高中数学总复习考点知识专题讲解与提升练习02 函数的嵌套问题(解析版)
2024年高考数学二轮热点题型归纳与变式演练(新高考通用)专题2-3零点与复合嵌套函数-2

=对称;)2,3,,n ;)2,3,,n 与内层函数()g x 图象的交点个数分别为、、()g x ⎤⎦的零点个数为123n a a a ++++.浙江嘉兴·高三阶段练习)0)0)≤>,则下列关于函数]()11(kx ++)()4,+∞17时,方程41,2),),),x x ππππ><−(g x 嵌套型零点:二次型因式分解统考一模))1,2e ⎛⎫⎪⎝⎭)()11,0,2e ⎛⎫− ⎪⎝⎭)()1,11,2e ⎛⎫⎪⎝⎭】(2020下·江苏无锡已知函数()21, 1ln , 1x x f x x x x⎧−<⎪=⎨≥⎪⎩)()()212x m f x +−⎤⎦个不同的实数解,则实数m 的取值范围是(]{}±26 ){}−26 )()−x mf x121x,那么D.2,011⎛⎫− ⎪⎝⎭参考答案:180得到=()f x【详解】()f x 为定义在当0x 时,(f x 0x <时,(1)f x −()f x 图象:关于x 的方程的根转化为0(0a =<<,根据对称性得到零点的值满足4.C【详解】()f x 为定义在当0x 时,(f x 0x <时,(1)f x −()f x 图象:关于x 的方程的根转化为0(0a =<<,根据对称性得到零点的值满足5.B)(]2,6上图象交点横坐标之和,如下图所示:【点睛】本题考查分段函数的图象和运用,考查函数的对称性和对数的运算性质,正确画图和通过图象观察是解题关键,属于中档题. 9.C【分析】令()0f x =,得出22x x =−,令()0h x =,得出2log 2x x =−,由于函数2x y =与2log y x =的图象关于直线y x =对称,且直线y x =与直线2y x =−垂直,利用对称性可求出a c +的值,利用代数法求出函数()38g x x =−的零点b 的值,即可求出a bc ++的值. 【详解】令()0f x =,得出22x x =−,令()0h x =,得出2log 2x x =−, 则函数2y x =−与函数2x y =、2log y x =交点的横坐标分别为a 、c .函数2x y =与2log y x =的图象关于直线y x =对称,且直线y x =与直线2y x =−垂直, 如下图所示:联立2y x y x =⎧⎨=−⎩,得1x y ==,则点()1,1A ,由图象可知,直线2y x =−与函数2x y =、2log y x =的交点关于点A 对称,则2a c +=,由题意得()380g b b =−=,解得2b =,因此,4a b c ++=.故选:C.由图象可知方程2()log f x =方程()1f x =−和()3f x =各有即方程()12f f x =⎡⎤⎣⎦共有50)x ,函数要使函数时,函数[(y f f =上的图像如图:结合图像可得:①12526m m ⎧<⎪⎪⎨⎪<<⎪⎩,即125562m m ⎧>⎪⎪⎨⎪<<⎪⎩,即5562m <<,②165m ⎧>⎪⎪⎨,即1065m ⎧<<⎪⎪⎨,即106m <<,由图可知,()0f t =得2t =或2t =−, 所以()2f x =和()2f x =−各有两个解,要使()2f x =和()2f x =−各有两个解,必须满足由()2f x =−,则2a ≥,由图可知,当26a ≤<时,()2f x =有两个解(由图象可知方程2()log f x =方程()1f x =−和()3f x =各有即方程()12f f x =⎡⎤⎣⎦共有5)()4,+∞.本题主要考查了函数与方程的综合应用,函数的图象与性质是解答的关键,能力,属于中档试题.,0单调递减,0,单调递增,t =即(f m 有四个实数根,必须m =有两个不等实根,且2,单120f ,可得其零点及函)1b =−−和()2f x =−b 的取值范围.0fx,()f x 0>时,()f x '<120f ,∴函数有两个零点分别为函数若()1t g x π==+,则由图象知,直线1y π=+与函数图象知,直线4y π=与函数()g x 的图象有四个交点;1π−与函数()g x 的图象没有交点,⎛⎫− ⎪⎝⎭.)()11,0,2e2如图画出函数图象:1因为[2()()()1g x f x af x a =+−−=故()0g x =时,即()1f x =或()f x 则()g x 在[8,8]x ∈−上恰有八个不同的零点,即等价于设()t f x =,由图象知,当1t >或0t <,方程3⎣⎭故选:A【点睛】本题主要考查了数形结合解决复合函数零点的问题,点情况,数形结合判断零点所在的区间,进而得出由图象知当t>3时,t=f(x)有3个根;)(22,log 5}(]0,2时,(]10t ∈−,时,方程10=的根;0的根,则此时方程()1f x =4af x的解析式并画出图象,先求得()的取值范围.a.4a431.D【分析】由题可知直线l的性质,利用数形结合可得f x,上递增.[]1,2−上的图象如下:由于直线1:l y kx=−过定点10,A⎛−⎫⎪.对于A ,当1n =时,1()2f x =有3个交点,与24+n 对于B ,函数()=−y f x kx 有4个零点,即()y f x =与又222357log 2,log 4,log 8222πππ><<下证:当[],0x π∈−,()(y f x g =−此时1sin 2y x x =−+,而11cos 2y '=−+f x 是奇函数,当2x ≥时,有1()2f x =()()12002f f ∴==,若()2,0x ∈−,则(x −∈即()sin()2f x x π=,x ∈)()0f b,还必须结合函数的图象与性质:即利用图象交点的个数,画出函数f x的零点个数;将函数就是函数()=h x g0()即利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函,观察图像可得:两个函数有4个交点,即函数()()3g x f x =−故答案为:4.【点睛】关键点点睛:本题主要考查零点个数问题,我们可以把零点个数问题转化为函数图像的交点个数,这里准确的画出函数图像是关键。
高考数学(文科)总复习考点解析及试题第二章函数导数及其应用

高考数学(文科)总复习考点解析及试题(解析版)第二章 函数、导数及其应用本章是高考复习中十分重要的一章,共有13个考点如下:考点1 函数及其表示 考点2 函数的定义域和值域考点3 函数的单调性考点4 函数的奇偶性与周期性考点5 二次函数与幂函数 考点6 指数与指数函数 考点7 对数与对数函数 考点8 函数的图象 考点9 函数与方程 考点10 函数模型及其应用考点11 变化率与导数、导数的计算考点12 导数的应用(一) 考点13 导数的应用(二)考点测试1 函数及其表示高考概览高考在本考点的常考题型为选择题和填空题,分值5分,中高等难度 考纲研读1.了解构成函数的要素,了解映射的概念2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数3.了解简单的分段函数,并能简单应用一、基础小题1.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f [g (π)]的值为( )A .1B .0C .-1D .π 答案 B解析 因为g (π)=0,所以f [g (π)]=f (0)=0,故选B . 2.下列图象中,不可能成为函数y =f (x )图象的是( )答案 A解析 函数图象上一个x 值只能对应一个y 值.选项A 中的图象上存在一个x 值对应两个y 值,所以其不可能为函数图象,故选A .3.下列各组函数中是同一个函数的是( ) ①f (x )=x 与g (x )=(x )2; ②f (x )=x 与g (x )=x 2; ③f (x )=x 2与g (x )=x 4;④f (x )=x 2-2x -1与g (t )=t 2-2t -1. A .①② B .①③ C .③④ D .①④ 答案 C解析 ①中f (x )的定义域为R ,g (x )的定义域为[0,+∞),故f (x ),g (x )不是同一个函数;②中g (x )=x 2=|x |,故f (x ),g (x )不是同一个函数.故选C .4.若点A (0,1),B (2,3)在一次函数y =ax +b 的图象上,则一次函数的解析式为( ) A .y =-x +1 B .y =2x +1 C .y =x +1 D .y =2x -1 答案 C解析 将点A ,B 代入一次函数y =ax +b 得b =1,2a +b =3,则a =1.故一次函数的解析式为y =x +1.故选C .5.已知反比例函数y =f (x ).若f (1)=2,则f (3)=( ) A .1 B .23 C .13 D .-1答案 B解析 设f (x )=k x (k ≠0),由题意有2=k ,所以f (x )=2x ,故f (3)=23.故选B .6.已知f (x +1)=x 2+2x +3,则f (x )=( ) A .x 2+4x +6 B .x 2-2x +2 C .x 2+2 D .x 2+1 答案 C解析 解法一:由f (x +1)=(x +1)2+2得f (x )=x 2+2.故选C .解法二:令x +1=t ,则x =t -1,所以f (t )=(t -1)2+2(t -1)+3=t 2+2,故f (x )=x 2+2.故选C .7.函数y =f (x )的图象与直线x =1的公共点个数可能是( ) A .1 B .0 C .0或1 D .1或2 答案 C解析 函数的图象与直线有可能没有交点.如果有交点,那么对于x =1,f (x )仅有一个函数值与之对应.故选C .8.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用s 1,s 2分别表示乌龟和兔子所行的路程(t 为时间),则下图与故事情节相吻合的是( )答案 B解析 兔子的速率大于乌龟,且到达终点的时间比乌龟长,观察图象可知,选B . 9.下列从集合A 到集合B 的对应中是映射的是( ) A .A =B =N *,对应关系f :x →y =|x -3|B .A =R ,B ={0,1},对应关系f :x →y =⎩⎪⎨⎪⎧1(x ≥0),0(x <0)C .A =Z ,B =Q ,对应关系f :x →y =1xD .A ={0,1,2,9},B ={0,1,4,9,16},对应关系f :a →b =(a -1)2答案 B解析 A 项中,对于集合A 中的元素3,在f 的作用下得0,但0∉B ,即集合A 中的元素3在集合B 中没有元素与之对应,所以这个对应不是映射;B 项中,对于集合A 中任意一个非负数在集合B 中都有唯一元素1与之对应,对于集合A 中任意一个负数在集合B 中都有唯一元素0与之对应,所以这个对应是映射;C 项中,集合A 中的元素0在集合B 中没有元素与之对应,故这个对应不是映射;D 项中,在f 的作用下,集合A 中的元素9应该对应64,而64∉B ,故这个对应不是映射.故选B .10.若函数f (x )如下表所示:则f [f (1)]=________. 答案 1解析 由表格可知,f (1)=2,所以f [f (1)]=f (2)=1.11.已知函数g (x )=1-2x ,f [g (x )]=2x 2-x 2,则f ⎝ ⎛⎭⎪⎫12=________.答案831解析 令1-2x =12,得x =14,所以f ⎝ ⎛⎭⎪⎫12=2×142-116=123116=831.12.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.答案 f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0解析 当-1≤x ≤0时,设解析式为y =kx +b (k ≠0),由图象得⎩⎪⎨⎪⎧-k +b =0,b =1,解得⎩⎪⎨⎪⎧k =1,b =1.∴y =x +1.当x >0时,设解析式为y =a (x -2)2-1(a ≠0), ∵图象过点(4,0),∴0=a (4-2)2-1,解得a =14.综上,函数f (x )在[-1,+∞)上的解析式为f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0.13.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12 答案 C解析 ∵-2<1,∴f (-2)=1+log 2[2-(-2)]=3; ∵log 212>1,∴f (log 212)=2log 212-1=2log 26=6. ∴f (-2)+f (log 212)=9.14.存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin2x )=sin x B .f (sin2x )=x 2+x C .f (x 2+1)=|x +1| D .f (x 2+2x )=|x +1| 答案 D解析 对于A ,令x =0,得f (0)=0;令x =π2,得f (0)=1,这与函数的定义不符,故A 错误.在B 中,令x =0,得f (0)=0;令x =π2,得f (0)=π24+π2,与函数的定义不符,故B 错误.在C 中,令x =1,得f (2)=2;令x =-1,得f (2)=0,与函数的定义不符,故C 错误.在D 中,变形为f (|x +1|2-1)=|x +1|,令|x +1|2-1=t ,得t ≥-1,|x +1|=t +1,从而有f (t )=t +1,显然这个函数关系在定义域[-1,+∞)上是成立的,故选D .15.设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1.则满足f [f (a )]=2f (a )的a 的取值范围是( )A .⎣⎢⎡⎦⎥⎤23,1B .[0,1]C .⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞) 答案 C解析 解法一:①当a <23时,f (a )=3a -1<1,f [f (a )]=3(3a -1)-1=9a -4,2f (a )=23a -1,显然f [f (a )]≠2f (a ).②当23≤a <1时,f (a )=3a -1≥1,f [f (a )]=23a -1,2f (a )=23a -1,故f [f (a )]=2f (a ).③当a ≥1时,f (a )=2a>1,f [f (a )]=22a,2f (a )=22a ,故f [f (a )]=2f (a ).综合①②③知a ≥23.故选C .解法二:∵f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,而f [f (a )]=2f (a ),∴f (a )≥1,∴有⎩⎪⎨⎪⎧a <1,3a -1≥1或⎩⎪⎨⎪⎧a ≥1,2a≥1,解得23≤a <1或a ≥1,∴a ≥23,即a ∈⎣⎢⎡⎭⎪⎫23,+∞,故选C . 16.函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,x +12,-2<x ≤0,则f [f (15)]的值为________. 答案22解析 ∵f (x +4)=f (x ),∴函数f (x )的周期为4, ∴f (15)=f (-1)=12,f 12=cos π4=22,∴f [f (15)]=f 12=22.17.设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-14,+∞ 解析 由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x >-14.18.设f ,g 都是由A 到A 的映射,其对应关系如下:映射f 的对应关系映射g 的对应关系则f [g (1)]的值为( ) A .1 B .2 C .3 D .4 答案 A解析 根据映射g 的对应关系,可得g (1)=4,再根据映射f 的对应关系,可得f (4)=1,故选A .19.下列函数为同一函数的是( ) A .y =x 2-2x 和y =t 2-2t B .y =x 0和y =1C .y =(x +1)2和y =x +1 D .y =lg x 2和y =2lg x 答案 A解析 对于A :y =x 2-2x 和y =t 2-2t 的定义域都是R ,对应关系也相同,∴是同一函数;对于B :y =x 0的定义域是{x |x ≠0},而y =1的定义域是R ,两函数的定义域不同,∴不是同一函数;对于C :y = (x +1)2=|x +1|和y =x +1的定义域都是R ,但对应关系不相同,∴不是同一函数;对于D :y =lg x 2的定义域是{x |x ≠0},而y =2lg x 的定义域是{x |x >0},两函数的定义域不同,∴不是同一函数.故选A .20.设函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≥2),log 2x (0<x <2),若f (m )=3,则实数m 的值为( )A .-2B .8C .1D .2 答案 D解析 当m ≥2时,由m 2-1=3,得m 2=4,解得m =2;当0<m <2时,由log 2m =3,解得m =23=8(舍去).综上所述,m =2,故选D .21. 某工厂八年来某种产品总产量y 与时间t (年)的函数关系如图,下列四种说法:①前三年中,产量的增长速度越来越快; ②前三年中,产量的增长速度越来越慢; ③第三年后,这种产品停止生产;④第三年后,年产量保持不变.其中说法正确的是( ) A .②③ B .②④ C .①③ D .①④ 答案 A解析 由函数图象可知,在区间[0,3]上,图象凸起上升,表明年产量增长速度越来越慢;在区间(3,8]上,图象是水平直线,表明总产量保持不变,即年产量为0,所以②③正确.故选A .22.设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1(λ∈R ),2x,x ≥1,若对任意的a ∈R 都有f [f (a )]=2f (a )成立,则λ的取值范围是( )A .(0,2]B .[0,2]C .[2,+∞) D.(-∞,2) 答案 C解析 当a ≥1时,2a ≥2,∴f [f (a )]=f (2a )=22a =2f (a ),∴λ∈R ;当a <1时,f [f (a )]=f (λ-a )=2λ-a,∴λ-a ≥1,即λ≥a +1,由题意知λ≥(a +1)max ,∴λ≥2.综上,λ的取值范围是[2,+∞).故选C .23.已知函数f (x )=ax -b (a >0),f [f (x )]=4x -3,则f (2)=________. 答案 3解析 由题意,得f [f (x )]=a (ax -b )-b =a 2x -ab -b =4x -3,即⎩⎪⎨⎪⎧a 2=4,-ab -b =-3,因为a >0,所以解得⎩⎪⎨⎪⎧a =2,b =1,所以f (x )=2x -1,则f (2)=3.24.已知函数f (x )=22x +1+sin x ,则f (-2)+f (-1)+f (0)+f (1)+f (2)=________.答案 5解析 ∵f (x )+f (-x )=22x +1+sin x +22-x +1-sin x =22x +1+2x +11+2x =2,且f (0)=1,∴f (-2)+f (-1)+f (0)+f (1)+f (2)=5.25.已知f (1-cos x )=sin 2x ,则f (x 2)的解析式为________. 答案 f (x 2)=-x 4+2x 2,x ∈[-2,2]解析 f (1-cos x )=sin 2x =1-cos 2x ,令1-cos x =t ,t ∈[0,2],则cos x =1-t ,所以f (t )=1-(1-t )2=2t -t 2,t ∈[0,2],则f (x 2)=-x 4+2x 2,x ∈[-2,2].二、高考大题1.已知f (x )=⎩⎪⎨⎪⎧cx +1,0<x <c ,2-xc 2+1,c ≤x <1,且f (c 2)=98.(1)求常数c ; (2)解方程f (x )=98.解 (1)∵0<c <1,∴c 2<c , ∴f (c 2)=c 3+1=98,即c =12.(2)由(1)得f (x )=⎩⎪⎨⎪⎧12x +1,0<x <12,2-4x +1,12≤x <1.由f (x )=98得⎩⎪⎨⎪⎧0<x <12,12x +1=98或⎩⎪⎨⎪⎧12≤x <1,2-4x+1=98,解得x =14或x =34.2.已知二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)在区间[-1,1]上,y =f (x )的图象恒在y =2x +m 的图象上方,试确定实数m 的取值范围.解 (1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,所以f (x )=ax 2+bx +1. 因为f (x +1)-f (x )=2x ,所以a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x ,所以⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,所以f (x )=x 2-x +1.(2)由题意得x 2-x +1>2x +m 在[-1,1]上恒成立, 即x 2-3x +1-m >0在[-1,1]上恒成立.设g (x )=x 2-3x +1-m , 其图象的对称轴为直线x =32,所以g (x )在[-1,1]上单调递减.故只需g (1)>0,即12-3×1+1-m >0,解得m <-1. 故实数m 的取值范围是(-∞,-1).3.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1)上有表达式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的表达式.解 (1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0,f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1)时,f (x )=x 2; 当x ∈[1,2)时,x -1∈[0,1),f (x )=-12f (x -1)=-12(x -1)2, f (2)=-12f (1)=14f (0)=0;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧0,x =2,-12(x -1)2,x ∈[1,2),x 2,x ∈[0,1),-2(x +1)2,x ∈[-1,0),4(x +2)2,x ∈[-2,-1).4.某公司研发出一款产品,批量生产前先在某城市销售30天进行市场调查.调查结果发现:日销量f (t )与天数t 的对应关系服从图①所示的函数关系:每件产品的销售利润h (t )与天数t 的对应关系服从图②所示的函数关系.图①由抛物线的一部分(A 为抛物线顶点)和线段AB 组成.(1)设该产品的日销售利润Q (t )(0≤t ≤30,t ∈N ),分别求出f (t ),h (t ),Q (t )的解析式;(2)若在30天的销售中,日销售利润至少有一天超过8500元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.解 (1)f (t )=⎩⎪⎨⎪⎧-110t 2+4t ,0≤t ≤20,-t +60,20<t ≤30,h (t )=⎩⎪⎨⎪⎧20t ,0≤t ≤10,200,10<t ≤30.由题可知,Q (t )=f (t )h (t ), ∴当0≤t ≤10时,Q (t )=-110t 2+4t 20t =-2t 3+80t 2;当10<t ≤20时,Q (t )=-110t 2+4t ×200=-20t 2+800t ;当20<t ≤30时,Q (t )=(-t +60)×200=-200t +12000.∴Q (t )=⎩⎪⎨⎪⎧-2t 3+80t 2,0≤t ≤10,-20t 2+800t ,10<t ≤20,-200t +12000,20<t ≤30(t ∈N ).(2)该产品不可以投入批量生产,理由如下: 当0≤t ≤10时,Q (t )max =Q (10)=6000, 当10<t ≤20时,Q (t )max =Q (20)=8000, 当20<t ≤30时,Q (t )<Q (20)=8000, ∴Q (t )的最大值为Q (20)=8000<8500.∴在一个月的销售中,没有一天的日销售利润超过8500元,不可以投入批量生产.考点测试2 函数的定义域和值域高考概览高考在本考点的常考题型为选择题、填空题,分值5分,中等难度 考纲研读会求一些简单函数的定义域和值域一、基础小题1.函数y =1log 2x -2的定义域为( )A .(0,4)B .(4,+∞)C .(0,4)∪(4,+∞) D.(0,+∞) 答案 C解析 由条件可得log 2x -2≠0且x >0,解得x ∈(0,4)∪(4,+∞).故选C . 2.函数y =x (3-x )+x -1的定义域为( ) A .[0,3] B .[1,3] C .[1,+∞) D.[3,+∞) 答案 B解析 由题意得⎩⎪⎨⎪⎧x (3-x )≥0,x -1≥0,解得1≤x ≤3.故选B .3.函数f (x )=-2x 2+3x (0<x ≤2)的值域是( ) A .-2,98 B .-∞,98C .0,98D .98,+∞答案 A解析 f (x )=-2x -342+98(x ∈(0,2]),所以f (x )的最小值是f (2)=-2,f (x )的最大值是f 34=98.故选A .4.已知函数f (x )=2+log 3x ,x ∈181,9,则f (x )的最小值为( )A .-2B .-3C .-4D .0 答案 A解析 由函数f (x )在其定义域内是增函数可知,当x =181时,函数f (x )取得最小值f 181=2+log 3 181=2-4=-2,故选A .5.已知函数f (x )的定义域为(-1,1),则函数g (x )=f x2+f (x -1)的定义域为( ) A .(-2,0) B .(-2,2) C .(0,2) D .-12,0答案 C解析 由题意得⎩⎪⎨⎪⎧-1<x 2<1,-1<x -1<1,∴⎩⎪⎨⎪⎧-2<x <2,0<x <2,∴0<x <2,∴函数g (x )=f x2+f (x-1)的定义域为(0,2),故选C .6.函数y =x +2-x 的值域为( ) A .94,+∞ B.94,+∞ C .-∞,94 D .-∞,94答案 D解析 令t =2-x ≥0,则t 2=2-x ,x =2-t 2,∴y =2-t 2+t =-t -122+94(t ≥0),∴y ≤94,故选D .7.已知函数f (x )=1x +1,则函数f [f (x )]的定义域是( ) A .{x |x ≠-1} B .{x |x ≠-2}C .{x |x ≠-1且x ≠-2}D .{x |x ≠-1或x ≠-2} 答案 C 解析 f [f (x )]=1f (x )+1=11x +1+1,所以有⎩⎪⎨⎪⎧x ≠-1,11+x+1≠0,解得x ≠-1且x ≠-2.故选C .8.若函数y =f (x )的值域是[1,3],则函数F (x )=1-f (x +3)的值域是( ) A .[-8,-3] B .[-5,-1] C .[-2,0] D .[1,3]答案 C解析 ∵1≤f (x )≤3,∴-3≤-f (x +3)≤-1,∴-2≤1-f (x +3)≤0,即F (x )的值域为[-2,0].故选C .9.函数y =16-4x的值域是( )A .[0,+∞) B.[0,4] C .[0,4) D .(0,4) 答案 C解析 由已知得0≤16-4x<16,0≤ 16-4x<16=4,即函数y =16-4x的值域是[0,4).故选C .10.函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 B .(-∞,2] C .⎝ ⎛⎦⎥⎤-∞,12∪(2,+∞) D.(0,+∞) 答案 A解析 当x <1时,x -1<0,此时y =2x -1<0;当2≤x <5时,1≤x -1<4,此时14<1x -1≤1,12<2x -1≤2,即12<y ≤2,综上,函数的值域为(-∞,0)∪⎝ ⎛⎦⎥⎤12,2.故选A .11.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,-2≤x ≤0,1x,0<x ≤3,则函数f (x )的值域是________.答案 -14,+∞解析 当-2≤x ≤0时,x 2+x =x +122-14,其值域为-14,2;当0<x ≤3时,1x 的值域为13,+∞,故函数f (x )的值域是-14,+∞. 12.函数f (x )=x -1x +1的值域为________. 答案 [-1,1) 解析 由题意得f (x )=x -1x +1=1-2x +1,∵x ≥0,∴0<2x +1≤2,∴-2≤-2x +1<0,∴-1≤1-2x +1<1,故所求函数的值域为[-1,1).13.下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x答案 D 解析 函数y =10lg x的定义域、值域均为(0,+∞),而y =x ,y =2x的定义域均为R ,排除A ,C ;y =lg x 的值域为R ,排除B .故选D .14.函数f (x )=log 2x -1的定义域为________. 答案 [2,+∞)解析 由题意可得log 2x -1≥0,即log 2x ≥1,∴x ≥2.∴函数的定义域为[2,+∞). 15.函数y =3-2x -x 2的定义域是________. 答案 [-3,1]解析 若函数有意义,则需3-2x -x 2≥0,即x 2+2x -3≤0,解得-3≤x ≤1. 16.已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,lg (x 2+1),x <1,则f [f (-3)]=________,f (x )的最小值是________. 答案 0 22-3解析 由题知,f (-3)=1,f (1)=0,即f [f (-3)]=0.又f (x )在(-∞,0)上单调递减,在(0,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增,所以f (x )min =min{f (0),f (2)}=22-3.17.已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________. 答案 -32解析 ①当a >1时,f (x )在[-1,0]上单调递增,则⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.②当0<a <1时,f (x )在[-1,0]上单调递减,则⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.18.若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a的取值范围是________.答案 (1,2]解析 当x ≤2时,f (x )=-x +6,f (x )在(-∞,2]上为减函数,∴f (x )∈[4,+∞).当x >2时,若a ∈(0,1),则f (x )=3+log a x 在(2,+∞)上为减函数,f (x )∈(-∞,3+log a 2),显然不满足题意,∴a >1,此时f (x )在(2,+∞)上为增函数,f (x )∈(3+log a 2,+∞),由题意可知(3+log a 2,+∞)⊆[4,+∞),则3+log a 2≥4,即log a 2≥1,∴1<a ≤2.19.函数f (x )=12-x+ln (x +1)的定义域为( )A .(2,+∞) B.(-1,2)∪(2,+∞) C .(-1,2) D .(-1,2] 答案 C解析 函数的定义域应满足⎩⎪⎨⎪⎧2-x >0,1+x >0,∴-1<x <2.故选C .20.已知函数f (x )=x +2x-a (a >0)的最小值为2,则实数 a =( ) A .2 B .4 C .8 D .16 答案 B解析 由2x-a ≥0得x ≥log 2a ,故函数的定义域为[log 2a ,+∞),易知函数f (x )在[log 2a ,+∞)上单调递增,所以f (x )min =f (log 2a )=log 2a =2,解得a =4.故选B .21.已知函数f (x )=⎩⎪⎨⎪⎧x -2(x ≤1),ln x (x >1),那么函数f (x )的值域为( )A .(-∞,-1)∪[0,+∞) B.(-∞,-1]∪(0,+∞) C .[-1,0) D .R 答案 B解析 函数y =x -2(x ≤1)的值域为(-∞,-1],函数y =ln x (x >1)的值域为(0,+∞),故函数f (x )的值域为(-∞,-1]∪(0,+∞).故选B .22.已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],那么满足条件的整数数对(a ,b )共有( )A .2个B .3个C .5个D .无数个 答案 C解析 ∵函数f (x )=4|x |+2-1的值域是[0,1],∴1≤4|x |+2≤2,∴0≤|x |≤2,∴-2≤x ≤2,∴[a ,b ]⊆[-2,2].又由于仅当x =0时,f (x )=1,当x =±2时,f (x )=0,故在定义域中一定有0,且2,-2中必有其一,故满足条件的整数数对(a ,b )有(-2,0),(-2,1),(-2,2),(-1,2),(0,2)共5个.故选C .23.函数y =3|x |-1的定义域为[-1,2],则函数的值域为________.答案 [0,8]解析 当x =0时,y min =30-1=0,当x =2时,y max =32-1=8,故值域为[0,8]. 24.若函数f (x +1)的定义域是[-1,1],则函数f (log 12x )的定义域为________.答案 14,1解析 ∵f (x +1)的定义域是[-1,1],∴f (x )的定义域是[0,2],则f (log 12x )的定义域为0≤log 12x ≤2,∴14≤x ≤1.二、高考大题1.已知a ≥3,函数F (x )=min{2|x -1|,x 2-2ax +4a -2},其中min{p ,q }=⎩⎪⎨⎪⎧p ,p ≤q ,q ,p >q .(1)求使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围; (2)①求F (x )的最小值m (a );②求F (x )在区间[0,6]上的最大值M (a ). 解 (1)由于a ≥3,故当x ≤1时,(x 2-2ax +4a -2)-2|x -1|=x 2+2(a -1)(2-x )>0, 当x >1时,(x 2-2ax +4a -2)-2|x -1|=(x -2)(x -2a ).所以,使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围为[2,2a ]. (2)设函数f (x )=2|x -1|,g (x )=x 2-2ax +4a -2. ①f (x )min =f (1)=0,g (x )min =g (a )=-a 2+4a -2, 所以,由F (x )的定义知m (a )=min{f (1),g (a )},即m (a )=⎩⎨⎧0,3≤a ≤2+2,-a 2+4a -2,a >2+ 2.②当0≤x ≤2时,F (x )≤f (x )≤max{f (0),f (2)}=2=F (2),当2≤x ≤6时,F (x )≤g (x )≤max{g (2),g (6)}=max{2,34-8a }=max{F (2),F (6)}.所以,M (a )=⎩⎪⎨⎪⎧34-8a ,3≤a <4,2,a ≥4.2.已知f (x )=2+log 3x ,x ∈[1,9],试求函数y =[f (x )]2+f (x 2)的值域. 解 ∵f (x )=2+log 3x 的定义域为[1,9],要使[f (x )]2+f (x 2)有意义,必有1≤x ≤9且1≤x 2≤9,∴1≤x ≤3,∴y =[f (x )]2+f (x 2)的定义域为[1,3]. 又y =(2+log 3x )2+2+log 3x 2=(log 3x +3)2-3. ∵x ∈[1,3],∴log 3x ∈[0,1],∴y max =(1+3)2-3=13,y min =(0+3)2-3=6. ∴函数y =[f (x )]2+f (x 2)的值域为[6,13].3.已知函数f (x )=ax +1a(1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解 f (x )=⎝⎛⎭⎪⎫a -1a x +1a,当a >1时,a -1a>0,此时f (x )在[0,1]上为增函数,∴g (a )=f (0)=1a;当0<a <1时,a -1a<0,此时f (x )在[0,1]上为减函数,∴g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1.∴g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a,a ≥1,∴g (a )在(0,1)上为增函数,在[1,+∞)上为减函数, 又a =1时,有a =1a=1,∴当a =1时,g (a )取得最大值1. 4.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域; (2)若函数f (x )在[1,3]上的最大值为1,求实数a 的值. 解 (1)当a =2时,f (x )=x 2+3x -3=x +322-214,又x ∈[-2,3],所以f (x )min =f -32=-214,f (x )max =f (3)=15,所以所求函数的值域为-214,15.(2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,所以6a +3=1,即a =-13,满足题意;②当-2a -12≥3,即a ≤-52时,f (x )max =f (1)=2a -3,所以2a -3=1,即a =2,不满足题意; ③当1<-2a -12<3,即-52<a <-12时,此时,f (x )max 在端点处取得,令f (1)=1+2a -1-3=1,得a =2(舍去), 令f (3)=9+3(2a -1)-3=1,得a =-13(舍去).综上,可知a =-13.考点测试3 函数的单调性高考预览:本考点是高考的常考知识点,常与函数的奇偶性、周期性相结合综合考查。
微专题22 函数嵌套问题(解析版)

微专题22函数嵌套问题【题型归纳目录】题型一:“()()=f f x k ”型问题题型二:“()()=f g x k ”型问题题型三:复合函数()⎡⎤=-⎣⎦y f f x x 的零点问题题型四:复合函数()⎡⎤=-⎣⎦y f g x x 的零点问题题型五:含参二次函数复合型零点问题题型六:零点求和问题题型七:其他型【典型例题】题型一:“()()=f f x k ”型问题例1.设函数()|2|f x x x =-,0x 是函数()(())1g x f f x =-的所有零点中的最大值,若0(x k ∈,1)()k k Z +∈,则k =.【解析】解:函数()|2|f x x x =-,当(0,2)x ∈时,2()|2|(2)(1)11f x x x x x x =-=-=--+ ;作函数()|2|f x x x =-的图象如下:解(2)1x x -=,得到1x =或1x =+又0x 是函数()(())1g x f f x =-的所有零点中的最大值,所以(0)1f x =+f (2)01=<,f (3)31=>+,因为0(x k ∈,1)()k k Z +∈,所以2k =,故答案为:2.例2.设函数()|2|f x x x =-,则当(0,2)x ∈时,函数()f x 的最大值等于,若0x 是函数()(())1g x f f x =-的所有零点中的最大值,且0(x k ∈,1)()k k Z +∈,则k =.【解析】解:当(0,2)x ∈时,2()|2|(2)(1)11f x x x x x x =-=-=--+ ;作函数()|2|f x x x =-的图象如下,解|2|1x x -=得,1x =或1x =+;又0x 是函数()(())1g x f f x =-的所有零点中的最大值,0()1f x ∴=+;且f (2)01=<+f (3)31=>+;故2k =.故答案为:1,2.例3.已知函数2|(1)|,(1,3)()5,[3,)log x x f x x x +∈-⎧=⎨-∈+∞⎩,则函数()(())1g x f f x =-的零点个数为()A .3B .4C .5D .6【解析】解:令()(())10g x f f x =-=,可得1()2f x =-或()1f x =或()4f x =,函数2|(1)|,(1,3)()5,[3,)log x x f x x x +∈-⎧=⎨-∈+∞⎩的图象如图所示,由图象可知,当1()2f x =-时,有1个解;当()1f x =时,有3个解;当()4f x =时,有1个解.综上所述,函数()(())1g x f f x =-的零点个数为5个.故选:C .变式1.已知函数22log (1),0()4,0x x f x x x x -⎧=⎨-+>⎩,则函数()[()]1g x f f x =-的零点个数为()A .4B .7C .8D .9【解析】解:令()1f x =,解得2x =或1x =-,则令()0g x =,可得()2f x =±()1f x =-,作出函数()f x 的图象如图所示,由图象可知,()2f x =+3个零点,()2f x =-3个零点,()1f x =-有1个零点,故函数()g x 有7个零点.故选:B .变式2.已知函数2log (),(0)()2,(0)x x f x x x -<⎧=⎨-⎩,则函数()[()1]g x f f x =+的零点个数是()A .1个B .2个C .3个D .4个【解析】解:设()1M f x =+,解()0f M =,得2M =或1M =-,①当1M =-时,由()11f x +=-,得2log ()2x -=-或22x -=-,即得0x =或14x =-;②当2M =时,由()12f x +=得()1f x =,即2log ()1x -=或21x -=,即2x =-或3x =,综合①②得:函数()[()1]g x f f x =+的零点为:2x =-或3x =或0x =或14x =-共4个;故选:D .变式3.已知函数2()f x x x q =++,集合{|()0A x f x ==,}x R ∈,{|(())0B x f f x ==,}x R ∈,若B 为单元素集,试求q 的值.【解析】集合{|()0A x f x ==,},{|(())0}B x f f x ==A B∴⊆2211{|(()0}{|()()0}{|[(()]}24B x f f x x f x f x q x f x q ∴===++==++-B 为单元集,1()2f x ∴=-,1{}4B q ∴=-,2{|()0}{|0A x f x x x x q ===++=,}x R ∈,当A =∅时,B =∅不符题意,故A ≠∅,当1{|}2A x x ==-时,△140q =-=,解得:14q =,222111(())()()0444f f x x x x x ∴=++++++=,△11404=-⨯=21142x x ∴++==-,2304x x ++=,方程无解,不符B 为单元集,故1{|}2A x x ≠=-.∴方程20x x q ++=有2个不相等的实数解:12x x ⎧=⎪⎪⎨⎪=⎪⎩,A ∴=A B⊆∴B14q =-,解得:134q -+=或234q --=(舍去).B时有:1q =或2q =.综上,1q =题型二:“()()=f g x k ”型问题例4.已知函数2()2f x x x =--,1,0()41,0x x g x xx x ⎧+>⎪=⎨⎪+⎩ (1)求[g f (1)]的值;(2)若方程[()]0g f x a -=有4个实数根.求实数a 的取值范围.【解析】解:(1)f (1)123=--=-,[g f (1)](3)312g =-=-+=-,即[g f (1)]2=-.(2)令()f x t =,则原方程化为()g t a =,易知方程()f x t =在(,1)t ∈-∞内有2个不同的解,则原方程有4个解等价于函数()y g t =(1)t <与y a =的图象有2个不同的交点,作出函数()y g t =(1)t <的图象,如图;g (1)15144=+=,11()2142g x x x =+=⨯= ,由图象可知,当514a <时,函数()y g t =,(1)t <与y a =有2个不同的交点,即所求a 的取值范囿是[1,5)4.例5.设函数2()2f x x x =--,1,0()41,0x x g x xx x ⎧+>⎪=⎨⎪+⎩ ,()[()]h x g f x =.(1)求函数()h x 的单调递增区间.(2)若关于x 的方程()0h x a -=有4个不同的实数很,求实数a 的取值范围.【解析】解:(1)令220x x --=得,0x =,或2x =-;∴当2x - ,或0x 时,()0f x ,当20x -<<时,()0f x >;()()()21,20421,20f x x f x h x x x x x ⎧+-<<⎪∴=⎨⎪--+-⎩或 ;①当2x - 时,函数()h x 为增函数;0x 时,函数()h x 为减函数;②当20x -<<时,令()f x t =,01t <<,设()y h x =,则:14y t t=+,01t <<,22414t y t -'=,1(0,)2t ∴∈时,0y '<,14y t t =+为减函数,1(2t ∈,1)时,0y '>,14y t t=+为增函数;令21()22f x x x =--=,则212x =-±,当212x -<<--时,()f x 为增函数,()g x 为减函数,故()h x 为减函数;当112x --<<-时,()f x 为增函数,()g x 为增函数,故()h x 为增函数;当11x -<<-+()f x 为减函数,()g x 为增函数,故()h x 为减函数;当10x -+<<时,()f x 为减函数,()g x 为减函数,故()h x 为增函数;综上所述,函数()h x的单调递增区间为[12--,1]-,[12-+,)+∞,(-∞,2]-;(2)由(1)可得,当0x 或2x - 时,()1h x ;1x =-时,()h x 取得极大值54;1x =-时,()h x 取得极小值1;12x =-+时,()h x 取得极小值1.由方程()0h x a -=有4个不同的实数很,即为()y h x =的图象与直线y a =有4个交点.则a 的取值范围是[1,5)4.例6.设函数2()2f x x x =--,1,0()41,0x x g x xx x ⎧+>⎪=⎨⎪+⎩ ,()[()]h x g f x =,求函数()h x 的单调递增区间.【解析】解:令220x x --=得,0x =,或2x =-;∴当2x - ,或0x 时,()0f x ,当20x -<<时,()0f x >;∴()()()21,20421,2,0f x x f x h x x x x x ⎧+-<<⎪=⎨⎪--+-⎩或 ;(1)当2x - 时,函数()h x 为减函数;(2)当20x -<<时,令()f x t =,01t <<,设()y h x =,则:14y t t=+,01t <<,22414t y t -'=;∴1(0,)2t ∈时,0y '<,14y t t =+为减函数,1(,1)2t ∈时,0y '>,14y t t=+为增函数;令21()22f x x x =--=,则12x =-±,当2212x -<<--时,()f x 为增函数,()g x 为减函数,故()h x 为减函数;当11x -<-时,()f x 为增函数,()g x 为增函数,故()h x 为增函数;当112x -<<-+时,()f x 为减函数,()g x 为增函数,故()h x 为减函数;当102x -+<<时,()f x 为减函数,()g x 为减函数,故()h x 为增函数;(3)当0x 时,()h x 为增函数;综上所述,函数()h x的单调递增区间为[12--,1]-,[12-+,)+∞.变式4.已知函数2()2f x x x =--,1;0()1;04x x g x x x x +⎧⎪=⎨+>⎪⎩,若函数[()]y g f x a =-有4个零点,则实数a 的取值范围是.【解析】解:由题意可得函数[()]y g f x =与函数y a =有4个交点,如图所示:,结合图象可得514a < ,故答案为[1,5)4.变式5.已知函数32()31f x x x =-+,21,0()468,0x x g x xx x x ⎧+>⎪=⎨⎪---⎩ ,则当方程[()]0g f x a -=有6个解时a 的取值范围是()A .514a <<B .54a >或81a -<C .54a >D .01a 【解析】解:函数32()31f x x x =-+,21,0()()468,0x x g x g x xx x x ⎧+>⎪==⎨⎪---⎩ ,2()36f x x x ∴'=-,令()0f x '=得:0x =,或2x =,故当0x =时,函数()f x 取极大值1,当2x =时,函数取极小值3-;则()f x 与y m =的交点情况为:当3m <-,或1m >时,有一个交点;当3m =-,或1m =时,有两个交点;当31m -<<时,有三个交点;()g x 与y a =的交点情况为:当01a <<时有两个交点,一个在区间(4,3)--上,一个在区间(3,2)--上;当1a =时有两个交点,一个为3-,一个为12;当1a >时有两个交点,一个在区间1(0,)2上,一个在区间1(2-,1)上.若方程[()]0g f x a -=有6个解,()0g m a -=有两个根,均在(3,1)-上,故5(1,4a ∈,故选:A .题型三:复合函数()⎡⎤=-⎣⎦y f f x x 的零点问题例7.定义:若函数()f x 对于其定义域内的某一数0x ,有00()f x x =,则称0x 是()f x 的一个不动点,已知函数2()(1)1(0)f x ax b x b a =+++-≠.(1)当1a =,3b =时,求函数()f x 的不动点;(2)若对任意的实数b ,函数()f x 恒有两个不动点,求a 的取值范围;(3)在(2)的条件下,若()y f x =图象上两个点A 、B 的横坐标是函数()f x 的不动点,且A 、B 的中点C 在函数22()541ag x x a a =-+-+的图象上,求b 的最小值.【解析】解:(1)2()42f x x x =++,由242x x x ++=,解得2x =-或1x =-,所以所求的不动点为1-或2-.(2)令2(1)1ax b x b x +++-=,则210ax bx b ++-=①,由题意,方程①恒有两个不等实根,所以△24(1)0b a b =-->,即2440b ab a -+>恒成立,则△216160a a =-<,故01a <<.(3)设1(A x ,1)y ,2(B x ,2)y ,12()x x ≠,22()541ag x x a a =-+-+,又AB 的中点在该直线上,所以12121222()225412x x x x x x ag a a +++=-+=-+,∴1222541ax x a a +=-+,而1x ,2x 应是方程①的两个根,所以12b x x a +=-,即22541b aa a a -=-+,∴2222222111541()4()5(2)1a b a a a a a =-=-=--+-+-+,∴当1(0,1)2a =∈时,2min b =-.例8.定义:若函数()f x 对于其定义域内的某一数0x ,有00()f x x =,则称0x 是()f x 的一个不动点.已知函数2()(1)1(0)f x ax b x b a =+++-≠.()I 当1a =,2b =-时,求函数()f x 的不动点;(Ⅱ)若对任意的实数b ,函数()f x 恒有两个不动点,求a 的取值范围.【解析】解:(Ⅰ)当1a =,2b =-时,2()3f x x x =--,因为0x 为()f x 的不动点,所以20003x x x --=,即20230x x --=解得01x =-,03x =,所以1-和3是2()3f x x x =--的不动点.(Ⅱ)因为()f x 恒有两个相异的不动点,即方程()f x x =恒有两个不同的解,即2()10f x ax bx b =++-=有两个不相等的实数根,所以24(1)0b a b -->恒成立,即对任意b R ∈,2440b ab a -+>恒成立,所以2(4)440a a --⨯<,所以20a a -<,所以01a <<,所以a 的取值范围为(0,1).例9.设函数()0f x x =>,a R ∈,e 为自然对数的底数),若存在[0b ∈,1]使(f f (b ))b =成立,则a 的取值范围是.【解析】解:存在[0b ∈,1],使(f f (b ))b =成立∴存在[0b ∈,1],使f (b )1f -=(b )即函数()f x 与其反函数1()f x -在[0,1]上有交点()f x =[0,1]上为增函数∴函数()f x 与其反函数1()f x -在[0,1]的交点在直线y x =上,即函数()f x 与其反函数1()f x -的交点就是()f x 与y x =的交点令:22x e x a x +-=,则方程在[0,1]上一定有解x a e ∴=,1a e ∴ .故答案为:1a e .变式6.设函数2()f x x x c =++.若对任意x R ∈,均有(())f f x x >,则实数c 的取值范围是.【解析】解:函数2()f x x x c =++.若对任意x R ∈,均有(())f f x x >,即为2()f x x c x ++>,即222()2x x c x x c x +++++>,可得222()20x x c x c ++++>恒成立,由222()0x x c x +++ ,即有0c >,故答案为:0c >.变式7.对于函数()f x ,若()f x x =,则称x 为()f x 的“不动点”,若(())f f x x =,则称x 为()f x 的“稳定点”,记{|()}A x f x x ==,{|(())}B x f f x x ==,则下列说法错误的是()A .对于函数()f x x =,有AB =成立B .若()f x 是二次函数,且A 是空集,则B 为空集C .对于函数1()()2x f x =,有A B =成立D .对于函数()bf x x=,存在(0,)b ∈+∞,使得A B =成立【解析】解:对于A :函数()f x x =,{|}A x x x R B ====,故A 正确;对于B :若()f x 为二次函数,A 是空集,则对任意实数x ,方程()f x x =无解,这样(())f f x x =也无解,所以B 也为空集,故B 正确;对于C :函数1()(2x f x =为单调减函数,任取0x A ∈,则001(2x x =,而00001(())(())()2x f f x f f x x ===,即A B ⊆,反之,任取0y B ∈,则001(())2y f y =,若001()2y y >,则001(())2y y <,出现矛盾,若001()2y y <,则001(())2y y >,出现矛盾,所以001()2y y =,则B A ⊆,综上所述,A B =,故C 正确;对于D :对于函数()b f x x=,由()bf x x x==,得2x b =,当0b >时,x =所以{A =,又(())()b bf f x f x b xx===,所以{|0}B x x =≠,所以A B ≠,故D 错误;故选:D .变式8.对于函数()f x ,若00()f x x =,则称0x 为函数()f x 的“不动点”:若00(())f f x x =,则称0x 为()f x 的“稳定点”,如果函数2()1()f x ax a R =+∈的稳定点恰是它的不动点,那么a 的取值范围为()A .1(,]4-∞B .3(,)4-+∞C .31[,]44-D .1(1,]4-【解析】解:0x 为函数()f x 的“不动点”,则方程()f x x =,即210ax x +-=有实根,故△140a =- ,14a ∴,如果“稳定点”恰是它的“不动点”,则上述方程的根0x 为方程(())f f x x =,即21ax x +=的实根,方程(())f f x x =可化为:22(1)1a ax x ++=,即2222(1)1a ax ax ax x +-++=,利用平方差公式分解因式得,222(1)(1)()0a ax x ax x x a x ∴+++-++-=,22()(1)0a x a x x x a ∴+-+++=,函数2()1()f x ax a R =+∈的“稳定点”恰是它的“不动点”,∴方程210x x a +++=无实数根,14(1)0a ∴-+<,∴34a >-,综上,1344a >- ,故选:C .变式9.对于函数()f x ,若00()f x x =,则称0x 为函数()f x 的“不动点”;若00(())f f x x =,则称0x 为函数()f x 的“稳定点”.如果函数2()()f x x a a R =+∈的“稳定点”恰是它的“不动点”,那么实数a 的取值范围是()A .(-∞,1]4B .3(4-,)+∞C .3(4-,1]4D .3[4-,14【解析】解:0x 为函数()f x 的“不动点”,则方程()f x x =,即20x a x +-=有实根,故△140a =- ,∴14a,如果“稳定点”恰是它的“不动点”,则上述方程的根0x 为方程(())f f x x =,即2x a x +=的实根,方程(())f f x x =可化为:22()x a a x ++=,即2222()x a x x a x +-++=,利用平方差公式分解因式得,222()()()0x a x x a x x a x ∴+++-++-=,22()(1)0x a x x x a ∴+-+++=,函数2()()f x x a a R =+∈的“稳定点”恰是它的“不动点”,∴方程210x x a +++=无实数根,14(1)0a ∴-+<,∴34a >-,当34a =-时,221104x x a x x +++=++=解得12x =-,此时22304x a x x x +-=--=的解为112x =-,232x =,两方程具有相同的实根,能同时满足20x a x +-=有实根且22()(1)0x a x x x a +-+++=有实根,因此34a =-满足题意.综上,3144a - ,故选:D .变式10.设函数())f x a R =∈.若存在[0b ∈,1],使(f f (b ))b =成立,则a 的取值范围是()A .[0,14B .[1,2]C .[0,1]D .1[4,1]【解析】解:由(f f (b ))b =,可得f (b )1f -=(b ),其中1()f x -是函数()f x 的反函数因此命题“存在[0b ∈,1]使(f f (b ))b =成立”,转化为“存在[0b ∈,1],使f (b )1f -=(b )”,即()y f x =的图象与函数1()y f x -=的图象有交点,且交点的横坐标[0b ∈,1],()y f x =的图象与1()y f x -=的图象关于直线y x =对称,()y f x ∴=的图象与函数1()y f x -=的图象的交点必定在直线y x =上,由此可得,()y f x =的图象与直线y x =有交点,且交点横坐标[0b ∈,1],x =,化简整理得2x a x -=.[0x ∈,1],即2a x x =-,[0x ∈,1],∴根据二次函数的性质得出:104a即实数a 的取值范围为[0,1]4.故选:A .变式11.设函数()f x a R =∈,e 为自然对数的底数),若存在[0b ∈,1]使[f f (b )]b =成立,则a 的取值范围()A .[1,]e B .[0,]e C .[2,]e D .[1,1]e +【解析】解:因为存在[0b ∈,1],使[f f (b )]b =成立,所以存在[0b ∈,1],使f (b )1f -=(b ),即函数()f x 与其反函数在[0,1]上有交点,因为函数()f x =[0,1]上为单调递增函数,所以函数()f x 与其反函数在[0,1]的交点在直线y x =上,即函数()f x 与其反函数的交点即为()f x 与y x =的交点,x =,即22x e x x a x ++-=在[0,1]上有解,所以x a e x =+在[0,1]上有解,因为x a e x =+在[0,1]上单调递增,所以11a e + ,则a 的取值范围为[1,1]e +.故选:D .变式12.设函数())f x a R =∈,若存在[1b ∈,]e ,使得(f f (b ))b =成立,则实数a 的取值范围是()A .[0,1]B .[0,2]C .[1,2]D .[1-,0]【解析】解:由(f f (b ))b =,可得f (b )1f -=(b ),其中1()f x -是函数()f x 的反函数因此命题“存在[1b ∈,]e 使(f f (b ))b =成立”,转化为“存在[1b ∈,]e ,使f (b )1f -=(b )”,即()y f x =的图象与函数1()y f x -=的图象有交点,且交点的横坐标[1b ∈,]e ,()y f x =的图象与1()y f x -=的图象关于直线y x =对称,()y f x ∴=的图象与函数1()y f x -=的图象的交点必定在直线y x =上,由此可得,()y f x =的图象与直线y x =有交点,且交点横坐标[1b ∈,]e ,x =,化简整理得lnx a =.记()F x lnx =,()G x a =,由[1x ∈,]e ,可得()[0F x ∈,1],即01a .即实数a 的取值范围为[0,1].故选:A .变式13.设函数())f x a R =∈.若方程(())f f x x =有解,则a 的取值范围为()A .1(,]4-∞B .1(0,]8C .1(,]8-∞D .[1,)+∞【解析】解:设()f x t =,0t ,则方程(())f f x x =等价为()f t x =,即tx==,t x ∴=,即()f x x =,∴x =在0x 时有解,即2x a x -=,2a x x ∴=-+在0x 时成立,设22211()()()24g x x x x x x =-+=--=--+,x ∴当12x =时,()g x 取得最大值14,1()4g x ∴,即14a,故选:A .题型四:复合函数()⎡⎤=-⎣⎦y f g x x 的零点问题例10.设()f x ,()g x 都是定义在R 上的函数,若函数(())y f g x x =-有零点,则函数(())g f x 不可能是()A .215x -B .215x +C .215x x +-D .215x x ++【解析】解:函数(())y f g x x =-有零点,∴方程(())f g x x =有解,((()))()g f g x g x ∴=,(())g f x x ∴=有解,若21(())5g f x x =-,则可判断215x x -=有解,故成立;若21(())5g f x x =+,则可判断215x x +=有解,故成立;若21(())5g f x x x =+-,则可判断215x x x +-=有解,故成立;若21(())5g f x x x =++,则可判断215x x x ++=无解,故不成立;故选:D .例11.()f x 和()g x 都是定义在R 上的函数,且方程[()]0x g f x -=有实数解,则[()]f g x 不可能是()A .32x-B .23x -C .4|1|5x --+D .4|1|5x -+【解析】解:因为[()]0x g f x -=,所以[()]g f x x =,得{[()]}()f g f x f x =,即[()]f g x x =,所以[()]g f x x =与[()]f g x x =是等价的,即[()]x g f x =有解,[()]f g x x =也有解,也就是说有解得都是有可能的,A .当32x x -=时,1x =成立;B .当23x x -=时,23x x =+结合图象有解;C .当4|1|5x x --+=时,即4|1|5x x -=-,当1x 时,得910x =,舍去;当1x <时,无解,故方程无解,C 错误;D .当4|1|5x x -+=时,得910x =有解.故选:C .例12.函数()f x 、()g x 都是定义在R 上的函数,若[()]x g f x =方程有解,则函数[()]g f x 不可能是()A .215x x +-B .215x -C .215x x ++D .215x +【解析】解:[()]x g f x =方程有解,得[()]g f x x =方程有实根,直接把四个答案分别代入,发现只有C 无解;题目要我们选不可能的,所以只能选无解的那个C .故选:C .题型五:含参二次函数复合型零点问题例13.设定义域为R 的函数|1|251,0()44,0x x f x x x x -⎧-=⎨++<⎩,若关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,则(m =)A .6m =B .2m =C .6m =或2D .6m =-【解析】解:当2m =时,由2()5()40f x f x -+=得()1f x =或()4f x =,当0x 时,|1|()51x f x -=-,由|1|511x --=得51log 2x =±均符合,由|1|514x --=得0x =,2x =均符合,当0x <时,2()44f x x x =++,由2441x x ++=得1x =-,3x =-均符合,由2444x x ++=得0x =(舍),4x =-符合,故2m =时,关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,所以排除A 和D ;当6m =时,由2()13()90f x f x -+=得()4f x =或()9f x =,当()4f x =时,已经解出0x =,2x =,4x =-均符合;当()9f x =时,由|1|0519x x -⎧⎨-=⎩ ,解得51log 10x =+,由20449x x x <⎧⎨++=⎩得5x =-,故6m =时,原方程只有5个不同实根,不符合题意,故排除C .故选:B .例14.设定义域为R 的函数|1|251,0()44,0x x f x x x x -⎧-=⎨++<⎩若关于x 的方程22()(21)()0f x m f x m -++=有5个不同的实数解,则(m =)A .6B .4或6C .6或2D .2【解析】解:题中原方程22()(21)()0f x m f x m -++=有5个不同的实数根,结合函数()f x 的图象可得,令()t f x =,则关于t 的方程22(21)0t m t m -++=有一根为4t =,另一个根大于4或等于0.把4t =代入方程22(21)0t m t m -++=求得2m =或6m =.当2m =时,关于t 的方程22(21)0t m t m -++=有一根为4t =,另一个根等于1,不满足条件.当6m =时,关于t 的方程22(21)0t m t m -++=有一根为4t =,另一个根等于9,满足条件.故选:A.例15.设定义域为R 的函数1(1)|1|()1(1)x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x bf x c ++=有5个不同的实数解,则b c +值为()A .0B .1C .1-D .不能确定【解析】解:作函数1(1)|1|()1(1)x x f x x ⎧≠⎪-=⎨⎪=⎩的图象,关于x 的方程2()()0f x bf x c ++=有5个不同的实数解,∴方程20x bx c ++=有2个不同的实数解1,1x ,11x b ∴+=-,11x c =,故1111b c x x +=--+=-,故选:C.变式14.设定义域为R 的函数|1|21,(1)(),(1)x x f x a x --⎧+≠=⎨=⎩,若关于x 的方程22()(23)()30f x a f x a -++=有五个不同的实数解,则a 的取值范围是()A .(0,1)B .3(0,)2C .(1,2)D .33(1,)(,2)22【解析】解:作出()f x 的图象如图:设()t f x =,则方程等价为22(23)30t a t a -++=,由图象可知,若关于x 的方程22()(23)()30f x a f x a -++=有五个不同的实数解,∴即要求对应于()f x 等于某个常数有3个不同实数解,∴故先根据题意作出()f x 的简图:由图可知,只有当()f x a =时,它有三个根.所以有:12a <<①.再根据22()(23)()30f x a f x a -++=有两个不等实根,则判别式△2(23)4230a a =+-⨯⨯>,解得32a ≠,故312a <<或322x <<,故选:D.变式15.设定义域为R 的函数|1|(1)()1()1(1)2x a x f x x -=⎧⎪=⎨+≠⎪⎩,若关于x 的方程22()(23)()30f x a f x a -++=有五个不同的实数解,则a 的取值范围是()A .(0,1)B .11(0,)(,1)22C .(1,2)D .33(1,)(,2)22【解析】解:题中原方程22()(23)()30f x a f x a -++=有且只有5个不同实数解,∴即要求对应于()f x 等于某个常数有3个不同实数解,∴故先根据题意作出()f x 的简图:由图可知,只有当()f x a =时,它有三个根.所以有:12a <<①.再根据22()(23)()30f x a f x a -++=有两个不等实根,得:△23(23)42302a a a =+-⨯⨯>⇒≠②结合①②得:312a <<或322a <<.故选:D .变式16.设定义域为R 的函数2,1()|(1)|,1x x f x lg x x ⎧=⎨->⎩ ,若关于x 的方程2()()0f x bf x +=有4个不同的实根,则实数b 的取值范围为()A .(2,)+∞B .(0,2]C .[2-,0)D .(,2)-∞-【解析】解:作函数2,1()|(1)|,1x x f x lg x x ⎧=⎨->⎩的图象如下,,2()()0f x bf x +=,()0f x ∴=或()f x b =-,结合图象可知,方程()0f x =有且仅有一个根2x =,故方程()f x b =-有3个不同的根,故02b <- ,故20b -< ,故选:C .变式17.(多选题)函数2()(0)f x ax bx c a =++≠的图象关于直线2bx a=-对称,据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p 关于x 的方程2[()]()0m f x nf x p ++=的解集不可能是()A .{1,2}B .{1,3,6,9}C .{1,2,3,4}D .{1,4,16,64}【解析】解:2()f x ax bx c =++的对称轴为直线2b x a=-,设方程2[()]()0m f x nf x p ++=的解为1()f x ,2()f x ,则必有211()f x y ax bx c ==++,222()f x y ax bx c ==++,那么从图象上看,1y y =,2y y =是一条平行于x 轴的直线,它们与()f x 有交点,由对称性,则方程21y ax bx c =++的两个解1x ,2x 要关于直线2b x a =-对称,即12b x x a+=-,同理方程22y ax bx c =++的两个解3x ,4x 也要关于直线2b x a =-对称,即34b x x a+=-,在A 中,可以找到对称轴为直线32x =,在C 中,可以找到对称轴为直线 2.5x =,在B 中,找不到这样的组合使得对称轴一致,也就是说无论怎么分组,都没办法使得其中两个的和等于另外两个的和,故答案B 不可能,在D 中,找不到这样的组合使得对称轴一致,也就是说无论怎么分组,都没办法使得其中两个的和等于另外两个的和,故答案D 不可能,故选:BD .变式18.设定义域为R 的函数2|1|,0()(1),0x x f x x x +⎧=⎨->⎩,找出一组b 和c 的值,使得关于x 的方程2()()0f x b f x c +⋅+=有7个不同的实根.【解析】解:()f x 的图象如图所示:32b =-,12c =满足条件,理由如下:设()f x t =,20t bt c ++=,由图象可得以上有关于t 的方程必须有一解为1,另一解a 在区间(0,1)中,才会使得关于x 的方程2()()0f x b f x c +⋅+=有7个解.其中,()1f x =有3个解,()(0f x a =∈,1)有四个解.所以可令11t =,212t =,即可得方程231022x x -+=,则32b =-,12c =.故答案为:32b =-,12c =.变式19.设定义域为R 的函数|1|2,(0)(),(0)x a x f x x bx c x -⎧=⎨++<⎩,f (2)4=,(3)(1)1f f -=-=.(1)求()f x 的解析式;(2)若关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,求实数m 的值.【解析】解:(1)由题意,f (2)4a ==;(3)931f b c -=-+=,(1)11f b c -=-+=;则4a =,4b =,4c =;故|1|24,0()44,0x x f x x x x -⎧=⎨++<⎩ ;(2)作|1|24,0()44,0x x f x x x x -⎧=⎨++<⎩的图象如下,则若使关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,则22(21)0t m t m -++=有两个不同的实数解,且有一个解为1或4;若1是22(21)0t m t m -++=得解,则21(21)0m m -++=;故0m =或2m =;若0m =,则22(21)0t m t m -++=的两个解为1,0;不成立;若2m =,则22(21)0t m t m -++=的两个解为1,4;由图知不成立;若4是22(21)0t m t m -++=得解,则2164(21)0m m -++=;故6m =或2m =;若6m =,则22(21)0t m t m -++=的两个解为4,9;不成立;故不存在.题型六:零点求和问题例16.设定义域为R 的函数1,11()1,11,11x x f x x x x⎧>⎪-⎪==⎨⎪⎪<-⎩,若关于x 的方程2()()0f x bf x c ++=有三个不同的解1x ,2x ,3x ,则222123x x x ++的值是()A .1B .3C .5D .10【解析】解:令()f x t =,做出()f x 的函数图象如下:由图象可知当1t =时,()f x t =有三解,当01t <<或1t >时,()f x t =有两解,当0t 时,方程()f x t =无解.关于x 的方程2()()0f x bf x c ++=有三个不同的解1x ,2x ,3x ,()1f x ∴=,当1x <时,令111x=-解得0x =,当1x >时,令111x =-解得2x =,当1x =时,显然1x =是()1f x =的解.不妨设123x x x <<,则10x =,21x =,32x =,∴2221235x x x ++=.故选:C .例17.设定义域为R 的函数1,1|1|()1,1x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x bf x c ++=有三个不同的实数根1x ,2x ,3x ,则222123x x x ++等于()A .5B .4C .1D .0【解析】解:分段函数的图象如图所示:由图可知,只有当()1f x =时,它有三个根.由11|1|x =-,即|1|1x -=,解得0x =,2x =或1x =.∴关于x 的方程2()()0f x af x b ++=有且只有3个不同实数解,解分别是2,1,0,即12x =,21x =,30x =,2221234105x x x ∴++=++=,故选:A .例18.设定义域为R 的函数|2|,2()4,2lg x x f x x -≠⎧=⎨=⎩,则关于x 的方程2()()0f x bf x c ++=有5个不同的实数解(1i x i =,2,3,4,5),则12345(2)(f x x x x x +++++=)A .12B .14C .2D .1【解析】解:画出()f x 的图象,由于关于x 的方程2()()0f x bf x c ++=有5个不同的实数解,令()f x t =,则20t bt c ++=有两个不等的实数根,且其中一个为2,画出直线(2)y m m =≠,得到5个交点,其横坐标为1x ,2x ,3x ,4x ,5x ,设32x =,且12345x x x x x <<<<,由于|2|y lg x =-的图象关于直线2x =对称,则15244x x x x +=+=,即有1234510x x x x x ++++=,则12345(2)(12)101f x x x x x f lg +++++===,故选:D .变式20.(多选题)设定义域为R 的函数1,1|1|()1,1x x f x x ⎧≠-⎪+=⎨⎪=-⎩,若关于x 的方程2[()]()0f x af x b ++=有且仅有三个不同的实数解1x ,2x ,3x ,且123x x x <<.下列说法正确的是()A .2221235x x x ++=B .10a b ++=C .1322x x x +>D .132x x +=-【解析】解:因为函数1,1|1|()1,1x x f x x ⎧≠-⎪+=⎨⎪=-⎩,作出函数图象如图所示,关于x 的方程2[()]()0f x af x b ++=有且仅有三个不同的实数解,由图象可知,只有当()1f x =时,方程有三个根1x ,2x ,3x ,且123x x x <<,故12x =-,21x =-,30x =,所以2221235x x x ++=,故选项A 正确;当()1f x =时,由2[()]()0f x af x b ++=,可得10a b ++=,故选项B 正确;因为1322022x x x +=-+=-=,故选项C 错误;因为13202x x +=-+=-,故选项D 正确;故选:ABD .变式21.设定义域为R 的函数1,1|1|()1,1x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x bf x c ++=有5个不同的解1x ,2x ,3x ,4x ,5x ,则12345x x x x x ++++=.【解析】解:作出函数1,1|1|()1,1x x f x x ⎧≠⎪-=⎨⎪=⎩的图象,如图所示,令()f x t =,由图象可知,当1t =时,方程()f x t =有3个根,当01t <<或1t >时,方程()f x t =有2个根,则方程2()()0f x bf x c ++=,等价于20t bt c ++=,因为方程2()()0f x bf x c ++=恰有5个不同的实数解1x ,2x ,3x ,4x ,5x ,所以等价于方程20t bt c ++=有两个实数解11t =,或201t <<,或21t >,可得这5个根也关于直线1x =对称,所以123455x x x x x ++++=.故答案为:5.题型七:其他型例19.已知()f x 是定义域为(0,)+∞的单调函数,若对任意的(0,)x ∈+∞,都有13[()log ]4f f x x +=,且方程|()3|f x a -=在区间(0,3]上有两解,则实数a 的取值范围是()A .01a <B .1a <C .01a <<D .1a 【解析】解:()f x 是定义域为(0,)+∞的单调函数,对任意的(0,)x ∈+∞,都有13[()log ]4f f x x +=,∴必存在唯一的正实数a ,满足13()log f x x a +=,f (a )4=①,f ∴(a )13log a a +=②,由①②得:134log a a +=,即13log 4a a =-,41(3a a -∴=,解得3a =.故13()log 3f x x a +==,13()3log f x x ∴=-,由方程|()3|f x a -=在区间(0,3]上有两解,即有13|log |x a =在区间(0,3]上有两解,作出13|log |y x =的图象,如图所示:,结合题意,01a < ,故选:A .例20.已知定义域为(0,)+∞的单调函数()f x ,若对任意(0,)x ∈+∞,都有12[()log ]3f f x x +=”,则方程()2f x =+()A .3B .2C .1D .0【解析】解:定义域为(0,)+∞的单调函数()f x ,满足12[()log ]3f f x x +=,()2f x =+,∴必存在唯一的正实数a ,满足12()log f x x a +=,f (a )3=,①∴12()log f a a a +=,②由①②得:123log a a +=,12log 3a a =-,31()2a a -=,左增,右减,有唯一解2a =,故12()log 2f x x a +==,12()2log f x x =-,由122log 2x -=+,得2log x =∴x =,令0t =>,则22t t =,此方程只有两个正根2t =,或4t =,4x ∴=,或16x =.故方程()2f x =+2.故选:B .例21.已知定义域为(0,)+∞的单调函数()f x ,若对任意的(0,)x ∈+∞,都有12[()log ]3f f x x +=,则方程3()2f x x =-的解的个数是.【解析】解:定义域为(,)O +∞的单调函数()f x ,满足12[()log ]3f f x x +=,3()2f x x =-,∴必存在唯一的正实数a ,满足12()log f x x a +=,f (a )3=,①f ∴(a )12log a a +=,②由①②得:123log a a +=,12log 3a a =-,31()2a a -=,左增,右减,有唯一解2a =,故12()log 2f x x a +==,12()2f x log x =-,由31222log x x -=-,得312log x x =,∴由函数图象可知3()2f x x =-的解只有一个.故答案为1.。
高考数学之函数专项重点突破-专题20 函数嵌套问题(解析版)

专题20函数嵌套问题一、单选题1.已知函数()e ,02,0x x f x x x ⎧≥=⎨-<⎩,则方程()20f f x ⎡⎤-=⎣⎦的根个数为()A .1个B .2个C .3个D .4个【解析】令()20y f f x =-=⎡⎤⎣⎦,即()2f f x =⎡⎤⎣⎦根的个数,设()f x t =,所以()2f t =,即0,e 2t t ≥=或0,22t t <-=,解得ln 2t =或1t =-,即()ln 2f x =或()1f x =-,即0,e ln 2x x ≥=或0,2ln 2x x <-=,解得ln 22x =-;或0,e 1x x ≥=-或0,21x x <-=-,无符合题意的解.综上所述:程()2y f f x =-⎡⎤⎣⎦的根个数为1个.故选:A.2.已知函数()232,1,42,1,x x x f x x x x ⎧--≤⎪=⎨+->⎪⎩则函数()()3y f f x =-的零点个数为()A .2B .3C .4D .5【解析】作出()f x的图象,如图所示:则()f x 的值域为R ,求()()3y f f x =-的零点,即求()()30f f x -=,即()()3f f x =,对应方程的根.设()m f x =,则m R ∈,则()()3f f x =等价于()3f m =,如图所示:()3f m =有3个交点,则m 有三个解,当1m £时,有2323m m --=,解得0m =或2m =-,当1m >时,有423m m+-=,解得4m =或1m =(舍)故m 的值分别为2-,0,4,则()m f x =对应解如下图()m f x =对应5个交点,分别为点Q ,M ,K ,E ,T ,综上所述:()()3y f f x =-的零点个数为5个.故选:D3.已知()f x 是定义在()0,+∞上的单调函数,()f x ¢是()f x 的导函数,若对()0,x ∀∈+∞都有()23xf f x ⎡⎤-=⎣⎦,则方程()40f x x'-=的解所在的区间是()A .()1,2B .()2,3C .()3,4D .()5,8【解析】由题意可知,对任意的()0,x ∞∈+,都有()23xf f x ⎡⎤-=⎣⎦.则()2x f x -为定值.设()2x t f x =-,则()2xf x t =+.又由()3f t =,即23t t +=.可解得1t =.则()21xf x =+,∴()2ln 2xf x '=.∴()442ln 2x f x x x'-=-.令()42ln 2xh x x=-,()2242ln 20x h x x '=+>,故()h x 在()0,+∞上单调递增,又由()12ln 240h =-<,()24ln 210h =->.故()h x 的唯一零点在区间()1,2之间.则方程()40f x x'-=的解在区间()1,2上.故选:A.4.已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为()A .3B .4C .5D .6【解析】令()2t f x =+,当1x <-时,1()(,2)f x x x =+∈-∞-且递增,此时(,0)t ∈-∞,当10x -<<时,1()(,2)f x x x=+∈-∞-且递减,此时(,0)t ∈-∞,当210e<<x 时,()ln (,2)f x x =∈-∞-且递增,此时(,0)t ∈-∞,当21e x >时,()ln (2,)f x x =∈-+∞且递增,此时(0,)t ∈+∞,所以,()g x 的零点等价于()f t 与2y =-交点横坐标t 对应的x值,如下图示:由图知:()f t 与2y =-有两个交点,横坐标11t =-、201t <<:当11t =-,即()3f x =-时,在(),1x ∈-∞-、(1,0)-、21(0,)e 上各有一个解;当201t <<,即2()1f x -<<-时,在21,e x ∞⎛⎫∈+ ⎪⎝⎭有一个解.综上,()g x 的零点共有4个.选:B5.已知函数()21,02211,0x x x f x x x ⎧+≤⎪=⎨⎪--+>⎩,若关于x 的方程()()()2210f x k xf x kx -++=有且只有三个不同的实数解,则正实数k 的取值范围为()A .10,2⎛⎤ ⎥⎝⎦B .()1,11,22⎡⎫⋃⎪⎢⎣⎭C .()()0,11,2U D .()2,+∞【解析】因为()21,0212,02122,2x x x f x x x x x ⎧+≤⎪⎪⎪=<≤⎨⎪⎪->⎪⎩,由()()()2210f x k xf x kx -++=可得()()0f x x f x kx -⋅-=⎡⎤⎡⎤⎣⎦⎣⎦,所以,关于x 的方程()f x x =、()f x kx =共有3个不同的实数解.①先讨论方程()f x x =的解的个数.当0x ≤时,由()212f x x x x =+=,可得0x =,当102x <≤时,由()2f x x x ==,可得x ∈∅,当12x >时,由()22f x x x =-=,可得23x =,所以,方程()f x x =只有两解0x =和23x =;②下面讨论方程()f x kx =的解的个数.当0x ≤时,由()212f x x x kx =+=可得102x x k ⎛⎫+-= ⎪⎝⎭,可得0x =或12x k =-,当102x <≤时,由()2f x x kx ==,可得2k =,此时方程()f x kx =有无数个解,不合乎题意,当12x >时,由()22f x x kx =-=可得22x k =+,因为0k >,由题意可得10221220k k k ⎧-<⎪⎪⎪≤⎨+⎪>⎪⎪⎩或10222230k k k ⎧-<⎪⎪⎪=⎨+⎪>⎪⎪⎩或10221222223k k k ⎧-≥⎪⎪⎪>⎨+⎪⎪≠⎪+⎩,解得112k ≤<或12k <<.因此,实数k 的取值范围是()1,11,22⎡⎫⋃⎪⎢⎣⎭.故选:B.6.函数()22,02,0x x x x f x x x e⎧-≤⎪=⎨>⎪⎩,若关于x 的方程()()210f x af x a -+-=恰有四个不同的实数根,则实数a 范围为()A .e 21,e +⎡⎫⎪⎢⎣⎭B .22e 21,e ⎛⎫+ ⎪⎝⎭C .22e 21,e ⎡⎫+⎪⎢⎣⎭D .e 21,e +⎛⎫ ⎪⎝⎭【解析】作出函数()f x 的图像如下所示,当0x >,2xx y e =时,22e x xy -'=,所以()0,1x ∈时递增,当()1,x ∈+∞时递减,所以当0x >时,2x xy e =在=1x 处取最大值为:2e(如下图所示平行于x 直线);因为()()210f x af x a -+-=,即()()+110f x a f x ⎡⎤⎡⎤--=⎣⎦⎣⎦,解得()1f x =或()1f x a =-,当()1f x =时,观察图像易知此时只有一个交点,即有一个根,要使关于x 的方程()()210f x af x a -+-=恰有四个不同的实数根,则需要()1f x a =-与图像有三个不同交点,只需要201ea <-<,即e 21e a +<<.故选:D.7.已知函数()3,133,1xx f x elnx x x x ⎧>⎪=⎨⎪-+≤⎩,若函数2[()]4=+y f x 与()y af x =的图象恰有8个不同公共点,则实数a 的取值范围是()A .(4,5)B .(4,10)C .292,5⎛⎫⎪⎝⎭D .294,5⎛⎫ ⎪⎝⎭【解析】当1x >时,()e ln xf x x=,2ln 1()e ln x f x x -'=,由1e x <<时,()0f x '<,得()f x 单调递减,由e x >时,()0f x '>,得()f x 单调递增,故e x =时,min ()(e)1f x f ==;当1x ≤时,()()32()33,()33311'=-+=-=-+f x x x f x x x x ,由11x -<<时,()()()3110'=-+<f x x x ,得()f x 单调递减,由1x <-时,()()()3110'=-+>f x x x 得()f x 单调递增,所以1x =-时,()f x 有极大值(1)5f -=,当1x =时,(1)1f =,作出()3,1eln 33,1⎧>⎪=⎨⎪-+≤⎩xx f x x x x x 的大致图象如图:函数()24⎡⎤⎣=+⎦y f x 与()y af x =的图象恰有8个不同公共点,即方程()()204-=⎡⎤⎣⎦+f x x af 有8个不同的根,令()f x t =,根据其图象,讨论2)40(=*-+t at 有8解情况如下:令2()4=-+t t at g,当()*在()1,5有两个解时,满足题意,即2(1)50(5)2950152160=->⎧⎪=->⎪⎪⎨<<⎪⎪∆=->⎪⎩g a g a a a ,解得45a <<,故选:A.8.定义在R 上的函数()1,111,1x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x mf x n ++=恰有5个不同的实数解12345,,,,x x x x x ,则12345()f x x x x x ++++=()A.2B.1C.12D.14【解析】作出函数1,11 ()1,1xxf xx⎧≠⎪-=⎨⎪=⎩的图象,如图所示,令()f x t=,由图象可知,当1t=时,方程()f x t=有3个根,当01t<<或1t>时,方程()f x t=有2个根,则方程2()()0f x mf x n++=等价于20t mt n++=,因为方程2()()0f x mf x n++=恰有5个不同的实数解12345,,,,x x x x x,所以等价于方程20t mt n++=有两个实数解11t=,或201t<<,或21t>,可得这5个根也关于直线1x=对称,所以123455x x x x x++++=,所以1234511()(5)514f x x x x x f++++===-,故选:D9.设函数()431,0log,0x xf xx x⎧+≤⎪=⎨>⎪⎩,若关于x的方程()()()2230f x a f x-++=⎡⎤⎣⎦恰好有六个不同的实数解,则实数a的取值范围为()A.()2,2--B.32,2⎛⎤-⎥⎝⎦C.3,2⎡⎫+∞⎪⎢⎣⎭D.()2,+∞【解析】画出函数()431,0log,0x xf xx x⎧+≤⎪=⎨>⎪⎩的图象如下图所示,令()f x t=,则方程()()()2230f x a f x-++=⎡⎤⎣⎦可化为()2230t a t-++=.由图可知:当(]1,2t∈时,()y f x=与y t=有3个交点,要使关于x的方程()()()2230f x a f x-++=⎡⎤⎣⎦恰好有六个不同的实数解,则方程()2230t a t -++=在(]1,2内有两个不同实数根,∴()()()222Δ212021221213022230a a a a ⎧=+->⎪+⎪<<⎪⎨⎪-+⨯+>⎪-+⨯+≥⎪⎩,解得322a <≤,∴实数a的取值范围为32,2⎛⎤ ⎥⎝⎦.故选:B 10.已知()()221,1,log 1,1,x x f x x x ⎧+<⎪=⎨->⎪⎩()g x 为三次函数,其图象如图所示.若()()y f g x m =-有9个零点,则m 的取值范围是()A .()0,1B .()0,3C .51,3⎛⎫⎪⎝⎭D .5,33⎛⎫ ⎪⎝⎭【解析】作出()f x 的图像如图所示,由()g x 的图像可知,()g x 的极大值为()02g m =+,极小值为()23g m =-,()()y f g x m =-有9个零点,令()t x g =,结合()f x 和()g x 的图像可知,()f t m =有3个解,分别设为123,,t t t ,且123t t t <<,且每个t 对应都有3个满足()g x t =,欲使()()y f g x m =-有9个零点,由图可知:03m <<,且112,2t ⎛⎫∈-- ⎪⎝⎭,21,12t ⎛⎫∈- ⎪⎝⎭,()32,9t ∈,由函数()f x 的解析式知:112m t +=-,212m t -=,321m t =+,由()g x 图像可知,()123,,3,2t t t m m ∈-+,则13221322321203mm m m m m m m m m +⎧-<-<+⎪⎪-⎪-<<+⎨⎪-<+<+⎪⎪<<⎩,解得5533550103m m m m ⎧-<<⎪⎪⎪-<<⎨⎪<<⎪<<⎪⎩,得01m <<,故选:A.11.已知函数()1,0,ln ,0,x a x f x x x ⎧+≤⎪=⎨>⎪⎩(0a >且1a ≠),若函数()()y f f x a =-的零点有5个,则实数a 的取值范围为()A .2a =B .ln 21a ≤<或12a <<C .0ln 2a <≤或12a <<或2a =D .ln 21a ≤<或2a =【解析】依题意函数()()y f f x a =-的零点即为方程()()f f x a =的根,①当01a <<时函数()f x的函数图象如下所示:所以()f t a =有两个根1t ,2t (101t <<,21t >),而()1t f x =对应2个根,所以需要()2t f x =对应3个根,所以22t ≥,即e 2a ≥,解得ln 21a ≤<;②当2a >时函数()f x的函数图象如下所示:所以()f t a =有两个根1t ,2t (101t <<,22t >),而()1t f x =对应2个根,()2t f x =对应2个根,即共四个根,所以不满足题意;③当2a =时函数()f x的函数图象如下所示:所以()f t a =有三个根121et =,22e t =,30t =,从而()2e f x =,()21ef x =,()0f x =,所对应2、2、1个根,即共5个根,所以满足题意;④当12a <<时函数()f x的函数图象如下所示:所以()f t a =有三个根1t ,2t ,3t ,(101t <<,21t >,30t <),而()1t f x =,()2t f x =,()3t f x =分别对应2、2、0个根,即共四个根,所以不满足题意;综上可得实数a 的取值范围为ln 21a ≤<或2a =;故选:D12.已知函数()3e ,1e ,1x x x xf x x x⎧<⎪=⎨≥⎪⎩(e 为自然对数的底数),函数()()g x xf x =,若关于x 的方程()()220g x ag x -⎤⎣⎦=⎡有两个不相等的实数根,则实数a 的取值范围是().A .e ,2⎛⎫+∞ ⎪⎝⎭B .222e ,e 8⎛⎫⎪⎝⎭C .()222e e ,0,,e 82⎛⎫⎛⎫-∞⋃⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .222e e ,,e 82⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭【解析】由题设22e ,1()e ,1x x x x g x x x⎧<⎪=⎨≥⎪⎩,且方程的根分别为1()0g x =、2()2g x a =,当1x <时()(2)e x g x x x '=+,在(,2)-∞-、(0,1)上()0g x '>,在(2,0)-上()0g x '<,所以()g x 在(,2)-∞-、(0,1)上递增,在(2,0)-上递减,则极大值24(2)e g -=,极小值(0)0g =,在各单调区间上恒有()0>g x ;当1≥x 时32())(e xx x xg -'=,在[1,2)上()0g x '<,在(2,)+∞上()0g x '>,所以()g x 在[1,2)上递减,在(2,)+∞上递增,且2e()(2)4g x g ≥=,(1)e g =;综上,()g x的图象如下:显然1()0g x =时有一个解,而原方程共有2个实数根,所以,由图知:2224e ()2(,)(e,)e 4g x a =∈⋃+∞,即222e e(,(,)e 82a ∈⋃+∞.故选:D二、多选题13.已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则()A .a c<B .b a<C .c a<D .a b<【解析】∵()()231321log log log log x x a ==,∴31log 2a x =,21log 3ax =,∴23132aax ==.设()2332ttf t =-,∵()()0110f f ==>,()2815120f =-<,2332xxy =-在()0,∞+上先增后减,∴()1,2a ∈.∵()()242422log log log log x x b ==,∴42221log log 22b x x ==,22log 4bx =,∴142b b +=,∴1b =.∵()()343433log log log log 0x x c ==>,∴34343ccx ==设()3443ttg t =-,∵()010g =>,()1170g =-<,3443xxy =-在()0,∞+上先增后减,∴()0,1c ∈.∴c b a <<.故选:BC.14.已知函数()212,02log ,0xx f x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪>⎩,方程()()220(0)f x f x m m +-=>有四个不同的实数根,从小到大依次是1234,,,,x x x x 则下列说法正确的有()A .13x <-B .122x x +<-C .342x x =D .m 可以取到3【解析】由题设,2222,0()log ,01log ,1x x f x x x x x -⎧-≤⎪=-<<⎨⎪≥⎩,其函数图象如下:而2()2()y f x f x m =+-的对称轴为()1f x =-且440m ∆=+>,即1m >-,所以0y =必有两个零点1()f x 、2()f x 分别在()1f x =-的两侧,由上图知:10()1f x <≤且23()2f x -≤<-,满足原方程有四个实根,故123()()0f x f x m -≤=-<,则03m <≤,D 正确;所以13222x --≤-<-:21log 52x -≤<-;且210x -<≤;230log 1x <-≤:3112x ≤<;且240log 1x <≤:412x <≤.;所以212341log 5210122x x x x -≤<-<-<≤<≤<<≤且341x x =,则122x x +<-,故A 、C 错误,B 正确.故选:BD15.已知函数()224,0,21,0,xx x x f x x -⎧+<=⎨-≥⎩若关于x 的方程()()244230f a f x a x -⋅++=有5个不同的实根,则实数a 的取值可以为()A .32-B .43-C .65-D .76-【解析】令()f x m =,记2()4423g m m am a =-++的两个零点为12,m m ,则由()f x 的图象可知:方程()()244230f x a f x a -⋅++=有5个不同的实根⇔12,y m y m ==与()f x 的图象共有5个交点121m ⇔-<≤-,且210m -<<(不妨设12m m <).则()()()221019016700230Δ230g a g a g a a a ⎧-=+>⎪-=+≤⎪⎨=+>⎪⎪=-->⎩解得3726a -<≤-.故选:BCD16.已知函数()()2lg ,0,64,0,x x f x x x x ⎧-<⎪=⎨-+⎪⎩若关于x 的方程2()()40f x mf x +-=有6个不同根,则整数m 的取值可能是()A .2B .3C .4D .5【解析】作出函数f (x )的图象如图:关于x 的方程2()()40f x mf x +-=有6个不同根,令()t f x =,240t mt +-=,即方程240t mt +-=有2个不同的解,可能一个在(0,4]上,一个在(5,0)-上,也可能两个都在(4,)+∞上.令2()4g t t mt =+-,若()g t 在(0,4]上和(5,0)-上各有一个不同的零点,所以()()()500040g g g ⎧->⎪<⎨⎪≥⎩,解得2135m -≤<,所以整数m 的取值可以是-3,-2,-1,0,1,2,3,4.若()g t 在(4,)+∞有两个不同的零点,所以()24216040m m g ⎧->⎪⎪+>⎨⎪>⎪⎩,该不等式组无解,故选:ABC17.设函数()41,14,1x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,集合()(){}220,M x f x f x k k R =++=∈,则下列命题正确的是()A .当0k =时,{}0,4,6M =B .当1k >时M =∅C .若集合M 有三个元素,则k 的取值范围为()15,3--D .若{},,,M a b c d =(其中a b c d <<<),则4412a b c d +++=【解析】A :0k =时,{|()0M x f x ==或()2}f x =-,结合()f x 解析式:()0f x =时有0x =或4x =,()2f x =-时有6x =,所以{}0,4,6M =,正确;B :1k >时,由2240k ∆=-<,知方程()()220f x f x k ++=无解,则M =∅,正确;由()f x解析式可得其函数图象如下图示:令()()22y fx f x k =++,开口向上且对称轴为()1f x =-,若{},,M a b c =,则440k ∆=->,即1k <,有以下情况:1、()f x m =(13)m ≤<,()f x n =(0)n <:此时,令2()2g x x x k =++,则()g x 在[1,3)x ∈上有一个零点,∴(1)(3)(15)(3)0(3)01g g k k g k =++≤⎧⎪≠⎨⎪<⎩,可得153k -<≤-,2、()0f x =,()2f x =-,由A 知:0k =.综上:(15,3]{0}k ∈--⋃,故C 错误;若{},,,M a b c d =,由函数y 的性质及()f x 图象知:必有()f x m =(01)m <<,()f x n =(23)n -<<-.此时,()4141a b-=--,()()()442f c f d c d +=-++-+=-,所以442a b +=,10c d +=,所以4412a b c d +++=,故D 正确.故选:ABD18.若()11f x x =--,则关于x 的方程()()()20f x af x +=的实数解的个数可能为()A .2B .3C .5D .6【解析】由已知(),0,01112,122,2x x x x f x x x x x x -≤⎧⎪<≤⎪=--=⎨-<≤⎪⎪->⎩,作出函数图象如图所示,又()()()20f x af x +=,所以()0f x =或()f x a =-,因为()0f x =,有2个实数解,当0a -<,即0a >时,()f x a =-无解,()()()20f x af x +=共有2个实数解;当0a -=,即0a =,()()20f x =,共有2个实数解;当01a <-<,即10a -<<时,()f x a =-有4个实数解,()()()20f x af x +=共有6个实数解;当1a -=,即1a =-时,()f x a =-有3个实数解,()()()20f x af x +=共有5个实数解;当1a ->,即1a <-时,()f x a =-有2个实数解,()()()20f x af x +=共有4个实数解;故选:ACD.三、填空题19.已知函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭,当713,1212x ππ⎡⎤∈⎢⎥⎣⎦时,关于x 的方程()()()22210f x m f x m m ⎡⎤-+++=⎣⎦恰有两个不同的实数根,则实数m 的取值范围是_______.【解析】原方程可化为[()][()(1)]0f x m f x m --+=,解得1()f x m =,2()1f x m =+,因为713,1212x ππ⎡⎤∈⎢⎥⎣⎦,则5112,366x πππ⎡⎤-∈⎢⎣⎦,()[]1,2f x ∈-,()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭的图象如图所示:因为方程()()()22210f x m f x m m ⎡⎤-+++=⎣⎦恰有两个不同的实数根,所以当1m <-时,则110m -<+≤,解得21m -<<-;当1m =-时,10m +=,此时方程有三个不同的实数根,不成立;当10m -<≤时,则12m +>,此时无解;当02m <≤时,则012m <+≤,解得01m <≤;当2m >时,此时方程无实数根,不成立;综上:21m -<<-或01m <≤20.已知函数1,0()lg ,0x x f x x x ⎧+<=⎨>⎩,()g x ²222x x λ=-+-,若关于x 的方程(())f g x λ=(R λ∈)恰好有6个不同的实数根,则实数λ的取值范围为_______.【解析】令()g x t =,则方程转化为()f t λ=,画出()y f x =的图象,如图可知()f t λ=可能有1,2,3个不同解,二次函数()g x t =可能有0,1,2个不同解,因为(())f g x λ=恰好有6个不同的实数根,所以()g x t =有2个不同的实数根,()f t λ=有3个不同的实数根,则01λ<<,因为|1|0,t t λ+=<,解得121,1t t λλ=-+=--,()lg 0t t λ=>,解得310t λ=,所以22221x x λλ-+-=-+,22221x x λλ-+-=--,222210x x λλ-+-=每个方程有且仅有两个不相等的实数解,所以由22221x x λλ-+-=-+,可得2210x x λ-+-=,即144(1)0λ∆=-->,解得02λ<<;由22221x x λλ-+-=--,可得22310x x λ-+-=,即244(31)0λ∆=-->,解得203λ<<;由222210x x λλ-+-=,可得2222100x x λλ-+--=,即()34422100λλ∆=--->,而10320λλ+->在20,3λ⎛⎫∈ ⎪⎝⎭上恒成立,综上,实数λ的取值范围为203λ<<.21.已知函数()2sin 213f x x π⎛⎫=-+ ⎪⎝⎭.当713,1212x ππ⎡⎤∈⎢⎥⎣⎦时,关于x 的方程22[()](21)()0f x m f x m m -+++=恰有三个不同的实数根,则m 的取值范围是_________.【解析】22[()](21)()0f x m f x m m -+++=等价于[()(1)][()]0f x m f x m -+-=,解得()1f x m =+或()f x m =,因为713,1212x ππ⎡⎤∈⎢⎥⎣⎦,所以5112,366x πππ⎡⎤-∈⎢⎥⎣⎦,()[1,2]f x ∈-,如图,绘出函数()f x 的图象,方程22[()](21)()0f x m f x m m -+++=有三个不同的实数根等价于()1f x m =+有一个实数解且()f x m =有两个不同的实数解或()1f x m =+有两个不同的实数解且()f x m =有一个实数解,①当1m <-或2m >时,()f x m =无解,不符合题意;②当1m =-时,则10m +=,()f x m =有一个实数解,()1f x m =+有两个不同的实数解,符合题意;③当10m -<≤时,则012m <+≤,()f x m =有两个不同的实数解,()1f x m =+有一个实数解,符合题意;④当02m <≤时,则113m <+≤,()f x m =有一个实数解,()1f x m =+至多有一个实数解,不符合题意,综上,m 的取值范围为[1,0]-.22.已知函数()22ln ,04,0x x f x x x x ⎧+>=⎨--≤⎩,若函数2[()](21)()2=-++-y a f x a f x a (其中0a >)有6个不同的零点,则实数a 的取值范围是___________.【解析】画出函数()22ln ,04,0x x f x x x x ⎧+>=⎨--≤⎩的图像,如下图所示:设()f x t =,则当0t <时,方程()f x t =有一个根,当02t ≤<时,方程()f x t =有两个根,当2t =时,方程()f x t =有三个根,当24t <<时,方程()f x t =有四个根,当4t =时,方程()f x t =有三个根,当4t >时,方程()f x t =有两个根,所以,若2t =和4t =为方程2(21)20at a t a -++-=的两根时,原函数有6个不同的零点,则得到方程组222(21)2204(21)420a a a a a a ⎧⨯-+⨯+-=⎨⨯-+⨯+-=⎩,方程组无解;若02t ≤<,24t <<为方程2(21)20at a t a -++-=的两根时,原函数有6个不同的零点,得不等式组22200(21)0202(21)2204(21)420a a a a a a a a a a >⎧⎪⨯-+⨯+-≥⎪⎨⨯-+⨯+-<⎪⎪⨯-+⨯+->⎩,解得24a ≤<.故答案为:[)2,4.四、解答题23.已知函数212log (1)0()log (1)0x x f x x x +≥⎧⎪=⎨-<⎪⎩.(1)判断函数()y f x =的奇偶性;(2)对任意的实数x 、x ,且120x x +>,求证:()()120f x f x +>;(3)若关于x 的方程23[()]()04f x af x a +-+-=有两个不相等的正根,求实数a 的取值范围.【解析】(1)2(0)log (10)0f =+=.当0x >时,0x -<,有122()log [1()]log (1)()f x x x f x -=--=-+=-,即()()f x f x -=-.当0x <时,0x ->,有212()log [1()]log (1)()f x x x f x -=+-=--=-,即()()f x f x -=-.综上,函数()y f x =在R 上是奇函数.(2)因为函数2log y x =在(0,)+∞上是增函数,函数1u x =+在R 上也是增函数,故函数2log (1)=+y x 在[0,)+∞上是增函数.由(1)知,函数()y f x =是R 上的奇函数.由奇函数的单调性知,函数12log (1)y x =-在(,0)-∞上也是增函数,从而函数()y f x =在R 上是增函数.由120x x +>,得12x x >-,所以()()()122f x f x f x >-=-,即()()120f x f x +>.(3)由(1)知,函数()y f x =是R 上的奇函数,故原方程可化为23[()]()04f x af x a -+-=.令()f x t =,则当0x >时,()0t f x =>.原方程有两个不相等的正根等价于:关于t 的方程2304t at a ⎛⎫-+-= ⎪⎝⎭有两个不相等的正根,即23401,343001,343344a a a a a a a a a a ⎧⎛⎫⎧∆=--> ⎪⎪⎪⎝⎭⎪⎪⎪>⇔>⇔<<>⎨⎨⎪⎪⎪⎪->>⎩⎪⎩或因此,实数a 的取值范围为3,1(3,)4⎛⎫⋃+∞ ⎪⎝⎭.24.已知向量()2,2m a a b =+ (其中0a >),()()πsin 2,16n x =+- ,函数()f x m n =⋅ ,当π3π,44x ⎡⎤∈⎢⎣⎦时,函数f (x)的值域为1⎡⎤-⎣⎦.(1)求实数a ,b 的值;(2)设函数()()g x f x λ=-在π0,2⎡⎤⎢⎥⎣⎦上有两个零点,求实数λ的取值范围;(3)若对R x ∀∈,都有()()()2840f x k f x k +--≤恒成立,求实数k 的取值范围.【解析】(1)()2sin 226f x m n a x a b π⎛⎫=⋅=+-- ⎪⎝⎭ ,当π3π[,]44x ∈时,π2π5π2[,633x +∈,πsin(2[]62x +∈-,因为0a >,所以()[42)]f x a b a b ∈---,依题意可得)4321a b a b --=-⎧⎪⎨--⎪⎩,解得11a b =⎧⎨=-⎩.(2)由(1)知,π()2sin 216f x x ⎛⎫=+- ⎪⎝⎭,当π[0,2x ∈时,函数()f x 的图象如图:因为函数()()g x f x λ=-在π0,2⎡⎤⎢⎥⎣⎦上有两个零点,所以()y f x =在π0,2⎡⎤⎢⎥⎣⎦的图象与y λ=有两个交点,由图可知,01λ≤<.(3)因为π()2sin 216f x x ⎛⎫=+- ⎪⎝⎭[3,1]∈-,所以对任意的[3,1]t ∈-,都有()2840t k t k +--≤恒成立,设2()(8)4h t t k t k =+--,则()()3010h h ⎧-≤⎪⎨≤⎪⎩,即93(8)401840k k k k ---≤⎧⎨+--≤⎩,解得95k ≥.25.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象相邻对称轴之间的距离是2π,若将()f x 的图象向右移6π个单位,所得函数()g x 为奇函数.(1)求()f x 的解析式;(2)若关于x 的方程2()()0f x f x a --=在0,3x π⎡⎤∈⎢⎥⎣⎦上有三个解,求a 的取值范围.【解析】(1)因为图象相邻两对称轴之间的距离是2π,所以函数的最小正周期2T ππω==,解得2ω=,即()()sin 2f x x ϕ=+,因为()ππsin 2φsin 2φ63g x x x 轾骣骣犏琪琪=-+=-+琪琪犏桫桫臌为奇函数,所以3πφkπ-+=,k Z ∈,即3k πϕπ=+,k Z ∈,又因为0ϕπ<<,所以3πϕ=,()sin 23f x x π⎛⎫=+ ⎪⎝⎭,(2)因为()sin 23f x x π⎛⎫=+ ⎪⎝⎭,0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,33x πππ⎡⎤+∈⎢⎥⎣⎦,所以()[]0,1f x ∈,当2332x πππ≤+≤时,解得012x π≤≤,223x πππ≤+≤时,解得123x ππ≤≤,即()f x 在0,12π⎡⎤⎢⎥⎣⎦上单调递增,在,123ππ⎡⎤⎢⎥⎣⎦上单调递减,且()0sin 3f π==sin 1122f ππ⎛⎫== ⎪⎝⎭,sin 03f ππ⎛⎫== ⎪⎝⎭,函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭,0,3x π⎡⎤∈⎢⎥⎣⎦的图象如下所示:因为关于x 的方程2()()0f x f x a --=在0,3x π⎡⎤∈⎢⎥⎣⎦上有三个解,令()t f x =,即20t t a --=,[]0,1t ∈,若21t =为方程20t t a --=的根,此时0a =,则10t =,不符合题意;依题意方程20t t a --=在[]0,1有两不相等实数根1t 、2t ,不妨令12t t <,且2t ⎫∈⎪⎪⎣⎭,1t ⎡⎫∈⎢⎣⎭;若22t =为方程20t t a --=的根,此时342a =-,则112t =-,此时符合题意;若22t ≠时,令()2g t t t a =--则()()001002Δ0g g g ⎧>⎪>⎪⎪⎛⎨< ⎪ ⎝⎭⎪⎪>⎩,即003042Δ140a a a a ->⎧⎪->⎪⎪⎨--<⎪⎪=+>⎪⎩,解得304a <<,综上可得304a ≤<。
高考数学命题热点名师解密:专题(02)函数问题的解题规律(理)(含答案)

专题02 函数问题的解题规律一、函数问题的解题规律解题技巧及注意事项1.定义域陷阱2.抽象函数的隐含条件陷阱3.定义域和值域为全体实数陷阱4.还原后新参数范围陷阱5.参数范围漏解陷阱6.函数求和中的倒序求和问题7.分段函数问题8.函数的解析式求法9.恒成立问题求参数范围问题10.任意存在问题二.知识点【学习目标】1.了解映射的概念,了解构成函数的要素,会求一些简单函数的定义域、值域及函数解析式;2.在实际情境中,会根据不同的需要选择适当的方法(图象法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单应用;4.掌握求函数定义域及解析式的基本方法.【知识要点】1.函数的概念设A,B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:,其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然{f(x)|x∈A}⊆B.2.映射的概念设A,B是两个集合,如果按照某种对应关系f,对于集合A中的任意一个元素,在集合B中都有唯一确定的元素和它对应,那么这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射.3.函数的特点①函数是一种特殊的映射,它是由一个集合到另一个集合的映射;②函数包括定义域A、值域B和对应法则f,简称函数的三要素;③关键是对应法则.4.函数的表示法函数的表示法:图示法、解析法.5.判断两个函数为同一个函数的方法两个函数的定义域和对应法则完全相同(当值域未指明时),则这两个函数相等.6.分段函数若函数在定义域的不同子集上对应法则不同,可用几个式子表示函数,这种形式的函数叫分段函数.注意:不要把分段函数误认为是多个函数,它是一个整体,分段处理后,最后写成一个函数表达式.三.典例分析及变式训练(一)定义域陷阱例 1. 【曲靖一中2019模拟】已知,若函数在(﹣3,﹣2)上为减函数,且函数=在上有最大值,则的取值范围为()A.B.C.D.【答案】A【分析】由在上为减函数,可得;由在上有最大值,可得,综上可得结果,. 【解析】在上为减函数,,且在上恒成立,,,又在上有最大值,且在上单调递增,在上单调递减,且,,解得,综上所述,,故选A.【点评】本题主要考查对数函数的单调性、复合函数的单调性、分段函数的单调性,以及利用单调性求函数最值,意在考查对基础知识掌握的熟练程度,考查综合应用所学知识解答问题的能力,属于难题. 判断复合函数单调性要注意把握两点:一是要同时考虑两个函数的的定义域;二是同时考虑两个函数的单调性,正确理解“同增异减”的含义(增增增,减减增,增减减,减增减).练习1.【湖北2019重点中学联考】若y=f(x)的定义域为(0,2],则函数g(x)=的定义域是()A.(0,1] B. [0,1) C.(0,1)∪(1,4] D.(0,1)【答案】D【点评】本题考查了抽象函数的定义域与应用问题,是基础题.(二)抽象函数的隐含条件陷阱例 1. 【2019福建联考】已知定义在上的函数满足:,若, 则A. B. C. D.【答案】D【解析】f(x+y)=f(x)+f(y)+1,且f(8)=15,令x=y=4,可得f(8)=2f(4)+1=7,解得f(4)=3,再令x=y=2,可得f(4)=2f(2)+1=3,解得f(2)=1.故选:D.【点评】本题考查抽象函数的运用:求函数值,注意运用赋值法,考查运算能力,属于基础题.练习 1.设函数f:R→R满足f(0)=1,且对任意,都有,则=()A. 0 B. 2018 C. 2 017 D. 1【答案】B【解析】令,利用 ,求出,再利用,令,求的解析式,从而可得结果.【详解】,令,得,,令,又,,,故选B.【点评】本题主要考查抽象函数的解析式,属于中档题. 解抽象函数的解析式问题,往往利用特值法:(1);(2);(3). (三)定义域和值域为全体实数陷阱例3.【山东省师大附中2019第二次模拟考】函数的值域为,则实数的范围()A. B. C. D.【答案】C【解析】分段函数的值域为R,则函数y=f(x)在R上连续且单调递增,列出关于a的不等式组即可求解a的值.【详解】因为函数的值域为所以解得:故选C【点评】本题考查了分段函数的单调性,其题干描述较为隐蔽,需要通过分析其值域为R得到该函数在R上是增函数,然后根据分段函数的单调性条件求解出a的范围.练习1.已知函数y=f(x)的定义域是R,值域为[-1,2],则值域也为[-1,2]的函数是A.B.C.D.【答案】B【解析】根据的值域为[-1,2],即,即可求出,以及的范围,从而找出正确选项.【点睛】本题考查分段函数最值,考查基本分析求解能力,属基础题. 练习 1.若函数在上有意义,则实数的取值范围是______ .【答案】.【解析】使用换元令t=2x,将函数转化为一元二次函数y=1+t+at2进行求解.【点睛】本题考查了与指数函数有关的复合函数的最值问题,通过换元,将函数转化为一元二次函数,是解决本题的关键,对应不等式恒成立问题通常是转化为含参问题恒成立,即求函数的最值问题.练习2.已知.(1)求的值域.(2)若对任意和都成立,求的取值范围.【答案】(1);(2).【解析】(1)利用换元法,将函数转化为关于t的二次函数,根据t 的取值范围求得函数的值域。
高中数学嵌套函数练习题

高中数学嵌套函数练习题一、基本概念题1. 设函数f(x) = 2x + 1,g(x) = x^2,求f(g(x))的表达式。
2. 已知函数h(x) = |x 1|,求h(h(x))的表达式。
3. 设函数F(x) = 3x 5,G(x) = 4 x,求G(F(x))的值域。
4. 已知函数f(x) = e^x,求f(f(x))的导数。
5. 设函数φ(x) = ln(x),求φ(φ(x))的定义域。
二、计算题1. 已知函数f(x) = sin(x),g(x) = x^3,求f(g(π/6))的值。
2. 设函数F(x) = √(1 + x^2),求F(F(1))的值。
3. 已知函数h(x) = 1/x,求h(h(2))的值。
4. 设函数f(x) = 2^x,求f(f(3))的值。
5. 已知函数φ(x) = cos(x),求φ(φ(π/3))的值。
三、应用题1. 设函数f(x) = x^2 2x + 1,求f(f(x))的最小值。
2. 已知函数g(x) = log_2(x),求g(g(8))的值。
3. 设函数h(x) = |x|,求h(h(x 1))的表达式。
4. 已知函数F(x) = e^(2x),求F(F(x))的单调性。
5. 设函数φ(x) = tan(x),求φ(φ(π/4))的值。
四、综合题1. 已知函数f(x) = x + 1/x,求f(f(x))的奇偶性。
2. 设函数g(x) = x^3 3x,求g(g(x))的零点。
3. 已知函数h(x) = ln(x + 1),求h(h(x))的极值。
4. 设函数F(x) = arcsin(x),求F(F(x))的图像特征。
5. 已知函数φ(x) = √(x^2 1),求φ(φ(x))的定义域和值域。
四、综合题(续)6. 设函数f(x) = x^2 4x + 3,求f(f(x))的顶点坐标。
7. 已知函数g(x) = 1/(x 2),求g(g(x))的渐近线。
破解嵌套函数的零点问题 (解析版)-高中数学

破解嵌套函数的零点问题函数的零点问题是高考的热点,常与函数的性质等相关问题交汇.对于嵌套函数的零点问题,通常借助函数图象、性质求解即通过换元将复合函数拆解为两个相对简单的函数。
.1.嵌套函数形式:形如f g x2.解决嵌套函数零点个数的一般步骤(1)换元解套,转化为t =g (x )与y =f (t )的零点.(2)依次解方程,令f (t )=0,求t ,代入t =g (x )求出x 的值或判断图象交点个数.注:抓住两点:(1)转化换元;(2)充分利用函数的图象与性质.一、嵌套函数零点个数的判断【例1】已知f (x )=|lg x |,x >0,2|x |,x ≤0, 则函数y =2[f (x )]2-3f (x )+1的零点个数是()A.3 B.5C.7D.8解析:B 函数y =2[f (x )]2-3f (x )+1=[2f (x )-1][f (x )-1]的零点,即方程f (x )=12和f (x )=1的根,函数f (x )=|lg x |,x >0,2|x |,x ≤0 的图象如图所示,由图可得方程f (x )=12和f (x )=1共有5个根,即函数y =2[f (x )]2-3f (x )+1有5个零点,故选B .点评 判断嵌套函数零点个数的步骤:①换元解套,转化为t =g (x )与y =f (t )的零点;②依次解方程,令f (t )=0求出t 的值,代入t =g (x )求出x 的值或判断图象交点个数.跟踪训练1.已知函数f (x )=-x +1,x ≤1,ln (x -1),x >1,则函数g (x )=f (f (x ))-2的零点个数为( )A.3 B.4 C.2 D.1解析:A 设μ=f (x ),令g (x )=0,则f (μ)-2=0,当μ>1时,则f (μ)=ln (μ-1),所以ln (μ-1)-2=0,μ=e 2+1,当μ≤1时,f (μ)=-μ+1-2=0,则μ=-1,作出函数μ=f (x )的图象如图所示,直线μ=-1与函数μ=f (x )的图象只有1个交点,直线μ=e 2+1与函数μ=f (x )的图象有2个交点,因此函数g (x )有3个零点.故选A .二、求嵌套函数零点中的参数【例1】函数f (x )=ln (-x -1),x <-1,2x +1,x ≥-1, 若函数g (x )=f (f (x ))-a 有三个不同的零点,则实数a 的取值范围是[-1,+∞).解析:设t =f (x ),令g (x )=f (f (x ))-a =0,则a =f (t ).在同一平面直角坐标系内作y =a ,y =f (t )的图象(如图).易知当a <-1时只有一个零点,当a ≥-1时,y =a 与y =f (t )的图象有两个交点.设交点的横坐标为t 1,t 2(不妨设t 2>t 1),则t 1<-1,t 2≥-1.当t 1<-1时,t 1=f (x )有一解;当t 2≥-1时,t 2=f (x )有两解.综上,当a ≥-1时,函数g (x )=f (f (x ))-a 有三个不同的零点.点评 (1)求解本题的关键是抓住分段函数图象的性质,由y =a 与y =f (t )的图象,确定t 1,t 2的取值范围,进而由t =f (x )的图象确定零点的个数;(2)处理含参数的嵌套函数方程,还应注意让参数的取值“动起来”,抓临界位置,动静结合.跟踪训练1.已知函数f (x )=x 2-2x +4,x ≤0,ln x ,x >0,若函数g (x )=[f (x )]2+2f (x )+m (m ∈R )有三个零点,则m 的取值范围为(-∞,-24].解析:画出f (x )的函数图象如图,令t =f (x ),则由图可知要使g (x )有三个零点,则关于t 的方程t 2+2t +m =0有两个根,且一个根小于4,一个根大于等于4,所以Δ=4-4m >0,42+2×4+m ≤0, 解得m ≤-24.课后跟踪练习1.已知函数f x =2x 2-x +a a ∈R ,若方程f x =0有实根,则集合x f f x =0 的元素个数可能是()A.1或3B.2或3C.2或4D.3或4解析:∵f x =0有实根,∴Δ=1-8a ≥0,解得:a ≤18;f x =2x -14 2-18+a ≥a -18;设f x =t ,则f t =2t 2-t +a =0;①当a =18时,t =14,∴2x 2-x +18=14,即2x 2-x -18=0,解得:x =1±24,∴x f f x =0 =1-24,1+24;②当a <18时,由2t 2-t +a =0得:t 1=1-1-8a 4,t 2=1+1-8a 4;1-1-8a 4-a -18 =3-8a -21-8a 8,∵a <18,∴3-8a >0,又3-8a 2-21-8a 2=64a 2-16a +5>0恒成立,∴3-8a >21-8a ,即t 2>t 1>a -18,∴f x =t 1,f x =t 2共有四个不等实根x 1,x 2,x 3,x 4,∴x f f x =0 =x 1,x 2,x 3,x 4 ;综上所述:集合x f f x =0 的元素个数可能为2或4.2.函数f x =x 2-1,x ≤1ln x ,x >1,则函数y =f (f (x ))-1的零点个数为()A.2 B.3C.4D.5解析:令t =f (x ),则f (t )=1,当t ≤1时,由t 2-1=1可得t =-2或t =2(舍去);当t >1时,由ln t =1可得t =e ,所以f (t )=1的两根为t 1=-2,t 2=e ,则f (x )=-2或f (x )=e ,因为f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以f (x )≥f (0)=-1,若f (x )=-2,易知方程无解,若f (x )=e ,当x ≤1时,由x 2-1=e ,得x =-e +1或x =e +1(舍去),此时方程有唯一的解;当x >1时,由ln x =e ,得x =e e ,此时方程有唯一的解,综上所述可知函数y =f (f (x ))-1的零点个数为2个,3.(多选)若关于x 的方程e ln x x +x e ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的值可能为()A.1B.2e 3C.1e 2 D.1e 解析:由方程e ln x x +x e ln x +x +m =0,可得e ln x x +1e ln x x +1+m =0.令e ln x x =t ,则有t +1t +1+m =0,即t 2+(m +1)t +m +1=0.令函数g (x )=e ln x x ,则g (x )=e ⋅1-ln x x 2,所以g (x )在(0,e )上单调递增,在(e ,+∞)上单调递减.作出图象如图所示,要使关于x 的方程e ln x x +x e ln x +x +m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,结合图象可得关于t 的方程t 2+(m +1)t +m +1=0一定有两个实根t 1,t 2(t 1<0<t 2<1),且e ln x 1x 1=t 1,e ln x 2x 2=t 2,t 1+t 2=-(m +1),t 1t 2=m +1.所以m +1<0,1+m +1+m +1>0,解得-32<m <-1.故ln x 21x 1+ln x 2x 2+ln x 3x 3=2e (t 1+t 2)=-2(m +1)e ∈0,1e.因为2e 3∈0,1e ,1e 2∈0,1e,所以BC 都符合题意,4.已知函数f (x )=(ax +ln x )(x -ln x )-x 2有四个不同的零点x 1,x 2,x 3,x 4,且四个零点全部大于1,则1-ln x 1x 1 1-ln x 2x 2 1-ln x 3x 3 1-ln x 4x 4 的值为.解析:由题意令f (x )=(ax +ln x )(x -ln x )-x 2=0(x >0),⇒a +ln x x 1-ln x x -1=0,令1-ln x x =t ,则ln x x=1-t 所以函数f (x )=(ax +ln x )(x -ln x )-x 2有四个不同的零点,等价于关于t 的方程(a +1-t )t -1=0,即方程-t 2+(a +1)t -1=0有两个不同的实根t 1,t 2(t 1t 2=1),且此时直线y =t 1,y =t 2与g (x )=1-ln x x 的图象应有四个交点,交点的横坐标分别为x 1,x 2,x 3,x 4,由g (x )=ln x -1x 2⇒(0,e )上,g (x )<0;(e ,+∞)上,g (x )>0,⇒g (x )min =g (e )=1-1e ,且当x →0+时,g (x )→+∞;当x →+∞时,g (x )→1,所以由数形结合可知:1-ln x 1x 11-ln x 2x 2 1-ln x 3x 3 1-ln x 4x 4 =t 1t 2 2=1,5.已知函数f x =2x +2,x ≤0log 4x ,x >0 ,则函数y =f f x 的所有零点之和为.解析:设m =f x ,则f m =0,①当m ≤0时,2m +2=0,得m =-1;②当m >0时,log 4m =0,得m =1;综上所述:若f m =0,则m =-1或m =1.故f x =-1或f x =1,则有:①由f x =-1,可得x ≤02x +2=-1或x >0log 4x =-1 ,解得x =-32或x =14;②由f x =1,可得x ≤02x +2=1 或x >0log 4x =1 ,解得x =-12或x =4;综上所述:函数y =f f x 的所有零点为-32,14,-12,4.故所有零点的和为-32 +14+-12 +4=94.6.已知函数f (x )=−x ,x ≤0,−x 2+2x ,x >0, 若方程f (x ) 2+bf (x )+18=0有六个不等实根,则实数b 的取值范围是.解析:f(x)的图象如图所示,令f(x)=t,则要使方程f(x)2+bf(x)+18=0有6个不等实根,即使t2+bt+18=0在t∈(0,1)上有两个相异实根,则Δ=b2−12>0,0<−b2<1,1+b+18>0,解得。
函数嵌套问题(解析版)--新高考数学函数压轴小题专题突破

函数嵌套--新高考数学函数压轴小题专题突破1.已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e-=∈有n 个不同的实数解,则n 的所有可能的值为()A .3B .1或3C .4或6D .3或4或6【解析】解:22()(21))(1)(2)x x x f x e x x x e e x x '=-++--=+-,∴当2x <-或1x >时,()0f x '>,当21x -<<时,()0f x '<,()f x ∴在(,2)-∞-上单调递增,在(2,1)-上单调递减,在(1,)+∞上单调递增,()f x 的极大值为25(2)f e -=,()f x 的极小值为f (1)e =-.作出()f x 的函数图象如图所示: 25()()()f x mf x m R e -=∈,25()()0f x mf x e∴--=,△2200m e=+>,令()f x t =则,则125t t e=-.不妨设120t t <<,(1)若1t e <-,则2250t e <<,此时1()f x t =无解,2()f x t =有三解;(2)若1t e =-,则225t e =,此时1()f x t =有一解,2()f x t =有两解;(3)若10e t -<<,则225t e >,此时1()f x t =有两解,2()f x t =有一解;综上,25()()f x mf x e-=有三个不同的实数解.故选:A .2.已知函数())f x x R =∈,若关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根,则实数m 的取值范围为()A.(1,1)+B.(0C .1(1,1)e +D.,1)【解析】解:化简可得0()0xx f x x e =<⎪⎩,当0x >时,()0f x,2()()x x x e e f x e ''=== 当102x <<时,()0f x '>,当12x >时,()0f x '<,故当12x =时,函数()f x有极大值1212()22f e e==;当0x <时,()0f x '==<,()f x 为减函数,作出函数()f x 对应的图象如图:∴函数()f x 在(0,)+∞上有一个最大值为12(22f e=;设()t f x =,当2t e >时,方程()t f x =有1个解,当t =()t f x =有2个解,当202t e <<时,方程()t f x =有3个解,当0t =时,方程()t f x =有1个解,当0t <时,方程()m f x =有0个解,则方程2()()10f x mf x m -+-=等价为210t mt m -+-=,等价为方程21(1)[(1)]0t mt m t t m -+-=---=有两个不同的根1t =,或1t m =-,当1t =时,方程()t f x =有1个解,要使关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根,则1(0,2t m e =-∈,即01m <-<11m <<+,则m 的取值范围是21)2e +故选:A.3.已知函数|1|2,0()21,0x e x f x x x x -⎧>=⎨--+⎩,若方程2()()20f x bf x ++=有8个相异实根,则实数b 的取值范围()A .(4,2)--B.(4,--C .(3,2)--D.(3,--【解析】解:令()f x t =,则方程2()()20f x bf x ++=⇔方程220t bt ++=.如图是函数|1|2,0()21,0x e x f x x x x -⎧>=⎨--+⎩,的图象,根据图象可得:方程2()()20f x bf x ++=有8个相异实根⇔方程220t bt ++=.有两个不等实数解1t ,2t 且1t ,2(1,2)t ∈.可得22280112032220122b b b b b ⎧=->⎪++>⎪⎪⇒-<<-⎨++>⎪⎪<-<⎪⎩ .故选:D .4.已知函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩,关于x 的方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根,则a 的取值范围是()A .(,0)-∞B .[1,)+∞C .(,0)[2-∞ ,)+∞D .(-∞,0)(1⋃,)+∞【解析】解:函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩的图象如图:方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根,必须()f x 由两个解,一个()1f x >,一个()(0f x ∈,1),或者()(0f x ∈,1),另一个()0f x ,2()2()10()f x af x a a R -+-=∈,可得()f x a =±,当1a >时,1a >,(0,1)a -.满足题意.当1a =时,2a =,0a =,不满足题意.考察选项可知,D 正确;故选:D .5.已知函数33,0()1,0x x x x f x x lnx x ex ⎧-⎪=⎨++>⎪⎩,若关于x 的方程2()()10f x mf x --=恰好有6个不相等的实根,则实数m 的取值范围是()A .(2-,11e+)B .(2-,0)(⋃0,11e +)C .2321(,)2e e e +-+D .(32-,0)(⋃0,221)e e e++【解析】解:当0x 时,3()3f x x x =-,则2()333(1)(1)f x x x x '=-=-+,令()0f x '=得:1x =-,∴当(,1)x ∈-∞-时,()0f x '<,()f x 单调递减;当(1,0)x ∈-时,()0f x '>,()f x 单调递增,且(1)2f -=-,(0)0f =,当0x >时,1()x x lnx f x e x +=+,则21()x x lnx f x e x--'=+,显然f '(1)0=,∴当(0,1)x ∈时,()0f x '>,()f x 单调递增;当(1,)x ∈+∞时,()0f x '<,()f x 单调递减,且f (1)11e =+,故函数()f x 的大致图象如图所示:,令()t f x =,则关于x 的方程2()()10f x mf x --=化为关于t 的方程210t mt --=,△240m =+>,∴方程210t mt --=有两个不相等的实根,设为1t ,2t ,由韦达定理得:12t t m +=,1210t t =-<,不妨设10t >,20t <,关于x 的方程2()()10f x mf x --=恰好有6个不相等的实根,∴由函数()f x 的图象可知:1101t e<<+,220t -<<,设2()1g t t mt =--,则(2)0(0)01(1)0g g g e ⎧⎪->⎪<⎨⎪⎪+>⎩,解得:23212e m e e+-<<+,故选:C.6.已知函数|1|221,0()21,0x x f x x x x -⎧-=⎨++<⎩,若关于x 的方程22()(1)()20f x m f x m -++=有五个不同实根,则m 的值是()A .0或12B .12C .0D .不存在【解析】解:画出函数()f x 的图象,如图所示:,当()1f x =时,有三个根,把()1f x =代入方程22()(1)()20f x m f x m -++=得,21(1)20m m -++=,解得:0m =或12,当0m =时,方程22()(1)()20f x m f x m -++=为2()()0f x f x -=,所以()0f x =或1,所以有五个根,当12m =时,方程22()(1)()20f x m f x m -++=为231()()022f x f x -+=,所以()1f x =或12,所以有7个根,舍去,综上所求,0m =时,方程22()(1)()20f x m f x m -++=有五个不同实根,故选:C .7.已知函数2(2),0()|2|,0x x f x x x ⎧+=⎨->⎩,方程2()()0f x af x -=(其中(0,2))a ∈的实根个数为p ,所有这些实根的和为q ,则p 、q 的值分别为()A .6,4B .4,6C .4,0D .6,0【解析】解:2()()0f x af x -= ,()0f x ∴=或()f x a =.作出()f x 的函数图象如图所示:由图象可知()0f x =有两解,()f x a =有四解.6p ∴=.由图象可知()0f x =的两解为2x =-,2x =,()f x a =的四个解中,较小的两个关于直线2x =-对称,较大的两个关于直线2x =对称,0q ∴=.故选:D .8.已知函数()(1)(1)g x a x ln x =++的图象在点2(1e -,2(1))g e -处的切线与直线610x y ++=垂直( 2.71828e =⋯是自然对数的底数),函数()f x 满足3()(1)0xf x g x x +--=,若关于x 的方程2()()0(f x bf x c b -+=,c R ∈,且0)c <在区间1[,]e e上恰有3个不同的实数解,则实数b 的取值范围是()A .21(1,2]e +B .221[2,2]e e +-C .2221[2,]e e e -+D .221(2,]e e +【解析】解:函数()(1)(1)g x a x ln x =++的导数为()(1)g x aln x a '=++,可得()g x 图象在点2(1e -,2(1))g e -处的切线斜率为3a ,由切线与直线610x y ++=垂直,可得36a =,解得2a =,()2(1)(1)g x x ln x =++,3()(1)0xf x g x x +--=,可得2()2f x x lnx =-,导数为222(1)(1)()2x x f x x x x -+'=-=,当1x >时,()0f x '>,()f x 递增;当01x <<时,()0f x '<,()f x 递减.即有1x =处()f x 取得最小值1.则()f x 在1[e,]e 的图象如右:若关于x 的方程2()()0(f x bf x c b -+=,c R ∈,且0)c <在区间1[,]e e上恰有3个不同的实数解,可令()t f x =,则20t bt c -+=,(1)可得t 的范围是[1,22]e -,方程(1)判别式为240b c ->,必有两不同的实数解,设为1t ,2t ,12t t b +=,可得11t =,22112t e <+,即21112b e <-+,解得2123b e <+,①又212122t e e+<-,22112t e <+,则21222113t t b e e e+<+=+,②由①②求并可得2212b e e <+,故选:D .9.已知函数()1x f x x =+,(1,)x ∈-+∞,若关于x 的方程2()|()|230f x m f x m +++=有三个不同的实数解,则m 的取值范围是()A .3(2-,0)B .3(2-,43-C .3(2-,4]3-D .4(3-,0)【解析】解:1()11f x x -=++,|()|y f x =,(1,)x ∈-+∞的图象如下:设|()|f x t =,则2|()||()|230f x m f x m +++=有三个不同的实数解,即为2230t mt m +++=有两个根,①0t =时,代入2230t mt m +++=得32m =-,即2302t t -=,另一根为32只有一个交点,舍去②一个在(0,1)上,一个在[1,)+∞上时,设2()23h t t mt m =+++(0)230(1)1230h m h m m =+>⎧⎨=+++⎩,解得3423m -<-.故选:C .10.已知函数2()x x f x e=,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值范围是()A .(0,2)B .1(1,2)e -C .24{1,1}e -D .24(1,1)e -【解析】解:函数2()x x f x e =的导数为22()xx x f x e -'=,当02x <<时,()0f x '>,()f x 递增;当2x >或0x <时,()0f x '<,()f x 递减,可得()f x 在0x =处取得极小值0,在2x =处取得极大值241e <,作出()y f x =的图象,设()t f x =,关于x 的方程2()()10f x mf x m ++-=,即为210t mt m ++-=,解得1t =-或1t m =-,当1t =-时,()1f x =-无实根;由题意可得当241(0,t m e =-∈,解得241m e -=或1m =,所以24(1m e ∈-,1)故选:D .11.已知函数()1x x f x e=-,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值集合是()A .(-∞,2)(2⋃,)+∞B .1(2,)e-+∞C .1(2,2)e -D .12e ⎧⎫-⎨⎬⎩⎭【解析】解:由题意1()x x f x e -'=.令1()0x x f x e -'==,解得1x =;且1x >时,()0f x '<,1x <时,()0f x '>,所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,在1x =处取极大值11e=-.()f x 大致图象如下:令()t f x =,则2[()]()10f x mf x m ++-=可化为210t mt m ++-=.假设2m =,则2210t t ++=.解得1t =-,即()1f x =-.根据()f x 图象,很明显此时只有一个解,故2m =不符合题意,由此排除B 选项;假设3m =,则2320t t ++=,解得12t =-,21t =-.即()2f x =-,或()1f x =-.根据()f x 图象,很明显此时方程只有两个解,故3m =不符合题意,由此排除A 选项.假设12m e =-时,则211(2)10t t e e +-+-=,解得111t e=-,21t =-.即()1f x =-或1()1f x e=-,根据()f x 的图象,很明显此时方程只有两个根,故12m e=-不符合题意,由此排除D 故选:C .12.已知函数||||()1x x f x e =+,2(),0()2,0f x x g x x x a x ⎧=⎨-+>⎩,且g (1)0=,则关于x 的方程(())10g g x t --=实根个数的判断正确的是()A .当2t <-时,方程(())10g g x t --=没有相异实根B .当110t e-+<<或2t =-时,方程(())10g g x t --=有1个相异实根C .当111t e <<+时,方程(())10g g x t --=有2个相异实根D .当111t e -<<-+或01t <或11t e=+时,方程(())10g g x t --=有4个相异实根【解析】解:当0x 时,||||()111x x x x x f x xe e e --=+=+=-+,因为g (1)0=,所以120a -+=,所以1a =,所以21,0()21,0x xe x g x x x x ⎧-+=⎨-+>⎩,图象如图所示:当0x 时,0x -,0x e >,则11x xe -+,当且仅当0x =时等号成立,()g x 在(,1)-∞-上是增加的,在(1,0)-上是减少的;当0x >时,()f x 在(0,1)上是减少的,在(1,)+∞上是增加的,故()(1)0g x g -=恒成立.故()g x 在(,1)-∞-上是增加的,在(1,1)-上是减少的,在(1,)+∞上是增加的.令()m g x t =-,则()10g m -=,解得:0m =或2m =,当0m =即()0g x t -=时,()g x t =,当2t <-时,()2g x <-,无解,当2m =即()2g x t -=时,()2g x t =+,当2t <-时,()0g x <,无解,故方程(())10g g x t --=没有相异实根,故A 正确;当2t =-时,由A 可知:()0g x =,解得1x =,当110t e -+<<时,12(1,2)t e+∈+,由上可知()f x 在1x =-时取得极大值为1(1)1g e -=+,结合图象可知,此时2y t =+与()g x 有且仅有一个交点,故B 正确;当111t e<<+时,()g x t =或()2g x t =+,若()g x t =,结合图象可知()g x 与y t =有三个不同的交点,若()2g x t =+,12(3,3)t e+∈+,此时()g x 与y t =有一个交点,故方程(())10g g x t --=有4个相异实根,故C 错误;当111t e -<<-+时,1()2(1,1)g x t e=+∈+,由C 可知此时有三个不等实根,当01t <时,()g x t =或()2g x t =+,当()g x t =时,由图可知有两个不等实根,当()2g x t =+时,由图可知有一个实根,当11t e=+时,()g x t =或()2g x t =+,当()g x t =时,由图可知有两个不等实根,当()2g x t =+时,由图可知有一个实根,故此时方程(())10g g x t --=共有9个不等实根,故D 错误.故选:AB .13.已知函数,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,则函数()(()1)g x f f x =+的零点是1,若()(()1)h x f f x m =++有两个零点1x ,2x ,则12x x +的最小值是.【解析】解:()(()1)g x f f x =+,,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,当1x 时,0lnx ,()11f x +,则(()1)(1)f f x ln lnx +=+,当1x <时,1112x -+>,则(()1)(2)2x f f x ln +=-.(1),1()(()1)(212ln lnx x g x f f x x ln x +⎧⎪∴=+=⎨-<⎪⎩,令()0g x =,则1(1)0x ln lnx ⎧⎨+=⎩或1(2)02x x ln <⎧⎪⎨-=⎪⎩,解得1x =.故函数()(()1)g x f f x =+的零点是1;由上可知,(()1)(()1)f f x ln f x +=+,()(()1)h x f f x m =++有两个零点1x ,2x ,即(()1)ln f x m +=-有两根,也就是()1m f x e -+=,()1m f x e -=-有两根1x ,2x ,不妨设12x x <,当1x 时,21m lnx e -=-,当1x <时,1112m x e --=-,令112m t e -=->,则2lnx t =,2t x e =,112x t -=,122x t =-,∴1222t x x e t +=+-,12t >,设()22t t e t ϕ=+-,12t >,则()2t t e ϕ'=-,可得当1(2t ∈,)lnt 时,()0t ϕ'<,当(,)t lnt ∈+∞时,()0t ϕ'>,则()t ϕ的最小值为(2)422ln ln ϕ=-.12x x ∴+的最小值是422ln -.故答案为:1;422ln -.14.已知函数,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,若()(()1)F x f f x m =++有两个零点1x ,2x ,则12x x 的取值范围(-∞.【解析】解:当1x 时,()0f x lnx =,则()11f x +,(()1)(()1)f f x ln f x ∴+=+,当1x <时,1()122x f x =->,则3()12f x +>,(()1)(()1)f f x ln f x ∴+=+,综上可知,()(()1)(()1)F x f f x m ln f x m =++=++,令()0F x =,得()1m f x e -+=,依题意,()1m f x e -=-有两个根1x ,2x ,不妨设12x x <,当1x 时,21m lnx e -=-,当1x <时,1112m x e --=-,令112m t e -=->,则1221,,1,222t x lnx t x e t x t ==-==-,∴121(22),2t x x e t t =->,设1()(22),2t g t e t t =->,则()20t g t te '=-<,()g t ∴在1(,)2+∞上单调递减,∴1()()2g t g <=12x x ∴的取值范围为(-∞.故答案为:(-∞.15.已知函数,2()48,25x ex x e f x x x x⎧⎪⎪=⎨-⎪>⎪⎩(其中e 为自然对数的底数),若关于x 的方程22()3|()|20f x a f x a -+=恰有5个相异的实根,则实数a 的取值范围为12{}[2e ,4)5.【解析】解:当2x 时,令()0xe exf x e -'==,解得1x =,所以当1x 时,()0f x '>,则()f x 单调递增,当12x 时,()0f x '<,则()f x 单调递减,当2x >时,4848()555x f x x x -==-单调递增,且()[0f x ∈,45作出函数()f x的图象如图:(1)当0a =时,方程整理得2()0f x =,只有2个根,不满足条件;(2)若0a >,则当()0f x <时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a ++=++=,则()20f x a =-<,()0f x a =-<,此时各有1解,故当()0f x >时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a -+=--=,()2f x a =有1解同时()f x a =有2解,即需21a =,12a =,因为f (2)22212e e e ==>,故此时满足题意;或()2f x a =有2解同时()f x a =有1解,则需0a =,由(1)可知不成立;或()2f x a =有3解同时()f x a =有0解,根据图象不存在此种情况,或()2f x a =有0解同时()f x a =有3解,则21245a a e>⎧⎪⎨<⎪⎩,解得245a e <,故2[a e ∈,4)5(3)若0a <,显然当()0f x >时,()2f x a =和()f x a =均无解,当()0f x <时,()2f x a =-和()f x a =-无解,不符合题意.综上:a 的范围是12{}[2e ,4)5故答案为12{}[2e ,4)516.已知函数231,0()26,0a x x f x x lnx x x ⎧++<⎪=⎨⎪->⎩,若关于x 的方程()()0f x f x +-=恰有四个不同的解,则实数a 的取值范围是(2,0)-.【解析】解:已知定义在(-∞,0)(0⋃,)+∞上的函数231,0()26,0a x x f x x lnx x x ⎧++<⎪=⎨⎪->⎩,若()()0f x f x +-=在定义域上有四个不同的解等价于231a y x x =++关于原点对称的函数231a y x x=-+-与函数()26(0)f x lnx x x =->的图象有两个交点,联立可得226310a lnx x x x -+-+=有两个解,即23263a xlnx x x x =-++,0x >,可设23()263g x xlnx x x x =-++,0x >,2()32129g x lnx x x '=+-+,2()1812120g x x x ''=+--=,可得()g x '在(0,)+∞递增,由g '(1)0=,可得01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增,即()g x 在1x =处取得极小值且为2-,作出()y g x =的图象,可得20a -<<时,226310a lnx x x x-+-+=有两个解,故答案为:(2,0)-.17.已知函数21,0()21,0x x f x x x x +⎧=⎨-+>⎩,若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则a 的取值范围是(0,1).【解析】解:作()f x 的图象如下,,2()()()(())0f x af x f x f x a -=-=,()0f x ∴=或()f x a =;()0f x = 有两个不同的解,故()f x a =有三个不同的解,故(0,1)a ∈;故答案为:(0,1).18.已知函数()|1|33f x x x x =--+.(1)求函数()f x 的零点;(2)若关于x 的方程2()()0(f x mf x n m -+=、)n R ∈恰有5个不同的实数解,求实数m 的取值范围.【解析】解:(1)由题得2223,(1)()|1|3343,(1)x x x f x x x x x x x ⎧--+<=--+=⎨-+⎩,①当1x <时,令()0f x =,得3x =-或1x =(舍);②当1x 时,令()0f x =,得1x =或3x =,∴函数()f x 的零点是3-,1,3;(2)作出函数2223,(1)()|1|3343,(1)x x x f x x x x x x x ⎧--+<=--+=⎨-+⎩的大致图象,如图:令()t f x =,若关于x 的方程2()()0f x mf x n -+=恰有5个不同的实数解,解法一:则函数2()g t t mt n =-+的零点分布情况如下:①当11t =-,2(1,4)t ∈-时,则(1)0(4)0142g g b a ⎧⎪-=⎪>⎨⎪⎪-<-<⎩,得101640142m n m n m ⎧⎪++=⎪-+>⎨⎪⎪-<<⎩,故(2,3)m ∈-;②当14t =,2(1,4)t ∈-时,则(4)0(1)0142g g b a ⎧⎪=⎪->⎨⎪⎪-<-<⎩,得164010142m n m n m ⎧⎪-+=⎪++>⎨⎪⎪-<<⎩,故(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈-,3)(3⋃,8);解法二:则方程20t mt n -+=的根的情况如下:①当11t =-,2(1,4)t ∈-时,由11t =-得10m n ++=,则方程2(1)0t mt m --+=,即(1)(1)0t t m +--=,故21(1,4)t m =+∈-,所以(2,3)m ∈-;②当14t =,2(1,4)t ∈-时,由14t =得1640m n -+=,则方程24(4)0t mt m -+-=,即(4)(4)0t t m --+=,故24(1,4)t m =-∈-,所以(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈-,3)(3⋃,8).19.已知函数2()sin()2cos 1,468f x x x x R πππ=--+∈.(1)求函数()f x 的最小正周期及单调递增区间;(2)若关于x 的方程()()244103f x mf x x ⎛⎫-+=∈ ⎪⎝⎭在内有实数解,求实数m 的取值范围.【解析】解:(1)23()sin(2cos 1sin cos cos sin cos cos4684646442443f x x x x x x x x ππππππππππππ=--+=--=-=-⋯ (3分)∴函数()f x 的最小正周期为8.⋯(4分)令222432k x k ππππππ--+,k Z ∈,求得2108833k x k -+,k z ∈,故函数的单调递增区间为210[8,8]33k k -+,k Z ∈⋯(6分)(2)设()t f x =,4(3x ∈ ,4),∴2(0,)433x πππ-∈,()(0f x ∴∈,∴方程2410t mt -+=在(0t ∈内有实数解,即当(0t ∈时方程有实数解.⋯(10分)11442t t t += 当且仅当时取等号,4m ∴,⋯(8分)故实数m 的取值范围是[4,)+∞.⋯(12分)20.已知函数()g x 对一切实数x ,y R ∈都有()()(22)g x y g y x x y +-=+-成立,且g (1)0=,()(1)(h x g x bx c b =+++,)c R ∈,()()g x f x x=.(Ⅰ)求(0)g 的值和()g x 的解析式;(Ⅱ)记函数()h x 在[1-,1上的最大值为M ,最小值为m .若4M m -,当0b >时,求b 的最大值;(Ⅲ)若关于x 的方程2(|21|)30|21|x x k f k -+-=-有三个不同的实数解,求实数k 的取值范围.【解析】解:(Ⅰ)令1x =,0y =得g (1)(0)1g -=-,g (1)0=,(0)1g ∴=,令0y =得()(0)(2)g x g x x -=-,即2()21g x x x =-+.(Ⅱ)2()(1)h x g x bx c x bx c =+++=++.①当12b -<-,即2b >时,M m h -=(1)(1)24h b --=>,与题设矛盾②当102b --<时,即02b <时,M m h -=(1)2()(1)422b b h --=+恒成立,综上可知当02b <时,b 的最大值为2.(3)当0x =时,210x -=则0x =不是方程的根,方程2(|21|)30|21|x x k f k -+-=-可化为:2|21|(23)|21|(12)0x x k k --+-++=,|21|0x -≠,令|21|x t -=,则方程化为2(23)(12)0t k t k -+++=,(0)t >,方程2(|21|)310|21|x x k f k -+--=-有三个不同的实数解,∴由|21|x t =-的图象知,2(23)(12)0t k t k -+++=,(0)t >,有两个根1t 、2t ,且1201t t <<<或101t <<,21t =.记2()(23)(12)h t t k t k =-+++,则(0)210(1)0h k h k =+>⎧⎨=-<⎩,此时0k >,或(0)210(1)032012h k h k k ⎧⎪=+>⎪=-=⎨⎪+⎪<<⎩,此时k 无解,综上实数k 的取值范围是(0,)+∞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学总复习考点知识专题讲解与提升练习第2讲函数的嵌套问题一.选择题(共15小题)1.(2021•合肥一模)已知函数,0()1,0x x e x f x xe x lnx x -⎧-=⎨--->⎩,则函数()(())()F x f f x ef x =-的零点个数为()(e 是自然对数的底数). A .6B .5C .4D .3【解答】解:不妨设1()(0)x f x e x -=-,2()1(0)x f x xe x lnx x =--->, 易知,1()0f x <在(-∞,0]上恒成立,且在(-∞,0]单调递增;211()1(1)()x x x f x e xe x e x x '=+--=+-,设1()(0)x g x e x x=->,由当0x +→时,()g x →-∞,g (1)10e =->,且函数()g x 在(0,)+∞上单增,故函数()g x 存在唯一零点0(0,1)x ∈,使得0()0g x =,即010x e x -=,则00001,0xx e lnx x =+=, 故当0(0,)x x ∈时,()0g x <,2()0f x '<,2()f x 单减;当0(x x ∈,)+∞时,()0g x >,2()0f x '>,2()f x 单增,故0220000()()10x min f x f x x e x lnx ==---=,故2()0f x ;令()t f x =,()()0F t f t et =-=,当0t 时,0t e et ---=,解得1t =-,此时易知()1f x t ==-有一个解;当0t >时,10t te t lnt et ----=,即1t te t lnt et ---=,作函数2()f t 与函数y et =如下图所示,由图可知,函数2()f t 与函数y et =有两个交点,设这两个交点为1t ,2t ,且10t >,20t >, 而由图观察易知,1()f x t =,2()f x t =均有两个交点,故此时共有四个解; 综上,函数()(())()F x f f x ef x =-的零点个数为5. 故选:B .【点评】本题考查函数与方程,考查分段函数零点个数的判定,考查利用导数研究函数的零点问题,考查转化思想,换元思想,数形结合思想,分类讨论思想以及数据分析能力,运算求解能力,逻辑推理能力等综合数学素养,属于较难题目.2.(2021•绵阳模拟)已知函数()||x e f x x =,关于x 的方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根,则a 的取值范围是()A .21(1,)21e e ---B .(1,)+∞C .21(21e e --,2)D .21(21e e --,)+∞【解答】解:当0x >时,()x e f x x =,函数的导数22(1)()x x x e x e e x f x x x --'==,当1x >时,()0f x '>,当01x <<时,()0f x '<,则当1x =时函数取得极小值f (1)e =,当0x <时,()x e f x x =-,函数的导数22(1)()x x x e x e e x f x x x --'=-=-,此时()0f x '>恒成立,此时函数为增函数, 作出函数()f x 的图象如图:设()t f x =,则t e >时,()t f x =有3个根, 当t e =时,()t f x =有2个根 当0t e <<时,()t f x =有1个根, 当0t 时,()t f x =有0个根,则2()2()10()f x af x a m R -+-=∈有四个相异的实数根, 等价为2210()t at a m R -+-=∈有2个相异的实数根, 其中0t e <<,t e >, 设2()21h t t at a =-+-,则(0)0()0202h h e a a ⎧⎪>⎪<⎨⎪-⎪-=>⎩,即2102100a e ae a a ->⎧⎪-+-<⎨⎪>⎩,即21121a e a e >⎧⎪⎨->⎪-⎩, 即2121e a e ->-,即实数a 的取值范围是21(21e e --,)+∞,故选:D .【点评】本题主要考查函数与方程的应用,利用换元法转化为一元二次函数,利用数形结合以及根与系数之间的关系是解决本题的关键.综合性较强,有一定的难度. 3.(2021•海淀区校级开学)已知函数()f x 是定义域为R 的奇函数.当0x >时,5sin(),0142()1()1,14x x x f x x π⎧⎪⎪=⎨⎪+>⎪⎩若关于x 的方程25[()](56)()60()f x a f x a a R -++=∈,有且仅有2个不同实数根,则实数a 的取值范围是()A .(-∞,55)(44-⋃,)+∞B .(-∞,565){}(454-⋃,)+∞ C .5(,)[14-∞--,51](4⋃,)+∞D .5(4-,5)4【解答】解:作出函数的图象如图所示,令()f x t =,则由图象可得: 当11t -或54t =±时,方程()f x t =有1解;当514t -<<-或514t <<时,方程()f x t =有2解;当54t <-或54t >时,方程()f x t =无解; 因为25[()](56)()60fx a f x a -++=,所以6()5f x =或()f x a =,因为关于x 的方程25[()](56)()60()f x a f x a a R -++=∈有且仅有2个不同实数根, 又6()5f x =有2 解,所以()f x a =无解或方程()f x a =的解也是方程6()5f x =的解,故54a <-或65a =或54a >, 故选:B .【点评】本题主要考查了方程根的个数的判定与应用问题,其中解答中涉及到一元二次方程根的求解,函数的图象的应用等知识点的综合运用,试题有一定的综合性,属于中档试题,解答中正确作出函数的图象和合理应用()f x t =的根的个数的应用是解答的关键. 4.(2021•三门峡一模)已知函数(1),0(),0xln x x f x xe x +⎧=⎨-<⎩,方程2()()0()f x mf x m R +=∈有四个不相等的实数根,则实数m 的取值范围是() A .1(,)e-∞-B .1(e-,0)C .1(e-,)+∞D .1(0,)e【解答】解:当0x <时,()x f x xe =-, 则()(1)x f x x e '=-+, 由()0f x '=得1x =-,当1x <-时,()0f x '>, 当10x -<<时,()0f x '<,即当1x =-时,函数()f x 取得极大值,此时1(1)f e-=, 且当0x <时,()0f x >, 当0x 时,()(1)0f x ln x =+, 设()t f x =,则当1t e=时,方程()t f x =有两个根,当1t e >或0t =时,方程()t f x =有1个根,当10t e<<时,方程()t f x =有3个根, 当0t <时,方程()t f x =有0个根,则方程2()()0()f x mf x m R +=∈等价为20t mt +=, 即0t =或t m =-,当0t =时,方程()t f x =有1个根,∴若方程2()()0()f x mf x m R +=∈有四个不相等的实数根,则等价为()t f x =有3个根, 即10m e<-<,得10m e-<<, 故选:B .【点评】本题主要考查函数根的个数的判断,求函数的导数,研究函数的取值范围,利用换元法和图象法进行求解是解决本题的关键. 5.(2021秋•北碚区校级月考)已知函数(1),0(),0xln x x f x x e x +⎧=⎨-<⎩,函数1()(())2g x f f x =-零点的个数为()A .4B .3C .2D .1【解答】解:令()u f x =,令()0g x =,则1()02f u -=,当0u 时,则()(1)f u ln u =+,所以,1(1)2ln u +=,∴1u =. 当0u <时,()u f u ue =-,则()(1)u f u u e '=-+, 当1u <-时,()0f u '>;当10u -<<时,()0f u '<.此时,函数()y f u =在1u =-处取得极大值,且极大值为11(1)2f e-=<.所以,当0u <时,1()2f u <,则方程1()02f u -=在0u <时无解.再考虑方程()1f x =的根的个数, 作出函数()u f x =的图象如下图所示,1112e>>,所以,直线1u=与函数()u f x=的图象只有一个交点,因此,函数()g x只有一个零点,故选:D.【点评】本题考查函数的零点个数,考查复合函数的零点个数问题,解决本题的关键在于灵活处理内层函数与外层函数零点之间的关系,属于难题.6.(2021春•渝北区校级期末)已知函数(),0()21,0xxln x x xf x x xexe--<⎧⎪=⎨--⎪⎩,()()g x f x x a=+-.若()g x 存在三个零点,则实数a的取值范围是()A.23(1,)e--B.23(0,2)e-C.32(0,2)e-D.32[1,2)e--【解答】解:因为()()g x f x x a=+-存在三个零点,所以方程()f x x a=-+存在三个实根,因为当0x<时,()f x x a=-+,即()ln x a-=有且只有一个实根,所以当0x时,()f x x a=-+,即21xxae-=有且只有2个实根,令21xxye-=,0x,则22(21)32()x xx xe x e xye e---'==,由32x<,得0y'>,由32x>,得0y'<,所以21xxye-=在3[0,)2上递增,在3(,)2+∞上递减,所以当32x=时,21xxye-=取得最大值323222ee-=,又0x=时,1y=-,x→+∞时,0y→,由函数21xxye-=,0x的图象可知,3202a e-<<.所以实数a 的取值范围是32(0,2)e -. 故选:C .【点评】本题考查了函数的零点方程根的关系,转化成函数图象的交点的关系是关键,考查数形结合的思想,是中档题.7.已知函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩,关于x 的方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根,则a 的取值范围是() A .(,0)-∞B .[1,)+∞C .(,0)[2-∞,)+∞D .(-∞,0)(1⋃,)+∞【解答】解:函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩的图象如图:方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根, 必须()f x 由两个解,一个()1f x >,一个()(0f x ∈,1), 或者()(0f x ∈,1),另一个()0f x ,2()2()10()f x af x a a R -+-=∈,可得()f x a =±,当1a >时,1a >,(0,1)a -.满足题意.当1a =时,2a ,0a =,不满足题意. 考察选项可知,D 正确;故选:D .【点评】本题考查分段函数的应用,函数与方程的应用,考察最值思想以及计算能力.本题如果直接求解,难度比较大,关于a 的不等式组不易求解.采用回代验证,方便快速得到结果.8.(2021•大东区一模)已知函数()||xe f x x =,关于x 的方程2()2()10()f x af x a a R -+-=∈有3个相异的实数根,则a 的取值范围是()A .21(21e e --,)+∞B .21(,)21e e --∞-C .21(0,)21e e --D .21{}21e e --【解答】解:当0x >时,()x e f x x =,函数的导数22(1)()x x x e x e e x f x x x --'==, 当1x >时,()0f x '>,当01x <<时,()0f x '<,则当1x =时函数取得极小值f (1)e =,当0x <时,()x e f x x =-,函数的导数22(1)()x x x e x e e x f x x x --'=-=-,此时()0f x '>恒成立,此时函数为增函数, 作出函数()f x 的图象如图:设()t f x =,则t e >时,()t f x =有3个根, 当t e =时,()t f x =有2个根当0t e <<时,()t f x =有1个根, 当0t 时,()t f x =有0个根,则2()2()10()f x af x a m R -+-=∈有三个相异的实数根, 等价为2210()t at a m R -+-=∈有2个相异的实数根, 其中0t e <<,t e =, 当t e =时,2210e ae a -+-=,即2121e a e -=-,此时满足条件. 故选:D .【点评】本题主要考查函数与方程的应用,利用换元法转化为一元二次函数,利用数形结合以及根与系数之间的关系是解决本题的关键.综合性较强,有一定的难度.9.(2021秋•天津期末)已知函数2()(||xe f x e x =为自然对数的底数),关于x 的方程2[()]2()20()f x af x a a R -+-=∈恰有四个不同的实数根,则a 的取值范围为()A .(1,)+∞B .(2,)+∞C .2(,)21e e +∞-D .242(,)41e e -+∞-【解答】解:2()||xe f x x =, 0x >时,2()x e f x x =,22(21)()x e x f x x -'=, 令()0f x '>,解得:12x >,令()0f x '<,解得:102x <<,故()f x 在1(0,)2递减,在1(2,)+∞递增,故1()()22min f x f e ==,0x <时,2()x e f x x =-,22(21)()0x e x f x x -'=->, 函数()f x 的图象,如图示:,设()t f x =,方程2[()]2()20f x af x a -+-=等价于2220t at a -+-=,而△2244(2)4480a a a a =--=-+>, 若关于x 的方程恰有四个不同的实数根, 则102t e <<,22t e >, 设2()22g t t at a =-+-,则(0)0(2)0g g e >⎧⎨<⎩,即2204420a e ae a ->⎧⎨-+-<⎩解得:24241e a e ->-,故选:D .【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及数形结合思想,转化思想,换元思想,考查二次函数的性质,是一道中档题. 10.(2021秋•谯城区校级期末)已知函数2||,0()41,0lnx x f x x x x >⎧=⎨--+⎩,若关于x 的方程22()2()10f x af x a -+-=有8个不相等的实数根,则实数a 的取值范围为()A .(2,4)B .(2,4]C .[2,4]D .[2,4) 【解答】解:设()f x t =,则22()2()10f x af x a -+-=, 化为22210t at a -+-=,作出()f x 的图象,由图知,若关于x 的方程22()2()10f x af x a -+-=有8个不相等的实数根, 则关于t 的方程22210t at a -+-=有两个不等实根1215t t <<. 设22()21(1)(1)g t t at a t a t a =-+-=---+,,则由图知,1115a a -⎧⎨+<⎩,解得:24a <,故选:D .【点评】本题主要考查了函数的零点与方程根的关系,同时考查了转化的思想和数形结合的思想,属于中档题.11.(2021•郑州校级模拟)已知函数()y f x =是定义域为R 的偶函数.当0x 时,5sin()(01)42()1()1(1)4x x x f x x π⎧⎪⎪=⎨⎪+>⎪⎩,若关于x 的方程25[()](56)()60()f x a f x a a R -++=∈,有且仅有6个不同实数根,则实数a 的取值范围是()A .01a <<或54a =B .01a 或54a =C .01a <或54a =D .514a <或0a = 【解答】解:函数()y f x =是定义域为R 的偶函数,当0x 时,5sin()(01)42()1()1(1)4x x x f x x π⎧⎪⎪=⎨⎪+>⎪⎩,当0x <时,5sin(),10()4241,1x x x f x x π⎧--⎪=⎨⎪+<-⎩. 作出函数()f x 的图象如右.由于关于x 的方程25[()](56)()60f x a f x a -++=, 解得()f x a =或6()5f x =,当01x 时,()[0f x ∈,5]4,1x >时,()(1f x ∈,5)4.由65154<<,则6()5f x =有4个实根, 由题意,只要()f x a =有2个实根,则由图象可得当01a <时,()f x a =有2个实根,当54a =时,()f x a =有2个实根.综上可得:01a <或54a =. 故选:C .【点评】本题考查函数的奇偶性和单调性的运用,考查方程和函数的转化思想,运用数形结合的思想方法是解决的常用方法.12.(2021•和平区四模)已知函数32()32f x x x =-+,函数22(3)1,0()1()1,02x x g x x x ⎧-++<⎪=⎨-+⎪⎩,则关于x 的方程[()]0(0)g f x a a -=>的实根最多有()A .4个B .5个C .6个D .7个【解答】解:作出函数()f x 和()g x 的图象如图: 由[()]0(0)g f x a a -=>得[()]g f x a =,(0)a > 设()t f x =,则()g t a =,(0)a > 由()y g t =的图象知,①当01a <<时,方程()g t a =有两个根143t -<<-,或242t -<<-, 由()t f x =的图象知,当143t -<<-时,()t f x =有0个根, 当242t -<<-时,()t f x =有0个根, 此时方程[()]0(0)g f x a a -=>有0个根,②当1a =时,方程()g t a =有两个根13t =-,或212t = 由()t f x =的图象知,当13t =-时,()t f x =有0个根, 当212t =时,()t f x =有3个根, 此时方程[()]0(0)g f x a a -=>有3个根,③当514a <<时,方程()g t a =有两个根1102t <<,或2112t <<, 由()t f x =的图象知,当1102t <<时,()t f x =有3个根, 当2112t <<时,()t f x =有3个根,此时方程[()]0(0)g f x a a -=>有336+=个根, ④当54a =时,方程()g t a =有两个根10t =,或21t =, 由()t f x =的图象知,当10t =时,()t f x =有3个根, 当21t =时,()t f x =有3个根,此时方程[()]0(0)g f x a a -=>有336+=个根 ⑤当54a >时,方程()g t a =有1个根11t >,由()t f x =的图象知,当1112t >时,()t f x =有3或2个或1个根, 此时方程[()]0(0)g f x a a -=>有3或2个或1个根, 综上方程[()]0(0)g f x a a -=>的实根最多有6个根, 故选:C .【点评】本题主要考查根的个数的判断,利用换元法转化为两个函数的交点个数问题,利用分类讨论和数形结合是解决本题的关键.综合性较强,难度较大.13.(2021•余姚市模拟)已知函数32()32f x x x =-+,210()420x x g x x x x x ⎧+>⎪=⎨⎪---⎩,则方程[()]0(g f x a a -=为正实数)的根的个数不可能为()A .6个B .5个C .4个D .3个 【解答】解:函数32()32f x x x =-+,画出函数()f x 的图象,如图示:我们易求出()f x 与y a =的交点情况为: 当2a >时,有一个交点; 当2a =时,有两个交点; 当02a <<时,有三个交点;21,0()42,0x x g x xx x x ⎧+>⎪=⎨⎪---⎩, 画出函数()g x 的图象,如图示:我们易求出()g x 与y a =的交点情况为: 当2a >时,有2个交点; 当2a =时,有2个交点;当02a <<时,有2个交点;∴方程[()]0(g f x a a -=为正实数)的根的个数可能为:4个,5个,6个, 不可能为3个, 故选:D .【点评】本题考查的知识点是根的存在性及根的个数判断,其中分析内外函数的图象是解答本题的关键.14.(2021春•安徽期末)已知函数32()31f x x x =-+,21,0()468,0x x g x x x x x ⎧+>⎪=⎨⎪---⎩,则当方程[()]0g f x a -=有6个解时a 的取值范围是()A .514a <<B .54a >或81a -<C .54a >D .01a【解答】解:函数32()31f x x x =-+,21,0()()468,0x x g x g x x x x x ⎧+>⎪==⎨⎪---⎩,2()36f x x x ∴'=-,令()0f x '=得:0x =,或2x =,故当0x =时,函数()f x 取极大值1,当2x =时,函数取极小值3-; 则()f x 与y m =的交点情况为: 当3m <-,或1m >时,有一个交点; 当3m =-,或1m =时,有两个交点; 当31m -<<时,有三个交点;()g x 与y a =的交点情况为:当01a <<时有两个交点,一个在区间(4,3)--上,一个在区间(3,2)--上; 当1a =时有两个交点,一个为3-,一个为12;当1a >时有两个交点,一个在区间1(0,)2上,一个在区间1(2-,1)上.若方程[()]0g f x a -=有6个解,()0g m a -=有两个根,均在(3,1)-上, 故5(1,)4a ∈, 故选:A .【点评】本题考查的知识点是根的存在性及根的个数判断,其中分析内外函数的图象是解答本题的关键.15.(2021春•舒城县校级期中)已知函数()||(0)x f x x e x =≠,其中e 为自然对数的底数,关于x 的方程2()0()f x f x λ+-=有四个相异实根,则实数λ的取值范围是()A .1(0,)e B .)+∞C .2(,)e e ++∞D .1(2,)e e++∞【解答】解:,0()||,0x xxx e x f x x e x e x ⎧>==⎨-<⎩. 当0x >时,由()x f x x e =,得()(1)0x x x f x e x e e x '=+=+>,()f x ∴在(0,)+∞上为增函数;当0x <时,由()x f x x e =-,得()(1)x x x f x e x e e x '=--=-+. 当(,1)x ∈-∞-时,()0f x '>,当(1,0)x ∈-时,()0f x '<,∴当1x =-时,函数()f x 取得极大值为1(1)f e-=. 作出函数()||(0)x f x x e x =≠的图象的大致形状:令()f x t =,则方程2()0()f x f x λ+-=化为20t tλ+-=, 即220t t λ-+=, 要使关于x 的方程2()0()f x f x λ+-=有四个相异实根, 则方程220t t λ-+=的两根一个在1(0,)e,一个在1(,)e+∞之间.则2120e e λ-+<,解得12e eλ>+. ∴实数λ的取值范围是1(2e e+,)+∞. 故选:D .【点评】本题考查根的存在性及根的个数判断,考查利用导数求极值,考查数学转化思想方法及数形结合的解题思想方法,是中档题. 二.多选题(共1小题)16.(2021秋•广州月考)已知函数21,()()(2),x e x mf x m R x x m ⎧-=∈⎨-+<⎩,则() A .对任意的m R ∈,函数()f x 都有零点B .当3m -时,对12x x ∀≠,都有1212()(()())0x x f x f x --<成立C .当0m =时,方程[()]0f f x =有4个不同的实数根D .当0m =时,方程()()0f x f x +-=有2个不同的实数根【解答】解:对于A :作出函数1x y e =-和244y x x =---的图象如图所示:当0m >时,函数()f x 只有1个零点, 当20m -<时,函数()f x 有2个零点,当2m -时,函数()f x 只有1个零点,故A 正确; 对于B :当3m -时,函数()f x 单调递增,若当3m -时,对12x x ∀≠,都有1212()(()())0x x f x f x --<成立,则()f x 单调递减,故B 错误; 对于:0C m =时,()0f t =得12t =-,20t =, 当1()2f x t ==-时,方程有两个解, 当2()0f x t ==时,方程有两个解,所以方程[()]0f f x =有4个不同的实数根,故C 正确;对于D :当0m =时,方程()()0f x f x +-=的根为()()f x f x =--的根, 令()()h x f x =--, 作出()f x ,()h x 的图象:可得函数()f x 与()h x 有三个交点,其中包括0x =, 即方程()()f x f x +-有三个根, 故选:AC .【点评】本题考查函数与方程之间的关系,解题中注意转化思想的应用,属于中档题. 三.填空题(共7小题)17.(2021春•安徽期末)已知函数()x e f x x=,关于x 的方程2()2()30()f x af x a a R -+-=∈有3个相异的实数根,则a的取值范围是23(,3)21ee--.【解答】解:由题得2(1)()(0)xe xf x xx-'=≠,当1x>时,()0f x'>,函数单调递增;当01x<<时,()0f x'<,函数单调递减;当0x<时,()0f x'<,函数单调递减;作出函数()xef xx=的图象如右图,令()t f x=,则2()23g t t at a=-+-,设函数()g t的两零点分别为1t,2t①1t<,2t e>,则2(0)30()230g ag e e ae a=-<⎧⎨=-+-<⎩,解得23(,3)21eae-∈-②1t e=,2t e>,则22()23044(4)0g e e ae aa ea a⎧=-+-=⎪>⎨⎪=-->⎩,此时无解,综上:23(,3)21eae-∈-,故答案为:23(,3)21ee--【点评】本题考查函数零点与方程根的关系,数形结合思想,分类讨论思想,属于中档题.18.(2021春•衡阳期末)已知函数()y f x =是定义域为R 的偶函数.当0x 时,5sin()(01)42()1()1(1)4x x x f x x π⎧⎪⎪=⎨⎪+>⎪⎩,则f (1)=54,若关于x 的方程2[()]()0(f x af x b a ++=,))b R ∈,有且仅有6个不同实数根,则实数a 的取值范围是. 【解答】解:f (1)55sin()424π==,作函数()y f x =的图象如右图,设方程20x ax b ++=的两个根为1x ,2x ; ①若154x =,2514x <<, 故129(4x x a +=-∈,5)2, 故5(2a ∈-,9)4-;②若101x <,2514x <<, 故129(1,)4x x a +=-∈, 故9(4a ∈-,1)-;故答案为:54,5(2-,99)(44--⋃,1)-.【点评】本题考查了函数的性质的判断与应用,同时考查了数形结合的思想的应用. 19.(2021秋•全国Ⅰ卷月考)已知函数()f x 是定义域在R 上的偶函数,当0x 时,3sin(),01,22()1()1,1,2x x x f x x π⎧⎪⎪=⎨⎪+>⎪⎩则函数3()(())4g x f f x =-的零点个数为2.【解答】解:()f x 是偶函数,∴作出函数()f x 的图象如图,当01x 时,022xππ,则,33sin()222x π, 当1x >时,13()1(1,)22x +∈,由3()(())04g x f f x =-=得3(())4f f x =,设()t f x =,则3()4f t =,由3()4f t =,得01t <<或10t -<<, 当10t -<<时,()t f x =无解,当01t <<时,()t f x =有两个交点,即()g x 有两个零点, 故答案为:2.【点评】本题主要考查函数与方程的关系,利用换元法转化为两个方程根的个数问题,以及利用数形结合是解决本题的关键,是中档题.20.(2021秋•常熟市月考)已知函数32()31f x x x =-+,2442,0()1|2|1,02x x x g x x x ⎧-+>⎪=⎨-++⎪⎩,若函数(())y g f x a =-有6个零点(互不相同),则实数a 的取值范围为1(,2)2. 【解答】解:作出函数()f x 与()g x 的图象如图:令()f x t =,则由图可知,当()f x t =有3个交点时,(3,1)t ∈-,当(3,1)t ∈-时,要使()0y g t a =-=,即函数图象在(3,1)t ∈-时,y a =与()y g t =要有2个交点,根据图象可知1(3)2g -=,故1(2a ∈,2),故答案为:1(2,2).【点评】本题主要考查函数零点个数求解参数取值范围,分段函数图象的画法,数形结合是关键,综合性强,属于难题.21.(2021春•让胡路区校级月考)已知函数()||xe f x x =,关于x 的方程2()2()10()f x af x a m R -+-=∈有四个相异的实数根,则a 的取值范围是21(21e e --,)+∞.【解答】解:当0x >时,()x e f x x =,函数的导数22(1)()x x x e x e e x f x x x--'==, 当1x >时,()0f x '>,当01x <<时,()0f x '<,则当1x =时函数取得极小值f (1)e =,当0x <时,()x e f x x =-,函数的导数22(1)()x x x e x e e x f x x x--'=-=-,此时()0f x '>恒成立, 此时函数为增函数, 作出函数()f x 的图象如图:设()t f x =,则t e >时,()t f x =有3个根, 当t e =时,()t f x =有2个根 当0t e <<时,()t f x =有1个根, 当0t 时,()t f x =有0个根,则2()2()10()f x af x a m R -+-=∈有四个相异的实数根, 等价为2210()t at a m R -+-=∈有2个相异的实数根, 其中0t e <<,t e >, 设2()21h t t at a =-+-,则(0)0()0202h h e a a ⎧⎪>⎪<⎨⎪-⎪-=>⎩,即2102100a e ae a a ->⎧⎪-+-<⎨⎪>⎩,即21121a e a e >⎧⎪⎨->⎪-⎩, 即2121e a e ->-,故答案为:21(21e e --,)+∞【点评】本题主要考查函数与方程的应用,利用换元法转化为一元二次函数,利用数形结合以及根与系数之间的关系是解决本题的关键.综合性较强,有一定的难度. 22.(2021春•鼓楼区校级期末)函数2()(3)x f x x e =-,关于x 的方程2()()10f x mf x -+=恰有四个不同的实数解,则正数m 的取值范围为336(6e e +,)+∞. 【解答】解:2()(23)(3)(1)x xf x x x e x x e '=+-=+-, 令()0f x '=得,3x =-或1,当3x <-时,()0f x '>,函数()f x 在(,3)-∞-上单调递增,且()0f x >, 当31x -<<时,()0f x '<,函数()f x 在(3,1)-上单调递减, 当1x >时,()0f x '>,函数()f x 在(1,)+∞上单调递增, 所以()36()3f x f e =-=极大值,()f x f =极小值(1)2e =-, 令()f x t =,则方程210t mt -+=有两个不同的实数根1t ,2t ,且一个根在36(0,)e内,一个根在36(e,)+∞内, 或者两个根都在(2,0)e -内,或者一个根在(2,0)e -内,一个根为36e ,因为m 为正数,所以120t t m +=>,又121t t =,所以1t ,2t 都为正根,所以两个根不可能在(2,0)e -内,令2()1g x x mx =-+,因为(0)10g =>, 所以只需36()0g e <,即6336610m e e-+<,得3366e m e >+, 即m 的取值范围为:336(6e e +,)+∞, 故答案为:336(6e e +,)+∞. 【点评】本题主要考查了利用导数研究函数的极值,考查了函数的零点与方程根的关系,是中档题.23.(2021春•德阳期中)已知函数||()x x f x e=,若关于x 的方程2()()10f x mf x m -+-=有四个不相等的实数根,则实数m 的取值范围是1(1,1)e +. 【解答】解:化简得(0)()(0)x xx x e f x x x e ⎧⎪⎪=⎨-⎪<⎪⎩, 当0x 时,()0f x ,21()()x x x x e xe x f x e e--'==, 若01x <<时,()0f x '>,若1x >时,()0f x '<,所以当1x =时,函数()f x 有极大值f (1)1e=, 当0x <时,2()1()0()x x x xe x e xf x e e ---⋅-+'==<,()f x 为减函数, 作出函数()f x 的图象如图所示,由方程2()()10f x mf x m -+-=得,(()(1))(()1)0f x m f x ---=,所以()1f x =或()1f x m =-,由图象知方程()1f x =有1个解,要使关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根,则()1f x m =-要有三个解,由函数图象知101m e <-<, 所以111m e <<+. 故答案为:1(1,1)e +【点评】本题考查了根的存在性及根的个数的判断,考查了利用函数的导函数分析函数的单调性,考查了学生分析问题和解决问题的能力,数形结合求得结果.四.解答题(共2小题)24.已知函数()y f x =的定义域为R ,且(2)y f x =+的函数图象关于2x =-对称,当0x 时,3sin()(01)22()1()1(1)2x x x f x x π⎧⎪⎪=⎨⎪+>⎪⎩,若关于x 的方程24()(45)()50()f x a f x a a R -++=∈,有且仅有6个不相同实数根,则实数a 的取值范围.【解答】解:(2)y f x =+的函数图象关于2x =-对称,将(2)y f x =+的图象右移2个单位,可得()y f x =的图象,可知图象关于y 轴对称.作出函数()y f x =的图象,关于x 的方程24()(45)()50f x a f x a -++=, 即有5()4f x =或()f x a =.()y f x =和直线54y =的交点有4个,即5()4f x =的解的个数为4,由题意可得()f x a =有两个解.即()y f x =和直线y a =有两个交点, 由图象可得32a =或01a <.综上可得a 的范围是(0,31]{}2.【点评】本题考查函数方程的转化思想的运用,考查方程的根的分布情况,注意运用数形结合的思想方法,属于中档题.25.已知函数1()f x x x=+,若关于x 的方程2()(1)()20f x m f x m -++=有四个不同的实数根,则实数m 的取值范围是多少?【解答】解:关于x 的方程2()(1)()20f x m f x m -++= 有4个不同的实数根,令1()t f x x x ==+,则2t ,或2t -,故关于t的一元二次方程2(1)20t m t m-++=有两个实数根,且这2个实数根大于2或小于2-.令2()(1)2g t t m t m=-++,①若这两个根都大于2,则由2(1)80122(2)20m mmg⎧=+->⎪+⎪>⎨⎪=>⎪⎩,求得3m>+②若这两个根都小于2-,则由2(1)80122(2)460m mmg m⎧=+->⎪+⎪<-⎨⎪-=+>⎪⎩,求得m∈∅.③若这两个根一个大于2,另一个小于2-,则由(2)460(2)20g mg-=+<⎧⎨=<⎩,可得m∈∅.综上可得,m的范围为(3+,)+∞.【点评】本题主要考查方程根的个数判断,体现了转化、分类讨论、数形结合的数学思想,属于难题.。