准晶材料制备技术

合集下载

准晶材料的制备(color)

准晶材料的制备(color)

准晶材料的制备整理:滕飞 2011-11-021以色列科学家丹尼尔-舍特曼 (Daniel Shechtman)因发现 准晶体而获得2011年诺贝尔 化学奖。

2准晶的概念准晶材料是介于周期结构与无序结构之间的一类 新发现的凝聚态,具有传统的晶体材料所不具备 的对称性,由于其结构的特殊性,例如它具有五 次和十次等特殊的对称性。

因此它具有许多优良 的机械性能、物理化学性能和光电磁性能。

准晶分类 ¾从热力学角度 热力学亚稳态准晶:在某个温度区间退火会变为晶体类似相 稳态准晶:热力学上是稳定的¾按结构可分为 一维准晶 二维准晶:八次、十次和十二次准晶 三维准晶:主要是二十面体3¾一维准晶:是由二维十面体准晶中的一个二次准周期轴(与十次轴正 交)变为二次周期轴而生成的,即一维准晶具有两个正交的周期方向 和一个与它们正交的准周期方向。

二维准晶:在一个平面上的两个方向上显示准周期性,而在其法线方 向呈现周期性。

二维准周期平面的特征可以用这个具有周期性的旋转 轴来表示,从而分为不同形态的二维准晶。

三维准晶:主要是二十面体,它指的是在空间中任何三个正交方向上 都呈现准周期性,而无任何周期性方向。

¾¾4准晶体的类型现在已在100多种金属合金体系中发现了准晶相,如已有报 导的准晶合金有基于Al、Cu、Mg、Ni、Ti、Zn、Zr等的 合金。

5影响准晶生长的因素™准晶形成过程大致可有4种基本情况:气体→准晶体、溶体(熔体)→准 晶体、晶体→准晶体、非晶→准晶体。

™™ ™ ™ ™影响准晶生长的因素合金成分,准晶只能在一定范围内形成; 合金成分 原子尺寸,主要元素的原子半径大小相近,以较小的原子为中心; 原子尺寸 电子结构,组元的电子结构与准晶的形成能力有内在联系; 电子结构 冷却速度,影响较大,冷却速度较大有利于准晶的形成,冷却速度过 冷却速度 高会导致过饱和固熔体先于准晶形成甚至出现非晶,因此冷去速度应 控制在一个适应的范围; 温度和压力,改变结构的束缚状态和结构熵, A1-Cu-Fe系合金,压力 温度和压力 增加有助于晶体等向准晶转变,增加压力可使冷却速度降低而保持效 果不变。

准晶体的发展及其应用

准晶体的发展及其应用
2)磁性能:对高电阻的准晶的磁阻,当温度不高时,准晶体磁 致电阻情况很复杂,但若温度大于100K时,磁阻将随外场的增加而减 少。
3)热性能:准晶体的热性能一般不高,即它的导热系数K很小, 且与温度密切有关。
4)准晶都很脆,将它作为结构材料使用尚无前景、准晶的特殊结 构对其物理性能有明显的影响。
5)准晶的密度低于其晶态时的密度,这是由于其原子排列的规则 性不及晶态严密,但其密度高于非晶态,说明其周期性排列仍是较密 集的。
04Part four 准晶体的制备
如何制备准晶体
除了少数准晶为稳态相之外,大多数准晶相均属 于亚稳态产物,它们主要通过快冷方法形成,此外经 离子注入混合或气相沉积等途径也能形成准晶。准晶 的形成过程包括形核和生长两个过程,故采用快冷方 法时其冷却速度要适当控制。
制备方法:定向凝固法、自熔体法、深过冷快速凝固 法。
钬-镁-锌十二面体准晶
Penrose拼图。可以看到平面中仅由 宽窄两种菱形构成,中间的球也由这 两种菱形构成
谢谢您 聆听
三维物理空间的材料,其中的原子有二维是准周期分布的,另外一维是 周期分布的。实验上发现,二维准晶有十次准晶、十二次准晶、八次准晶、 和五次准晶四类。 三、三维准晶
三维物理空间的材料,其中的原子在三维上都想准周期分布的。实验上已 经发现的三维准晶有二十面体和立方准晶两大类。
准晶体的性质
3)理论上的准晶体应有下述一些性质:均一性、各向异性、对 称性、自限性、最小内能性、稳定性
准晶体的发展及其应用
准晶体的定义
准晶体
亦称为“准晶”或“拟晶”,是一种介于晶体和非晶体之间的固体结构。 在准晶的原子排列中,其结构是长程有序的,这一点和晶体相似;但是准晶 不具备平移对称性,这一点又和晶体不同。普通晶体具有的是二次、三次、 四次或六次旋转对称性,但是准晶的布拉格衍射图具有其他的对称性,例如 五次对称性或者更高的六次以上对称性。

准晶简介

准晶简介
准晶的介绍
准晶的对称性
电子衍射图样
准晶的定义
准晶体是准周期晶体的简称。它是一种具有多 重旋转对称轴、不同于传统晶体和非晶玻璃体的固 1 ( 5 1) ,其中的 态物质结构。准晶具有准周期 2 原子呈定向有序排列,但不作周期性平移重复,其 对称要素包含与晶体空间格子不相容的对称。 从目前掌握的实验资料看, 在热力学上准晶相 有向晶体相转变的趋势, 说明准晶体的结构是非平 衡的亚稳结构。 目前的研究证实,在实二次域上只可能存在5、 8、10、12次旋转对称的准格点阵(陆洪文、费奔)。 I-相:二十面体相,它的点群符号 m35 ,不属于 三十二种晶体点群中的任何一类。
表面特性
(2)不粘特性 准晶材料的不粘性实质上是热力学中 (1)氧化行为特性 在相同条件下, 准晶相表面的氧 (3)摩擦特性 准晶的显微硬度比铝合金大近一个数
润湿性的问题, 与准晶的表面能有关。准晶的最外层 化现象明显低于铝合金和相近成分的晶体相。 量级,但摩擦系数仅为铝合金的1/3,此外,当对准晶 原子没有重构现象和准晶在费米能级处的电子态密度 材料进行往复摩擦实验时,其摩擦系数还会逐渐降低, 很低(即准晶在费米能级处存在伪能隙) 是造成其表 且磨痕上的微裂纹会自动愈合,这显示了准晶具有一 面能很低的主要原因。 定的应力塑性。
(2)准晶作为结构材料增强相的应用 (b)准晶纳米颗粒增强Al基合金 日本学者A.Inoue等 (c)准晶颗粒增强复合材料 (a)准晶相作为时效强化相 瑞典皇家工学院的研究人员
采用快冷方法开发出一种具有优异力学性能的Al基合金。 I.准晶颗拉增强金属基复合材料 使用准晶颗粒增强金属 开发的新型马氏体时效钢,成分为12%Cr-9%Ni-4%Mo其组织特征为, 在fcc-Al相中均匀分布有纳米尺度的准晶颗 2%Cu-1%Ti, 其中时效强化相为准晶相。准晶相的成分典型 基复合材料除了可以提高基体的性能以外,由于与常规陶 粒。其中,准晶颗粒的尺寸为30-50nm,fcc-铝相厚度为5瓷颗粒相比准晶材料的熔点较低, 且其为金属合金, 故准晶 值为34%Fe-12%Cr-2%Ni-49%Mo-3%Si, 在475℃时效4h 形 10nm , 将准晶颗粒包围。在Al相中没有高角度的晶界。准 颗粒增强金属基复合材料的回收也是相对容易的, 属于环 成, 经过1000h都保持稳定, 即准晶颗粒是热力学平衡析出。 晶相的体积分数 境友好材料。 60%-70%。 时效过程中丰富的形核位置与缓慢的粗化过程可以用准晶的 II.准晶颗粒增强聚合物基复合材料 美国Ames国家实验室 低表面能进行解释。该钢经回火处理后, 其抗拉强度为 的科研人员研究了Al-Cu-Fe准晶颗粒增强聚合物基复合材 3000MPa, 准晶相的形成对提高强度和抗回火软化起了相当 大的作用。该型钢主要应用于医疗外科器械 料的制备方法和性能变化,发现复合材料的耐磨性明显优 于基体, 且其玻璃化温度Tg和熔化温度Tm与基体相比没有 明显变化, 说明准晶颗粒不会对基体产生有害的化学作用。

二维材料的制备及性质研究

二维材料的制备及性质研究

二维材料的制备及性质研究近年来,二维材料作为新型材料领域的热门话题受到广泛关注。

二维材料是指在一维纳米结构基础上,将各个方向的几何尺寸限定在纳米尺度级别的材料。

由于其出色的光电性能、力学性能、化学稳定性以及特殊的量子效应,二维材料受到了研究者的极大兴趣。

其中,二维准晶材料由于其具有特殊的物理和化学性质而受到了越来越多的关注。

二维材料的制备方法主要包括机械剥离法、化学气相沉积法、液相剥离法等。

在二维准晶材料的制备中,主要采用化学气相沉积法。

这种方法将前驱体(比如金属卤化物、金属有机物等)在加热后分解生成准晶结构的二维材料。

化学气相沉积法具有可控性好、生长速度快、产量高等优点,因此被广泛采用。

二维准晶材料的性质研究主要包括电学性质、力学性质、热学性质等。

其中,电学性质是二维准晶材料最为重要的性质之一。

高质量的二维准晶材料由于具有稳定的结构和独特的晶格结构,在电学性质方面具有潜在的优异性能。

除此之外,二维准晶材料还具有优异的力学性能和热学性能。

其中,力学性能是指材料在外部力作用下的表现,如弹性模量、硬度、韧性等。

在力学性能研究中,二维准晶材料表现出了出色的力学性能,如高柔韧性、高硬度和优异的体积纳米压缩性能。

热学性能是指材料在传热作用下的表现。

由于二维准晶材料具有特殊的内部结构,使得其在热学性能上表现出了优异性能。

比如高热导率、热扩散率,这些性质使这种材料在高温度环境下具有很好的应用前景。

近年来,二维准晶材料在新型电子器件中的应用受到了广泛关注。

比如,十字交错石墨烯的纳米器件可以用于纳米传感器、生物传感器等领域;同时,二维TiSSe材料由于具有优异的热电性能,还被广泛用于热电材料和热电转化器等领域。

总之,二维材料是当今材料科学研究的热门领域之一,二维准晶材料由于具有独特的物理和电学性质,目前正受到越来越多的关注。

研究人员一直在致力于寻找更好的制备方法和更好的性质研究方法,希望能够更好地实现二维准晶材料的可控制备和更加深入的应用研究。

准晶非晶液晶单晶

准晶非晶液晶单晶

结构特点性能应用制备法准晶概念随着材料技术的发展,出现了一类结构不符合晶体的对称条件,但呈一定的周期性有序排列新的原子聚集状态的固体,这种状态被称为准晶态,此固体称为准晶。

结构既不同于晶体,也不同于非晶态,原子分布不具有平移对称性,但仍有一定的规则,且呈长程的取向性有序分布,可认为是一种准周期性排列。

一位准晶:原子有二维是周期分布的,一维是准晶周期分布。

一维准晶模型————菲博纳奇(fibonacci)序列其序列以L→L+S S →L(L,S分别代表长短两段线段)的规律增长,若以L为起始项,则会发现学列中L可以成双或成单出现,而S只能成单出现,序列的任意项均为前两项之和,相邻的比值逐渐逼近i,当n →∞时,i=(1+√5)/2二维准晶:一种典型的准晶结构是三维空间的彭罗斯拼图(Penrose)。

二维空间的彭罗斯拼图由内角为36度、144度和72度、108度的两种菱形组成,能够无缝隙无交叠地排满二维平面。

这种拼图没有平移对称性,但是具有长程的有序结构,并且具有晶体所不允许的五次旋转对称性。

三维准晶:原子在三维上的都是准周期分布包括二十面体准晶,立方准晶。

性能准晶室温下表现为硬而脆,韧性较低,准晶材料密度低于其晶态时的密度,比热容比晶态大。

准晶大多由金属元素构成,由金属元素形成的晶体,他们的导电性是人所共知的,金属晶体这些导电性质相比,准晶体一般具有较大的电阻,当温度不太高是,准晶的电阻随温度的增加而减少,实验发现,准晶的导电性随样品质量的改善而降低。

其电阻率甚高,电阻温度系数甚小,电阻随温度的变化规律也各不相同。

应用准晶材料的性能特点是较高的硬度,低摩擦系数,不粘性,耐腐,耐热和耐磨等,但是准经材料的本质脆性大大限制了其应用,目前准经材料的应用主要作为表面改性材料或者作为增强相弥散分布与结构材料中,准经材料在表面改性材料中的应用将准晶材料以涂层,耐热,耐磨,低的摩察系数,耐腐,特殊的光学性能,从而改变材料表面的性质,优化整体材料的性能。

第六章 准晶材料的制备技术 材料制备技术

第六章 准晶材料的制备技术 材料制备技术

• (2)热传导特性
• ①与普通金属材料相比,准晶的热导率都很低,在室温下准晶的热导 率要比普通的铝合金低两个数量级,可以与常见的隔热材料ZrO2相媲 美。
• ②准晶材料的热阻值随着温度升高而下降,即具有负的温度系数,热 扩散系数和比热容均随着温度升高而增大。 • ③准晶样品质量越好,结构越完善,其热导性能就越差。 • ④结构复杂的准晶类似相得导热性能接近于准晶。 • (3)光传导特性 • ①与普通的金属材料相比,结构完好的准晶样品的光传导特性,显得 非常特殊,在较低的频率范围内,准晶的光导率很小,且在104cm-1时 有很宽的峰值。 • ②在二维的准晶材料中,光导率对其结构的各向异性很敏感。
• 6.1.3.2表面特性
• 表面性能主要由其表层的化学成分和原子排列方式所决定,由于准晶 表面结构比较独特,由此引发的表面行为如氧化行为、润湿行为和摩 擦行为等也与众不同。 • (1)氧化行为特性 • 迄今为止发现的准晶材料,绝大多数为铝系准晶。而Al是极易氧化的 活泼元素,因而研究铝基准晶氧化表面的结构和成分的变化规律意义 重大。实验研究发现,在相同条件下,准晶相表面的氧化现象明显低 于铝合金和相近成分的晶体相。当准晶在室温下长期暴露在干燥空气 孔,氧化层平均厚度为2~3nm。但在潮湿空气和较高温度下氧化层会 进一步加深(厚度为6~7nm),并且化学成分也因此而变化,表层铝 的摩尔分数随之增大(Al可达90%,摩尔分数)。 • (2)不粘特性 • 准晶材料的不粘性,实质上是热力学中润湿性的问题,与准晶的表面 能有关。最近的研究发现,准晶的最外层原子没有重构现象和准晶在 费米能级处的电子态密度很低(即准晶在费米能级处存在伪能隙)是 造成其表面能很低的主要原因。
• (3)摩擦特性 • 准晶材料的摩擦磨损行为的研究相对开展较早,这主要是由于镀膜和 热喷涂技术的日臻完善。在相同环境和实验条件下,块体Al-Cu-Fe准 晶和其准晶涂层的显微硬度与摩擦系数大致相近,而准晶的显微硬度 却要比铝合金高一个数量级,但摩擦系数仅为铝合金的1/3。此外, 当对准晶材料进行往复摩擦实验时,其摩擦系数还会逐渐降低,且磨 痕上的微裂纹会自动愈合,这显示了准晶具有一定的应力塑性。

准晶、非晶、纳米晶、粗晶、液晶的结构、性能、制备技术及应用(一)

准晶、非晶、纳米晶、粗晶、液晶的结构、性能、制备技术及应用(一)

辽宁工程技术大学
材料科学最新进展
题目准晶、非晶、纳米晶、粗晶、液晶
的结构、性能、制备技术及应用指导教师吕宝臣博士
院(系、部)材料科学与工程学院
专业班级材料07-1班
学号0708010108
姓名关媛媛
日期2010年10月17日
教务处印制
目录
前言 (1)
1准晶 (2)
1.1准晶的结构 (2)
1.2准晶的性能 (2)
1.3准晶的制备技术 (2)
1.4准晶的应用 (3)
2非晶 (3)
2.1非晶的结构 (4)
2.2非晶的性能 (4)
2.3非晶的制备技术 (4)
2.4非晶的应用 (5)
3纳米晶 (6)
3.1纳米晶的结构 (6)
3.2纳米晶的性能 (6)
3.3纳米晶的制备技术 (7)
3.4纳米晶的应用 (7)
4粗晶 (8)
4.1粗晶的结构 (8)
4.2粗晶的性能 (8)
4.3粗晶的制备技术 (8)
4.4粗晶的应用 (9)
5液晶 (10)
5.1液晶的结构 (10)
5.2液晶的性能 (10)
5.3液晶的制备技术 (11)
5.4液晶的应用 (12)
致谢 (13)
参考文献 (14)。

高纯半导体原料及化合物制备技术

高纯半导体原料及化合物制备技术

高纯半导体原料及化合物制备技术
高纯半导体原料及化合物制备技术包括多种方法,以下是一些常见的技术:
1. 直拉法(Czochralski):这是制备半导体单晶最常用的技术。

将经过提纯后的原料置于坩埚中,而坩埚则置于适当的热场中。

在加热过程中,原料在坩埚中逐渐熔化。

此后,提拉预先放置的籽晶,并以一定的速度旋转,进而生长出符合条件的单晶。

这种工艺的优点包括可以较快速度获得大直径的单晶;可采用“回熔”和“缩颈”工艺来控制成本和效率;可观察到晶体的生长情况,进而有效地控制晶体的生长。

2. 区熔法:将一个大的单晶锭切成小块,然后将这些小块晶体在一定温度下进行定向再熔化。

由于小块单晶锭的熔点较低,因此可以在较低的温度下实现单晶的定向生长。

这种方法的优点是制备得到的单晶纯度高、缺陷少,但是制备过程比较复杂,需要严格控制温度和熔化过程。

3. 化学气相沉积法(CVD):通过化学反应的方式,在衬底表面生成一层单晶薄膜。

这种方法可以在大面积的衬底上制备单晶薄膜,并且可以通过控制反应条件来调控单晶薄膜的成分和性能。

但是这种方法需要较高的温度和较为复杂的反应条件,同时成本也较高。

4. 外延法:在已有的单晶衬底上生长一层与衬底晶体结构相同或不同的单晶层。

这种方法可以获得与衬底晶体结构相同或不同的单晶材料,并且可以通
过控制生长条件来调控单晶材料的性能。

但是这种方法需要严格控制生长条件,同时成本也较高。

这些方法各有优缺点,根据不同的应用需求选择合适的方法来制备高纯半导体原料及化合物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

准晶材料制备技术
准晶材料是一类结晶态的材料,具有独特的晶体结构和性质。

准晶材
料由于其特殊的晶体结构,具有高硬度、高强度、高耐磨性、高抗腐蚀性
等优点,广泛应用于航空航天、汽车制造、电子工业等领域。

然而,由于准晶材料的制备技术较为复杂,且对原料成分和制备工艺
有较高的要求,因此其制备技术一直以来都是研究的热点之一、在准晶材
料制备技术中,主要包括以下几个方面的内容。

首先,准晶材料的原料成分是制备的关键。

准晶材料的原料通常由多
种金属元素组成,且需控制它们的成分比例以及添加一定的合金元素。


过调整原料的成分比例,可以使准晶材料具有不同的晶体结构和性质。

同时,添加合适的合金元素,可以增强材料的硬度、强度和耐腐蚀性。

其次,准晶材料的制备工艺也是制备的关键。

准晶材料的制备过程中,需要采用适当的熔炼方法和热处理工艺。

常用的熔炼方法包括电炉熔炼、
真空熔炼和气氛熔炼等,用以熔化原料并得到均匀的合金液体。

熔炼后的
合金液体经过凝固和固态变形等工艺,可以得到准晶材料。

准晶材料的凝固过程是制备中的重要环节。

凝固的方式包括液相凝固、气相凝固和固相凝固等。

液相凝固是指将合金液体冷却至凝固点以上,然
后在凝固点以下进行凝固。

气相凝固是指将合金气体冷却至凝固点以下,
然后在凝固点以上进行凝固。

固相凝固是指通过固态相变来实现凝固。


晶材料的凝固方式选择决定了材料的晶体结构和性质。

在准晶材料的固态变形工艺中,主要采用热压和热拉伸等方式。

热压
是指将准晶材料的块状熔化物在高温下进行压制,使其具有其中一种压制
形状和组织结构。

热拉伸是指将准晶材料的块状熔化物在高温下用拉伸机
拉伸成细丝或薄片状。

通过热压和热拉伸工艺,可以使准晶材料具有更加均匀的组织结构和更好的力学性能。

最后,准晶材料的后处理也是制备的重要环节。

后处理包括热处理、化学处理和机械处理等。

热处理是指通过加热和冷却的方式,使准晶材料的晶体结构和性能得到进一步调整和改善。

化学处理是指利用化学反应来改变准晶材料的表面和组织结构,以提高其耐腐蚀性和界面性能。

机械处理是指通过切割、抛光和拉伸等机械方法,来改善准晶材料的形状和表面质量。

综上所述,准晶材料的制备技术包括原料成分的调控、制备工艺的选择、凝固过程的控制、固态变形的实现,以及后处理的优化等环节。

这些技术的发展和进步,将有助于提高准晶材料的制备效率和质量,拓展其应用领域,并推动准晶材料制备技术的研究和应用。

相关文档
最新文档