等边△ABC 的边长为( ) A. B. C. D. 8.如图,已知 PA、PB 是⊙O 的切线,A、B 为切点,AC 是⊙O 的直径,∠P=40°,则 ∠BAC 的度数是( )
A.10° B.20° C.30° D.40° 9.已知 y=ax+b 的图象如图所示,则 y=ax2+bx 的图象有可能是( )
A.
B.
C.
D.
10.如图,AB 是⊙O 的直径,⊙O 交 BC 的中点于 D,DE⊥AC 于点 E,连接 AD,则下 列结论正确的个数是( )
①AD⊥BC;②∠EDA=∠B;③OA= AC;④DE 是⊙O 的切线.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年辽宁葫芦岛中考数学试卷
一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题意的) 1.(辽宁葫芦岛)的绝对值是( )
C(2 D(,2 A( B(
2.(辽宁葫芦岛)下列图形属于中心对称图形的是( )
A(
B( C( D( 3.
(辽宁葫芦岛)从正面观察下面几何体,能看到的平面图形是( ) A( B( D(
C( 4.(辽宁葫芦岛)不等式组的解集在数轴上表示正确的是( )
A( B( C( D( 5.(辽宁葫芦岛)张老师随机抽取6名学生,测试他们的打字能力,测得他们每分钟打字个数分别为:100,80,70,80,90,95,那么这组数据的中位数是( ) A(80 B(90 C(85 D(75 6.(辽宁葫芦岛)下列事件属于必然事件的是( )
A(蒙上眼睛射击正中靶心 B(买一张彩票一定中奖 C(打开电视机,电视正在播放新闻联播 D(月球绕着地球转
7.
(辽宁葫芦岛)如图,?O是?ABC的外接圆,?O的半径为3,?A,45?,则的长是( ) A(π B(π C(π D(π 8.
(辽宁葫芦岛)如图,在五边形ABCDE中,?A,?B,?E,300?,DP,CP分别平分?EDC,?BCD,则?P的度数是( )
A(60? B(65? C(55? D(50? 9.(辽宁葫芦岛)已知k,b是一元二次方程(2x,1)(3x,1),0的两个根,且k,b,则函数y,kx,b的图象不经过( )
A(第一象限 B(第二象限 C(第三象限 D(第四象限 10.
(辽宁葫芦岛)如图,正方形ABCD的边长为4,点P,Q分别是CD,AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿
P?D?Q运动,点E,F的运动速度相同(设点E的运动路程为x,?AEF的面积为y,能大致刻画y与x的函数关系的图象是( )
A( B( C( D( 二、填空题(每小题3分,共24分)
11.(辽宁葫芦岛)若代数式有意义,则x的取值范围是________( 12.(辽宁葫芦岛)根据最新年度报告,全球互联网用户达到3200000000人,请将3200000000用科学记数法表示________(
2213.(辽宁葫芦岛)分解因式:4m,9n,________(
214.(辽宁葫芦岛)若一元二次方程(m,1)x,4x,5,0没有实数根,则m的取值范围是________(
15.(辽宁葫芦岛)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.8环,方差分别是:,,则射击成绩较稳定的是________(填“甲”或
“乙”)( 16.
(辽宁葫芦岛)如图,在菱形ABCD中,AB,10,AC,12,则它的面积是
________( 17.
(辽宁葫芦岛)如图,一次函数y,kx,2与反比例函数(x,0)的图象交于点A,与y轴交于点M,与x轴交于点N,且AM:MN,1:2,则k,________( 18.
(辽宁葫芦岛)如图,在矩形ABCD中,AD,2,CD,1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形ABCC;再连接AC,以对角线AC为边作矩形ABCC的相111111似矩形ABCC,……按此规律继续下去,则矩形ABCC的面积为
________( 221nnn,1
三、解答题(本大题共8小题,共94分)
19.(辽宁葫芦岛)先化简,再求值:,其中x,3( 20.
(辽宁葫芦岛)某超市计划经销一些特产,经销前,围绕“A:绥中白梨;B:虹螺蚬干豆腐;C:绥中六股河鸭蛋;D:兴城红崖子花生”四种特产,在全市范围内随机抽
取了部分市民进行问卷调查:“我最喜欢的特产是什么,”(必选且只选一种)(现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图(请根据所给的信息解答以下问题: (1)请补全扇形统计图和条形统计图(
(2)若全市有280万市民,估计全市最喜欢“虹螺蚬干豆腐”的市民约有多少
万人( (3)在一个不透明的口袋中有四个分别写上四种特产标记A,B,C,D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,直接写出两次都摸到A的概率(
21.
(辽宁葫芦岛)如图,小岛A在港口B的北偏东50?方向,小岛C在港口B的北
偏西25?方向,一艘轮船以每小时20nmile的速度从港口B出发向小岛A航行,经过5h到达小岛A,这时测得小岛C在小岛A的北偏西70?方向,求小岛A距离小岛C有多少海里((结果精确到1nmile,参考数据:,)
22.(辽宁葫芦岛)某中学要进行理、化实验加试,需用九年级两个班级的学生
整理实验器材,已知一班单独整理需要30min完成(
(1)如果一班与二班共同整理15min后,一班另有任务需要离开,剩余工作由
二班单独整理15min才完成任务,求二班单独整理这批实验器材需要多少分钟( (2)如果一、二班的工作效率不变,先由二班单独整理,时间不超过20min,剩余工作再由一班独立完成,那么整理完这批器材一班至少还需要多少分钟,
23.
(辽宁葫芦岛)如图,?ABC是等边三角形,AO?BC,垂足为点O,?O与AC相切于点D,?交的延长线于点,与?相交于,两点( BEABACEOGF
(1)求证:AB与?O相切(
(2)若等边三角形ABC的边长是4,求线段BF的长(
24.(辽宁葫芦岛)小明开了一家网店,计划经销甲、乙两种商品,若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件(经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件,为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x元(
(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:y,甲________,y,________( 乙
(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式(如果每周甲商品的销售量不低于乙商品的销售量的,那么当x定为多少时,才能使小明每周销售甲、乙两种商品获得的总利润最大,
25.
(辽宁葫芦岛)在?ABC中,AB,AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG,DG( (1)如图1,当?BAC,?DCF,90?时,直接写出AG与DG的位置和数量关系
( (2)如图2,当?BAC,?DCF,60?时,试探究AG与DG的位置和数量关系,并证明你的结论(
(3)如图3,当?BAC,?DCF,α时,直接写出AG与DG的数量关系(
26.
(辽宁葫芦岛)如图,直线与x轴交于点C,与y轴交于点B,抛物线经过点B,C两点(
(1)求抛物线的解析式(
(2)如图,点E是直线BC上方抛物线上的一个动点,当?BEC的面积最大时,请求出点E的坐标和?BEC面积的最大值(
(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q
是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P,Q,A,M为顶点的四边形是平行四边形,如果存在,请直接写出点P的坐标;如果不存在,请说明理由(。