【一题多解】分式求值问题
2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
分式的运算例题讲解

15.2 分式的运算1.分式的乘除(1)分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 用式子表示为:a b ·c d =a ·c b ·d . (2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为:a b ÷c d =a b ·d c =a ·d b ·c. 分式的除法要转化为乘法,然后根据乘法法则进行运算,结果要化为最简分式.【例1】 计算:(1)4a 4b 215x 2·9x 8a 4b ; (2)a 2-1a 2+2a +1÷a 2-a a +1;(3)a 2-4a 2+4a +4·2a a 2-4a +4; (4)4x 2+4xy +y 22x +y÷(4x 2-y 2).2.分式的乘方(1)法则:分式乘方要把分子、分母分别乘方.(2)用式子表示:⎝⎛⎭⎫a b n =a n b n .解技巧 分式的乘方的理解 (1)分式乘方时,分子、分母要乘相同次方;(2)其结果的符号与有理数乘方结果的符号确定方法一样.【例2】 计算:(1)⎝⎛⎭⎫a 2-b 34; (2)⎝⎛⎭⎫x 2y -z 23.3.分式的加减(1)同分母分式相加减:①法则:分母不变,把分子相加减; ②用式子表示:a c ±b c =a ±b c. (2)异分母分式相加减:①法则:先通分,变为同分母的分式,再加减;②用式子表示:a b ±c d =ad bd ±bc bd =ad ±bc bd. 警误区 分式加减运算的注意点 (1)同分母分式的加减运算的关键是分子的加减运算,分子加减时要将其作为一个整体进行加减,当分子是多项式时,要添加括号;(2)异分母分式加减运算的关键是先通分,转化为同分母的分式相加减,再根据同分母分式加减法进行运算,通分时要注意最简公分母的确定;(3)分式加减运算的结果要化为最简分式或整式.【例3】 计算:(1)(a -b )22ab +(a +b )22ab ; (2)a a 2-1-11-a 2; (3)1x +y -1x -y +2x x 2-y 2;(4)12m 2-9+23-m ; (5)x -3x 2-1-2x +1; (6)4a +2-a -2.4.整数指数幂一般地,当n 是正整数时,a -n =1a n (a ≠0).这就是说,a -n (a ≠0)是a n 的倒数.这样引入负整数指数幂后,指数的取值范围就推广到全体整数.根据整数指数幂的运算性质,当m ,n 为整数时,a m ÷a n =a m -n ,a m ·a -n =a m +(-n )=a m -n ,因此a m÷a n =a m ·a -n .特别地,a b=a ÷b =a ·b -1,所以⎝⎛⎭⎫a b n =(a ·b -1)n ,即商的乘方⎝⎛⎭⎫a b n 可以转化为积的乘方(a ·b -1)n . 这样,整数指数幂的运算性质可以归纳为:(1)a m ·a n =a m +n (m ,n 是整数);(2)(a m )n =a mn (m ,n 是整数);(3)(ab )n =a n b n (m ,n 是整数).【例4】 计算:(1)⎝⎛⎭⎫-23-2; (2)a 2b -3(a -1b )3÷(ab )-1.5.科学记数法(1)用科学记数法表示绝对值大于1的数时,应当表示为a ×10n 的形式,其中1≤|a |<10,n 为原数整数部分的位数减1;(2)用科学记数法表示绝对值小于1的数时,可以表示为a ×10-n 的形式,其中n 为原数第1个不为零的数字前面所有零的个数(包括小数点前面的那个零),1≤|a |<10.提示:用科学记数法的形式表示数更方便于比较数的大小.【例5】 把下列各数用科学记数法表示出来:(1)650 000; (2)-36 900 000; (3)0.000 002 1; (4)-0.000 006 57.6.分式的乘除混合运算分式的乘除混合运算要统一为乘法运算来计算.谈重点 分式乘除混合运算的方法 (1)分式的乘除混合运算顺序与分数的乘除混合运算顺序相同,即从左到右的顺序,有括号先算括号里面的;(2)分式的乘除混合运算要注意每个分式中分子、分母括号的处理,以及结果符号的确定;(3)分式的乘除混合运算结果应为最简分式或整式.7.分式的混合运算分式的四则混合运算与有理数的混合运算相同,必须按照运算顺序,先乘方,再乘除,后加减,有括号时先去小括号再去中括号,最后结果要化为最简分式或整式.解技巧 分式混合运算的技巧 分式四则混合运算要注意:(1)按照运算顺序进行,确定合理的运算顺序是解题的关键;(2)灵活运用交换律、结合律、分配律,可以使运算简捷,而且还可以提高运算速度和准确率;(3)将结果化为最简分式或整式;(4)运算过程中要注意符号的确定.8.把分式化简后再求值 分式的化简求值题,关键是要准确地运用分式的运算法则,然后代入求值.化简运算过程中要注意约分、通分时分式的值保持不变,要注意分清运算顺序,先乘除,后加减,如果有括号,先进行括号内的运算.【例6】 计算:1-x 2x 2+4x +4÷(x -1)2·x 2+3x +2x -1.【例7】 计算:⎣⎢⎡⎦⎥⎤a 2-b 2a 2+2ab +b 2+2ab ÷⎝⎛⎭⎫1a +1b 2·2a 2-b 2+2ab.【例8】 先化简,再求值:⎝⎛⎭⎫3x x -1-x x +1·x 2-12x ,其中x =-3.9.运用分式运算解决实际问题运用分式运算解决实际问题,关键是理解题意,找准各种量之间的关系,这也是解决数学应用题的基本方法,作差法等也是解决这类问题的常用方法.在判断两分式的差的正负的时候,可以考虑利用完全平方式的非负性和题中字母的实际意义来解题.作差法举例:若x ≠y 且x >0,y >0,比较4x +y 与x +y xy的大小.【例9】 甲、乙两工人生产同一种零件,甲每小时比乙多生产8个,现要求甲生产出168个零件,乙生产出144个零件,则他们两人谁能先完成任务?10.分式混合运算的开放型题所以在解决此类问题时,首先还是要正确进行分式的化简,然后还要注意问题的多解的情况.举例:已知P =a 2+b 2a 2-b 2,Q =2ab a 2-b 2,用“+”或“-”连接P ,Q 共有三种不同的形式:P +Q ,P -Q ,Q -P ,请选择其中一种进行化简求值,其中a =3,b =2.【例10】 已知A =1x -2,B =2x 2-4,C =x x +2.将它们组合成(A -B)÷C 或A -B÷C 的形式,请你从中任选一种进行计算.先化简,再求值,其中x =3.。
2021年中考复习数与式-第04讲 分式(教师版)A4

分式一.分式的概念及性质1.分式分概念:一般地,用A,B表示两个整式A B÷就可以表示成AB的形式.如果B中含有字母,式子AB就叫做分式.(1)分式有意义的条件:分式的分母不为零.(2)分式的值为零的条件:分式的分子为零且分母不为零.(3)分式值为正的条件分式的分子分母符号相同(两种情况).(4)分式值为负的条件:分式的分子分母符号不同(两种情况).2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.二.分式的综合运算1.分式的乘除法(1)分式的乘除法:b d bda c ac⋅=,b d bc bca c a d ad÷=⋅=.(a、b、c、d既可以表示数,也可以表示单项式/多项式等)(2)分式的约分和通分:关键是先分解因式.分式的约分:利用分式的基本性质,约去分式的分子与分母的公因式,分式的值不变.最简分式:分子与分母没有公因式.分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,把几个异分母的分式化成同分母的分式,不改变分式的值.最简公分母:“各个分母”和“所有因式”的最高次幂的积.(3)分式的乘方法则:分式乘方要把分子、分母分别乘方.2.分式的加减法:(1)同分母的分式相加减,分母不变,分子相加减,a b a bc c c±±=.(2)异分母的分式相加减,先通分,变为同分母分式,再加减,b d bc ad bc ada c ac ac ac±±=±=.3.分式的综合运算法则:先乘方,再乘除,最后加减,遇到括号先算括号里面的.知识精讲三.分式的化简与求值分式的化简求值分为有条件和无条件两类.有条件化简求值指导思想:瞄准目标,抓住条件,依据条件推导目标,根据目标变换条件.方法点拨1.分式的化简与求值常用方法和技巧:(1)分步或者分组通分;(2)拆项相消或拆分变形;(3)整体代入;(4)取倒数或者利用倒数关系;(5)换元;(6)先约分后通分2.通分技巧:分步通分,分组通分,先约分后再通分,换元后通分等.一.考点:分式的性质、分式的混合运算及化简求值二.重难点:分式的混合运算及化简求值三.易错点:1.分式的分母中含有根号时,根号下的代数式一定是负的.题模一:分式的基本知识例1.1.1要使3x -+121x -有意义,则x 应满足( )A .12≤x ≤3B .x ≤3且x ≠12C .12<x <3D .12<x ≤3 【答案】D 【解析】根据题意得:30210x x -≥⎧⎨->⎩,解得:12<x≤3.故选D .例1.1.2若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【答案】1a >【解析】分式值为正的条件:分式的分子分母符号相同,因分子为1,所以分母2-2x x a +也一定为正时满足条件,将式子2-2x x a +变形为2-21-1x x a ++()(),因2210x x -+≥,即当10a ->时,分式的值恒为正例1.1.3当x ____时,分式1412x x 有意义;当x ____时,分式1111x 无意义;当x ____时,分式2224x x x x 的值为0【答案】2x ≠且6x ≠;2x =或1x =;0x =或1x =【解析】该题考查的是分式的性质. 分式有意义要求分母不为0,无意义要求分母为0,分式值为0要求分母不为0且分子为0,三点剖析题模精讲分式1412xx 有意义,则410220x x ⎧-≠⎪-⎨⎪-≠⎩,即4122x x ⎧≠⎪-⎨⎪≠⎩,即242x x -≠⎧⎨≠⎩,解得62x x ≠⎧⎨≠⎩; 分式1111x 无意义,则1101x -=-或10x -=,即111x =-或1x =,解得2x =或1x =; 分式()()()()()()22+22114222x x x x x x x x x x x x -+--==--+-的值为0,则()1020x x x ⎧-=⎪⎨-≠⎪⎩,解得0x =或1x =. 例1.1.4x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【答案】(1)6x =-(2)1x =-或6x =【解析】(1)分式值为0则60x -=且2560x x --≠,得6x =-;(2)要使分式无意义,则分母2560x x --=,得1x =-或6x =题模二:分式的运算及化简求值例1.2.1化简2244xy yx x --+的结果是( )A .2x x +B .2x x -C .2y x + D .2y x - 【答案】D 【解析】2244xy y x x --+=2?(2)(2)y x x --=2yx -,故选D .例1.2.2解答下列各题: (1)解方程:;(2)先化简,再求值:,其中a 满足a 2+2a ﹣7=0【解答】解:(1)∵,∴(x ﹣2)2=(x +2)2+16,∴x 2﹣4x +4=x 2+4x +4+16,∴﹣4x =4x +16,∴x =﹣2, 经检验,x =﹣2是方程的增根,故原分式方程无解. (2)原式=[﹣]•=•=,∵a 2+2a ﹣7=0,∴a 2+2a =7,∴原式= 例1.2.3先化简,再求值:(),其中x=2.【答案】【解析】原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.例1.2.4已知实数a 满足a 2+2a-15=0,求11a +-221a a +-÷2(1)(2)21a a a a ++-+的值. 【答案】18【解析】11a +-221a a +-÷2(1)(2)21a a a a ++-+=11a +-2(1)(1)a a a ++-•2(1)(1)(2)a a a -++=11a +-21(1)a a -+=22(1)a +, ∵a 2+2a -15=0,∵(a+1)2=16,∵原式=216=18. 例1.2.5化简计算(式中a ,b ,c 两两不相等)222222a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++--+--+--+.【答案】0【解析】()()()()()()()()()()()()1111110a b a c b c b a c a c b a b a c b c b a c a c b a c a b b a b c c b c a-+--+--+-++=+++++=------------随练1.1使代数式213x x--有意义的x 的取值范围是____. 【答案】x≥12且x≠3 【解析】根据题意得,2x -1≥0且3-x≠0,解得x≥12且x≠3. 故答案为:x≥12且x≠3.随练1.2如果分式2127a a +-的值是正数,那么a 的取值范围是________.【答案】72a >【解析】该题考察的是分式的性质.∵因为21a +恒0>,又∵分式2127a a +-的值是正随堂练习数,∴270a ->,解得:72a > ,故答案是72a >. 随练1.3先化简,再求值:÷(﹣),其中a=.【答案】6﹣4【解析】原式=÷[﹣]=÷=•=(a ﹣2)2,∵a=,∵原式=(﹣2)2=6﹣4随练 1.4x 取 值时,112122x +++有意义;当x 的值为 ,分式223-1244x x x ++的值为0.【答案】592,,;24x x x ≠-≠-≠-2【解析】分式有意义则分母不为零,所以20x +≠且1202x +≠+,且120122x +≠++,所以592,,;24x x x ≠-≠-≠-分式值为零,则分子为零,且分母不为零,即()22312340x x -=-=且()224420x x x ++=+≠,故2x =.随练1.5当x 取何值时,分式2256x x x --+有意义?【答案】2x ≠±且3x ≠±【解析】间接考虑2560x x -+=,然后排除2560x x -+=的情形即可.()()256230x x x x -+=--=得20x -=或30x -=,2x =±或3x =±故要是分式有意义2x ≠±且3x ≠±即可. 随练1.6若1abc =,求111a b cab a bc b ca c ++++++++的值. 【答案】1 【解析】原式=11111111a ab abc a ab a ab ab a abc ab a abca abc ab ab a ab a a ab ab a ++++=++==++++++++++++++随练1.7已知a ,b ,c 为实数,16ab a b =+,18bc b c =+,110ca c a =+,求分式abcab bc ca++的值. 【答案】112【解析】由16ab a b =+,18bc b c =+,110ca c a =+知a ,b ,c 均不为零,故116a b +=,118b c+=,1110c a +=,解得14a =,12b =,16c =,故原式=1111112a b c=++随练1.8若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【答案】2,4【解析】若使分式1-1m 为整数,只需满足1m -为1的因数即可,即11m -=±,结果为0m =或2m =;分式11m m +-为整数,需要将式子整理为-12-1-1m m m +,即只要2-1m 为整数,11,2m -=±±,因此0,2,1,3m =-.随练1.9已知:y=22699x x x ++-÷233x x x+--x+3,试说明不论x 为任何有意义的值,y 值均不变. 【答案】见解析【解析】本题主要考查了分式的混合运算能力. 先把分子分母分解因式再化简约分即可.证明:y=22699x x x ++-÷233x x x+--x+3=2(3)(3)(3)x x x ++-×(3)3x x x -+-x+3=x -x+3=3. 故不论x 为任何有意义的值,y 值均不变.随练1.10已知0abc ≠,0a b c ++=,则代数式222a b c bc ca ab++的值为__________.【答案】3【解析】由0a b c ++=得()a b c =-+,()b a c =-+,()c a b =-+代入原代数式可得原式()()()22263b c a c a b b c a c b abccaabc b c a a b+++=++=++++++= 作业1若a 使分式241312a a a-++没有意义,那么a 的值是( )A .0B .13-或0 C .2±或0 D .15-或0【答案】D【解析】要使分式无意义,则分母为零即可,故13102a a ++=或20a =,所以15a =-或0a =,故答案为D 选项. 作业2要使分式11x x-有意义,则x 的取值范围是_________. 【答案】0x ≠且1x ≠±【解析】对于多重分式,必须要满足每一重的分母都不为0,首先0x ≠,得0x ≠;其次10x x-≠,课后作业得1x ≠±;故x 的取值范围是0x ≠且1x ≠±作业3化简:()()()222222x yz y zx z xyx y z x yz y z x y zx z x y z xy +-++++--+++---.【答案】0【解析】因为()()()2x y z x yz x y x z +--=+-,()()()2y z x y zy x y y z +++=++()()()2z x y z xy y z z x ---=+-,所以原式=()()()()()()()()()2220x yz y z y zx z x z xy x y x y y z z x -+++--+++=++-.作业4化简:÷﹣的结果为( )A .B .C .D .a【答案】C 【解析】原式=×﹣=﹣=,作业5已知()22221111x x A B Cx x x x x +-=++--,其中A 、B 、C 为常数,求A B C ++的值.【答案】13【解析】原式右边=()()()()()()()22222211211111Ax x B x Cx A C x B A x B x x x x x x x x -+-+++--+-==---,得2A C +=,1B A -=,11B -=-,解得10A =,11B =,8C =-,从而13A B C ++=作业6先化简,再求值:222x x x+-2212x x x -++÷211x x -+,其中x 为0<x 的整数.【答案】14【解析】原式=2(2)x x x +-2(1)2x x -+•1(1)(1)x x x ++-=2(2)x x x +-12x x -+=(2)x x x +=12x +,∵x 为0<x 的整数,∵x=1(舍去)或x=2,则x=2时,原式=14. 作业7阅读下面材料,并解答问题.材料:将分式42231x x x 拆分成一个整式与一个分式(分子为整数)的和的形式.由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a )+b则-x 4-x 2+3=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a-1)x 2+(a+b )∵对应任意x ,上述等式均成立,∴113a a b ,∴a=2,b=1∴42231x x x =222(1)(2)11x x x =222(1)(2)1x x x +211x =x 2+2+211x这样,分式42231x x x 被拆分成了一个整式x 2+2与一个分式211x 的和.解答:(1)将分式422681x x x 拆分成一个整式与一个分式(分子为整数)的和的形式. (2)当x ∈(-1,1),试说明422681x x x 的最小值为8.【答案】(1)x 2+7+211x (2)见解析【解析】(1)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a )+b则-x 4-6x 2+8=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a -1)x 2+(a+b )∵对应任意x ,上述等式均成立,∵168a ab ,∵a=7,b=1,∵422681x x x =222(1)(7)11x x x =222(1)(7)1x x x +211x =x 2+7+211x这样,分式422681x x x 被拆分成了一个整式x 2+7与一个分式211x 的和.(2)由422681x x x =x 2+7+211x 知, 对于x 2+7+211x ,当x=0时,这两个式子的和有最小值,最小值为8,即422681x x x 的最小值为8.作业8设x ,y ,z 为互不相等的三个非零实数,且111x y z y z x+=+=+,求xyz 的值. 【答案】1± 【解析】由已知111x y z y z x +=+=+,11x y y z +=+,11y zx y z y zy--=-=得y z zy x y -=-,同理可得,z x zx y z -=-,x y xy z x-=-,所以1y z z x x y zy zx xy x y y z z x ---⋅⋅=⋅⋅=---,即()21xyz =,故1xyz =±。
分式压轴题解析

分式【知识脉络】【基础知识】1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
(0≠C )3.分式的通分和约分:关键先是分解因式4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则:分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd ±±±=±=±= 混合运算:运算顺序和以前一样。
能用运算率简算的可用运算率简算。
;a c ac a c a d adb d bd b d bc bc •=÷=•=()n n n a a b b =A A C B B C •=•A A C B B C ÷=÷5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1=- ()0≠a6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:m n m n a a a +•=;(2)幂的乘方:()m n mn a a=; (3)积的乘方:()n n nab a b =;(4)同底数的幂的除法:m n m n a a a -÷=( a ≠0); (5)商的乘方:()nn n a a b b=;(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
分式运算典型例题精解

分式性质及运算【基础精讲】 一、分式的概念1、正确理解分式的概念: 【例1】有理式(1)x 1; (2)2x ; (3)yx xy +2; (4)33y x -;(5)11-x ;(6)π1中,属于整式的有: ;属于分式的有: 。
.2、判断分式有无意义关键是看分母是否为零. (1) 例如,当x 为 时,分式()()()322-++x x x 有意义.错解:3≠x 时原分式有意义. (2) 不要随意用“或”与“且”。
例如 当x____时,分式有意义?错解:由分母,得3、注意分式的值为零必受分母不为零的限制.当x 时,分式11-x x +有意义.当x 时,分式11-x x +无意义.当x 时,分式112-x x -值为0.二、分式的基本性质:1、分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. (1) 分式的基本性质是分式恒等变形的依据,它是分式的约分、通分、化简和解分式方程基础,因此,我们要正确理解分式的基本性质,并能熟练的运用它.理解分式的基本性质时,必须注意:①分式的基本性质中的A 、B 、M 表示的都是整式. ②在分式的基本性质中,M ≠0.③分子、分母必须“同时”乘以M (M ≠0),不要只乘分子(或分母).④性质中“分式的值不变”这句话的实质,是当字母取同一值(零除外)时,变形前后分式的值是相等的。
但是变形前后分式中字母的取值范围是变化的. (2)注意:①根据分式的基本性质有:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.②分式的基本性质是一切分式运算的基础,分子与分母只能同乘以(或除以)同一个不等于零的整式,而不能同时加上(或减去)同一个整式 【例3】下列变形正确的是( ).A .a b a b c c -++=-; B .a a b c b c -=--- C .a b a ba b a b-++=--- D .a b a b a b a b --+=-+-【例4】 如果把分式52xx y-中的,x y 都扩大3倍,那么分式的值一定( ) .A.扩大3倍B.扩大9倍C. 扩大6倍D.不变 2、约分约分是约去分式的分子与分母的最大公约式,约分过程实际是作除法,目的在于把分式化为最简分式或整式,根据是分式的基本性质.【例5】(1)化简222a b a ab -+的结果为( )A .b a - B .a b a - C .a b a + D .b -(2)化简2244xy y x x --+的结果()A .2x x + B .2x x - C .2y x + D .2yx -(3)化简62962-+-x x x 的结果是()A .23+x B .292+x C .292-xD .23-x3、通分通分的依据是分式的基本性质,通分的关键是确定最简公分母.最简公分母由下面的方法确定:(1)最简公分母的系数,取各分母系数的最小公倍数; (2)最简公分母的字母,取各分母所有字母的最高次幂的积; 三、分式的运算 1、分式运算时注意:(1)注意运算顺序.例如,计算aaa a +-⋅+÷-31)3(11,应按照同一级运算从左到存依次计算的法则进行.错解:原式2)1(1)1(11a a a -=-÷-=(2)通分时不能丢掉分母.例如,计算11---x x x,出现了这样的解题错误:原式=11-=--x x .分式通分是等值变形,不能去分母,不要同解方程的去分母相混淆; (3)忽视“分数线具有括号的作用”:分式相减时,若分子是多项式,其括号不能省略. (4)最后的运算结果应化为最简分式.2、分式的乘除注意分式的乘除法应用关键是理解其法则. (1)先把除法变为乘法;(2)接着对每个相乘的分式的分子、分母进行因式分解,当然有乘方运算要先算乘方,然后同其它分式进行约分;(3)再把每个分式的分子与分子相乘、分母与分母相乘; (4)最后还应检查相乘后的分式是否为最简分式. 3、加减的加减1)同分母分式加减法则:分母不变,分子相加减。
分式典型易错题难题

分式一分式的概念一般地,假如A ,B 暗示两个整式,并且B 中含有字母,那么式子A B叫做分式.整式与分式统称为有理式.在懂得分式的概念时,留意以下三点: ⑴分式的分母中必定含有字母; ⑵分式的分母的值不为0;⑶分式必定是写成两式相除的情势,中央以分数线离隔. 与分式有关的前提①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=0B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><0B A )⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)增根的意义:(1)增根是使所给分式方程分母为零的未知数的值. (2)增根是将所给分式方程去分母后所得整式方程的根. 一.分式的根本概念【例1】 鄙人列代数式中,哪些是分式?哪些是整式?1t ,(2)3x x +,2211x x x -+-,24x x +,52a ,2m ,21321x x x +--,3πx -,323a a a+【例2】 代数式22221131321223x x x a b a b abm n xy x x y +--++++,,,,,,,平分式有( ) 演习:下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有:.二.分式有意义的前提【例3】 求下列分式有意义的前提:⑴1x⑵33x +⑶2a b a b +--⑷21n m +⑸22x y x y ++⑹2128x x --⑺293x x -+【例4】 ⑴x 为何值时,分式1111x ++有意义?⑵要使分式241312a a a-++没有意义,求a 的值.【例5】 x 为何值时,分式1122x++有意义?x 为何值时,分式1122x x+-+有意义?【例6】 若分式2501250x x-++有意义,则x ;若分式25011250x x-++无意义,则x ;【例7】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ; ⑵ 若分式216(3)(4)x x x --+无意义,则x ;演习:当x 有何值时,下列分式有意义 1.(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-2.要使分式23xx -有意义,则x 须知足的前提为. 3.如有33a a-意义,则33a a -( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不合错误4.x 为何值时,分式29113x x-++有意义?三.分式值为零的前提【例8】 当x 为何值时,下列分式的值为0?⑴1x x +⑵211x x -+⑶33x x --⑷237x x ++⑸2231x x x +--⑹2242x x x-+(7)4|1|5+--x x (8)223(1)(2)x x x x --++【例9】 假如分式2321x x x -+-的值是零,那么x 的取值是.【例10】 x 为何值时,分式29113x x-++分式值为零?演习:1.若分式41x x +-的值为0,则x 的值为.2.当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--x x (3)653222----x x x x (4)562522+--x x x(5)213x x -+(6)2656x x x ---(7)221634x x x -+-(8)288xx +(9)2225(5)x x --(10)(8)(1)1x x x -+-四、关于分式方程的增根与无解它包含两种情况:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例解释如下: 解方程2344222+=---x x x x解方程22321++-=+-xxx x . 例3若方程32x x --=2mx-无解,则m=——.(1)当a 为何值时,关于x 的方程223242ax x x x +=--+会产生增根 (2)若将此题“会产生增根”改为“无解”,即:a 为何值时,关于x 的方程223242ax x x x +=--+无解? 演习:1.当k 为何值时,方程x x kx --=-133会消失增根? 2.已知分式方程3312x ax x +++=有增根,求a 的值. 3.分式方程x x m x x x -+-=+111有增根x =1,则m 的值为若干? 4.a 为何值时,关于x 的方程4121x x x ax x -+=+-()有解? 5.关于x 的方程3-x x -2=3-x m 有一个正数解,求m 的取值规模.6.使分式方程x x m x --=-3232产生增根的m 的值为___________7.当m 为何值时,去分母解方程2x-2 +mxx 2-4 =0会产生增根.8.若方程4412212--=--+x xx k x 会产生增根,则( )A.2±=kB.k=2C.k=-2D.k 为任何实数 9.若解分式方程21112x x m x x x x+-++=+产生增根,则m 的值是()A. -1或-2B. -1或2C. 1或2D. 1或-2 10.已知关于x 的方程xmx x --=-323有负数解,求m 的取值规模. 11.当m为何值时,关于x 的方程21112x x m x x x ---=+-无实根 分式二分式的基赋性质及有关题型1.分式的基赋性质:MB MA MB MA BA ÷÷=⨯⨯=(M 不为0)2.分式的变号轨则:bab a b a ba=--=+--=-- 【例11】 分式基赋性质:(1)()2ab ba = (2)()32x x xy x y =++(3)()2x y x xyxy ++= (4)()222x y x y x xy y +=--+【例12】 分子.分母的系数化为整数不转变分式的值,把分子.分母的系数化为整数. (1)y x y x 41313221+-(2)b a b a +-04.003.02.0(3)yx y x 5.008.02.003.0+-(4)b a ba 10141534.0-+演习:不转变分式的值,把下列各式的分子与分母的各项系数都化为整数. ⑴1.030.023.20.5x y x y+- ⑵32431532x y x y -+ 【例13】 分子.分母的首项的符号变成正号不转变分式的值,把下列分式的分子.分母的首项的符号变成正号.(1)yx y x --+-(2)b a a---(3)ba ---演习:212a a ---; (2)322353a a a a -+--- 【例14】 未知数同时扩展或缩小雷同的倍数1.若x ,y 的值扩展为本来的3倍,下列分式的值若何变更?⑴x y x y+-⑵xyx y-⑶22x yx y -+2.若x ,y 的值都缩小为本来的,下列分式的值若何变更?(1)y x y x 2332-+ (2)yx 54xy 2- (3)22x yx y -+ 演习:1.假如=3,则=( )A .B . xyC . 4D .2.假如把的x 与y 都扩展10倍,那么这个代数式的值( )A . 不变B . 扩展50倍C . 扩展10倍D . 缩小到本来的3.若分式中的a.b 的值同时扩展到本来的10倍,则分式的值( )A . 是本来的20倍B . 是本来的10倍C . 是本来的D . 不变4.假如把分式中的x 和y 的值都缩小为本来的,那么分式的值( )A . 扩展3倍B . 缩小为本来的C . 缩小为本来的D . 不变5.假如把分式中的x 和y 都扩展为本来的4倍,那么分式的值( )A . 扩展为本来的4倍B . 缩小为本来的C . 扩展为本来的16倍D . 不变6.若把分式中的x 和y 都扩展到本来的3倍,那么分式的值( )A . 扩展3倍B . 缩小3倍C . 缩小6倍D . 不变7.假如把yx y322-中的x 和y 都扩展5倍,那么分式的值( )A 扩展5倍B 不变C 缩小5倍D 扩展4倍8.若x.y 的值均扩展为本来的2倍,则下列分式的值保持不变的是( )A.yx 23 B.223yxC.y x 232D.2323yx【例15】 直接通分化简1.已知:511=+yx,求y xy x y xy x +++-2232的值.2.已知:311=-ba,求aab b b ab a ---+232的值.3.若3,111--+=-ba ab b a b a 则的值是若干? 演习: 1.已知711=+y x ,求xy y x xyy x 52++-+ 2.已知111=-ba,求bab a bab a ---+2232的值3.已知511=+y x ,求yxy x yxy x +++-2232的值.(8分)4.已知:21=-xx ,求221x x +的值.5.假如b a ba+=+111,则=+baa b . 【例16】 先化简成x+x 1或x x 1-,再求值1.若0132=+-x x ,求x+x 1,x 2+21x,x x 1-的值.2、已知:0132=+-a a ,试求)1)(1(22a a a a --的值.3.已知:31=+x x ,求1242++x x x 的值.演习已知:21-=x x ,求12242++x x x 的值.【例17】 应用非负性求分数的值1.若0)32(|1|2=-++-x y x ,求yx 241-的值.2.若0106222=+-++b b a a ,求ba b a 532+-的值.演习:若0)32(|1|2=-++-x y x ,求yx 241-的值.若0136422=+-++b b a a ,求ba b a 533+-的值.【例18】 求待定字母的值1.若111312-++=--x Nx M x x ,试求N M ,的值.2.已知:121)12)(1(45---=---x Bx A x x x ,试求A .B 的值. 演习:1.已知:222222y x y xy y x y x y x M --=+---,则M =_________. 2.若已知132112-+=-++x x x B x A (个中A.B 为常数),则A=__________,B=__________;【例19】 较难分式化简求值演习:【例20】 代数式值为整数1.当a 为何整数时,代数式24+a 的值是整数,并求出这个整数值. 2.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值. 演习:1.当a 为何整数时,代数式2-318a 的值是整数,并求出这个整数值. 2.当a 为何整数时,代数式36519++a a 的值是整数,并求出这个整数值.分式三一.分式的意义及分式的值例题1.当x =3时,分式bx ax 352-+的值为0,而当x =2时,分式无意义,则求ab 的值时若干?例题2.不管x 取何值,分式mx x +-212总有意义,求m 的取值规模.二.有前提的分式的化简求值(一).着眼全局,整体代入 例3.已知22006a b +=,求ba b ab a 421212322+++的值.例4.已知311=-yx,求yxy x yxy x ---+2232的值.二.奇妙变形,结构代入例5. 已知a b c ,,不等于0,且0a b c ++=, 求)11()11()11(ba c c abc b a +++++的值.例6.若b + 1c=1,c + 1a =1,求1ab b +.三.参数帮助,多元归一 例7.已知432z y x ==,求222z y x zx yz xy ++++的值..四.打破通例,倒数代入 例8.已知41=+x x ,求1242++x x x 的值.例9.已知51,41,31=+=+=+c a ac c b bc b a ab ,求bc ac ab abc ++的值.(五)活用(完整平方)公式,进行配方. 例10.设实数y x ,知足0256822=++++y x y x ,求y x xyxy x y x 24442222+-++-的值. (六)大胆消元,解子女入例11.已知a +b -c=0,2a -b+2c=0(c ≠0),求cb a cb a 235523+-+-的值.三. 无前提的分式的求值盘算例10.盘算:)1(1+a a +)2)(1(1++a a +)3)(2(1++a a +…+)2006)(2005(1++a a .例题11.盘算)2009)(2007(2)5)(3(2)3)(1(2+++++++++x x x x x x四.分式方程的无解及增根(1)给出带参数的分式方程求增根例12.关于x 的方程2346222+=-+-x x x x 有增根.则增根是( ) A 2 B.-2 C.2或-2 D. 没有(2)已知分式方程的增根求参数的值例13. 分式方程x x m x xx -+-=+111有增根x =1,则m 的值为若干?(3)已知分式的的有增根求参数值例14.已知分式方程3312x ax x +++=有增根,求a 的值.(4)已知分式方程无解求参数的值例 15(2007湖北荆门)若方程32x x --=2mx-无解,则m=——————.例16.当a 为何值时,关于x 的方程223242ax x x x +=--+①无解? (5)已知分式方程解的情况求参数的规模 例17.已知关于x 的方程xmx x --=-323有负数解,求m 的取值规模. 五.浏览懂得型问题例18.浏览下列材料方程11x +-1x =12x --13x -的解为x =1,方程1x -11x -=13x --14x -的解为x =2,方程11x --12x -=14x --15x -的解为x =3,…(1)请你不雅察上述方程与解的特点,写出能反应上述方程一般纪律的方程,并求出这个方程的解.(2) 依据(1)中所求得的结论,写出一个解为-5的分式方程.例19.浏览下列材料:关于x 的分式方程x +x1=c +c 1的解是x 1=c,x 2=c1;x -x 1= c -c 1,即x +x 1-=c+c 1-的解是x 1=c,x 2=-c1;x +x 2=c +c 2的解是x 1=c,x 2=c 2;x +x3=c +c 3的解是x 1=c,x 2=c3.(1) 请不雅察上述方程与解的特点,比较关于x 的方程x +xm =c +cm (m ≠0)与它的关系,猜测它的解是什么,并应用方程解的概念进行验证.(2) 由上述的不雅察,比较,猜测,验证可以的出结论;假如方程的左边是未知数与其倒数的倍数的和,方程右边情势与左边的完整雷同,只是把个中未知数换成某个常数. 那请你应用这个结论解关于x 的方程:x +12-x =a+12-a 练一练:1、若方程87178=----xx x 有增根,则增根是 . 2.m 取时,方程323-=--x m x x 会产生增根; 3.若关于x 的方程x a cb x d-=- 有解,则必须知足前提( )A. a ≠b ,c ≠dB. a ≠b ,c ≠≠-b , c ≠≠-b , c ≠-d 4. 若分式方程xa xa x +-=+-321有增根,则a 的值是5.当m=______时,方程233x m x x =---会产生增根.6.若方程42123=----xx x 有增根,则增根是. 7.关于x 的分式方程442212-=++-x x k x 有增根x=-2,则k=. 8..关于x 的方程322133x mxx x-++=---无解,m 的值为_______________. 9.若a 使分式241312a aa-++没有意义,那么a 的值是()A .0B .13-或0C .±2或0D .15-或0 10.分式111a a--有意义,那么a 的取值规模是11.分式265632x x x --+的值为0,则x 的值为()A .3223-或B .3223-或C .23-D .3212.已知111x x x---的值是14-,那么x 的值是13.已知2220202a bab a ab b a b-≠+-=+,,那么的值为14.已知2222323423y x y z x zxy yz xz -+==++,则的值是 15.已知222225032x y z x zy xy yz zx-+==≠++,那么的值为16.已知1143404323a ab b a a b a ab b++≠+==-+-且,那么17.已知232132xy x xy y x y x y xy+-=----,则的值为() A .53B .53-C .35D .35- 18.若1124272a ab b a b a ab b---=+-,则的值是 19.盘算: 1(1)a a ++1(1)(2)a a +++1(2)(3)a a +++…+1(2005)(2006)a a ++ 20.若x +y =4,xy =3,求y x +x y的值. 2511=+y x ,求y xy x y xy x +++-2232的值. 2211=+yx ,求分式y x xy y y x x 33233++++的值 23.若1=ab ,求221111b a +++的值24.已知23=-+b a b a ,求分式abb a 22-的值 .25. 已知yx =34,求x x y ++y x y--x x y +的值. 26. 若2132=+-x x x ,求分式1242++x x x 的值. 27. 若ac z c b y b a x -=-=-,求x+y+z 的值 28. 已知abc =1,求证:1111=++++++++c ac c b bc b a ab a . 29.关于x 的方程3-x x -2=3-x m 有一个正数解,求m 的取值规模. 30.假如记()x f x x y =+=221,并且()1f 暗示当x=1时y 的值,即f(1)=2211211=+;f(12)暗示当x=12时y 的值,即f(12)=221()12151()2=+;…那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n )= (成果用含n 的代数式暗示).。
分式方程中参数问题的四种考法(解析版)(人教版)

1】.关于
x
的方程
3x x3
2
3
m
x
的解不小于1,则
m
的取值范围为
.
【答案】 m 7 且 m ¹ - 9
【分析】先解分式方程可得 x 6 m ,由题意得 6 m 1,再由 x 3,得 6 m 3 ,求
出 m 的取值范围即可.
【详解】解:
3x x3
2
3
m
x
,
3x 2 x 3 m ,
专题 09 分式方程中参数问题的四种考法
类型一、整数解问题求参数
x m 1
例.若关于
x
的不Hale Waihona Puke 式组x21
x 4
1
有解且至多有
5
个整数解,且关于
y
的方程
y
1
1
3
my 1 y
的解为整数,则符合条件的整数
m
的个数为(
)
A.0
B.1
C.2
D.3
【答案】C
x m 1
【分析】先解出不等式组的解集,然后根据不等式组
解不等式 y 3 2 y a 得: y<2a 3,
∴10 y 2a 3
∵不等式组至多有 3 个整数解,
∴ 2a 3 13 ,
∴a 8.
方程
x
1
3
x 3
a x
1
,
1 x a x 3 ,解得: x a 4 2
∵分式方程有非负整数解,
∴ x 0 (x 为非负整数)且 x 3,
情况二:当整式方程有解,是分式方程的增根,即 x=2 或 x=6, ①当 x=2 时,代入 (m 1)x 6 0 ,得: 2m 8 0
2020年中考数学考点总动员第04讲 分式(含答案解析)

第04讲 分式1.分式的基本概念(1)形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子叫做分式.(2)当B≠0时,分式A B 有意义;当B =0时,分式A B 无意义;当A =0 时,分式AB 的值为零.2.分式的性质(1)分式的分子与分母都乘(或除以)一个不为零的整式,分式的值不变,即A B =A×M B×M ,A B =A÷MB÷M ;(M 是不等于零的整式)(2)分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.即A B =--A B =-A -B =-A-B .3.最简分式:如果一个分式的分子与分母没有公因式,那么这个分式叫做最简分式. 4.分式的运算(1)通分:把几个异分母分式化为与原分式的值相等的同分母分式,这种变形叫做分式的通分,通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母. (2)确定最简公分母:确定方法:①取各分式的分母中系数的最小公倍数;②各分式的分母中所有字母或因式都要取到;③相同字母(或因式)的幂取指数最大的;④所得的系数的最小公倍数与各分母(或因式)的最高次幂的积即为最简公分母. (3)约分:把分式中分子与分母的___公因式____约去,这种变形叫做约分,约分的根据是分式的基本性质. (4)分式的运算法则: ①加减法:同分母加减法:a c ±b c =_a±bc _;异分母加减法:b a ±d c =bc±abac .②乘除法:a b ·c d =ac bd ; a b ÷c d =_adbc __. ③乘方:(a b )n =a nbn .考点1: 分式的化简【例题1】下列变形错误的是( )A.46323224y y x y x -=-B.1)()(33-=--x y y xC.9)(4)(27)(12323b a x b a b a x -=--D.y x a xy a y x 3)1(9)1(32222-=-- 【答案】D【解析】:A 选项分子和分母同时除以最大公因式322x y ;B 选项的分子和分母互为相反数;C 选项分子和分母同时除以最大公因式()3a b -,D 选项正确的变形是22223(1)9(1)3x y a x xy a y-=-所以答案是D 选项 考点2: 分式的化简【例题2】(2018包头)化简;22442x x x x-++÷(42x +﹣1)= . 【答案】﹣2x x-. 【解析】:原式=2(2)(2)x x x -+÷(42x +﹣22x x ++)=2(2)(2)x x x -+÷22x x -+ =2(2)(2)x x x -+•2(2)x x +-- =﹣2x x-, 故答案为:﹣2x x-. 考点3:分式的加减乘除运算【例题3】先化简,再求值:9-3a 2a -4÷(a +2-5a -2),其中a 满足a 2-a -6=0.【解答】解:原式=3(3-a )2(a -2)÷a 2-9a -2=3(3-a )2(a -2)·a -2(a +3)(a -3)=-32(a +3).∵a 2-a -6=0,且a ≠2,±3,∴a =3(舍去)或a =-2. ∴当a =-2时,原式=-32.归纳:1.分式化简时,应注意:当自主确定代数式中字母的取值时,一定要注意所选取的值不能使原分式中的分母为0;另外对于所给值是代数式时,可考虑整体代入思想计算以达到简便计算的目的.2.分式化简求值的一般步骤:第一步:若有括号的,先计算括号内的运算,括号内如果是异分母加减运算时,需将异分母分式通分化为同分母分式运算,然后将分子合并同类项,把括号去掉,简称:去括号;第二步:若有除法运算的,将分式中除号(÷)后面的式子分子、分母颠倒,并把这个式子前的“÷”变为“×”,保证几个分式之间除了“+、-”就只有“×或·”,简称:除法变乘法;第三步:计算分式乘法运算,利用因式分解、约分来计算乘法运算,简称:先算乘法;第四步:最后按照式子顺序,从左到右计算分式加减运算,直到化为最简形式,简称:再算加减; 第五步:将所给数值代入求值,代入数值时要注意使原分式有意义,简称:代入求值.一、选择题:1. (2018•金华)若分式的值为0,则x 的值为( )A .3B .﹣3C .3或﹣3D .0【答案】A【解答】由分式的值为零的条件得x ﹣3=0,且x+3≠0, 解得x=3. 故选:A .2. (2018•台州)计算,结果正确的是( )A .1B .xC .D .【答案】A【解答】原式==1,故选:A .3. (2019•江苏扬州•3分)分式x-31可变形为( D ) A.x +31 B.-x +31 C.31-x D.31--x【答案】:故选B.【解析】:分式的分母整体提取负号,则每一个都要变号4.(2019•河北省•2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④【答案】B【解析】∵﹣=﹣=1﹣=又∵x为正整数,∴≤x<1故表示﹣的值的点落在②5. (2019•四川省达州市•3分)a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…,依此类推,a2019的值是()A.5 B.﹣C.D.【答案】D【解答】解:∵a1=5,a2===﹣,a3===,a4===5,…∴数列以5,﹣,三个数依次不断循环,∵2019÷3=673,∴a2019=a3=,故选:D.二、填空题:6. (2019•江苏泰州•3分)若分式121x有意义,则x的取值范围是.【答案】 x≠1 2【解答】解:根据题意得,2x﹣1≠0,解得x≠12.故答案为:x≠12.7. (2018•襄阳)计算﹣的结果是.【答案】【解答】原式===,故答案为:.8. (2018·四川自贡·4分)化简+结果是.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+=故答案为:9. 先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用(m2﹣1)元,(m为正整数,且m2﹣1>100)如果多买60支,则可按批发价付款,同样需用(m2﹣1)元.设初三年级共有x名学生,则①x的取值范围是;②铅笔的零售价每支应为元;③批发价每支应为元.(用含x、m的代数式表示).【分析】①关系式为:学生数≤300,学生数+60≥301列式求值即可;②零售价=总价÷学生实有人数;③批发价=总价÷(学生实有人数+60).【解答】解:①由题意得:x≤300,x+60≥301,∴241≤x ≤300;②铅笔的零售价每支应为元;③批发价每支应为元.三、解答题:10. (2018•玉林)先化简再求值:(a ﹣)÷,其中a=1+,b=1﹣.【分析】据分式的运算法则即可求出答案,【解答】:当a=1+,b=1﹣时,原式=•=•===11.(2017张家界)先化简(1﹣)÷,再从不等式2x ﹣1<6的正整数解中选一个适当的数代入求值.【分析】先把括号里的式子进行通分,再把后面的式子根据完全平方公式、平方差公式进行因式分解,然后约分,再求出不等式的解集,最后代入一个合适的数据代入即可.【解答】解:(1﹣)÷=×=,∵2x ﹣1<6, ∴2x <7,∴x <,把x=3代入上式得:原式==4.12. (2018·遵义)化简分式(a 2-3a a 2-6a +9+23-a )÷a -2a 2-9,并在2,3,4,5这四个数中取一个合适的数作为a 的值代入求值.【解析】:原式=[a (a -3)(a -3)2-2a -3]÷a -2(a +3)(a -3) =(a a -3-2a -3)·(a +3)(a -3)a -2 =a -2a -3·(a +3)(a -3)a -2=a +3.∵a ≠-3,2,3, ∴a =4或a =5.∴当a =4时,原式=7.(或当a =5时,原式=8.)13. (2018·石家庄模拟)化简a a 2-4÷a 2-3a a +2-12-a ,并求值,其中a 与2,3构成△ABC 的三边,且a 为整数.【解析】:原式=a (a +2)(a -2)·a +2a (a -3)+1a -2=1(a -2)(a -3)+a -3(a -2)(a -3)=1a -3. ∵a 与2,3构成△ABC 的三边, ∴1<a<5. 又∵a 为整数, ∴a =2,3,4.又∵a ≠±2且a ≠3,∴a =4. ∴当a =4时,原式=1. 14. 问题探索:(1)已知一个正分数(m >n >0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论.(2)若正分数(m >n >0)中分子和分母同时增加2,3…k(整数k >0),情况如何? (3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.【分析】(1)使用作差法,对两个分式求差,有﹣=,由差的符号来判断两个分式的大小.(2)由(1)的结论,将1换为k ,易得答案,(3)由(2)的结论,可得一个真分数,分子分母增大相同的数,则这个分数整体增大;结合实际情况判断,可得结论.【解答】解:(1)<(m >n >0)证明:∵﹣=,又∵m >n >0,∴<0,∴<.(2)根据(1)的方法,将1换为k,有<(m>n>0,k>0).(3)设原来的地板面积和窗户面积分别为x、y,增加面积为a,由(2)的结论,可得一个真分数,分子分母增大相同的数,则这个分数整体增大;则可得:>,所以住宅的采光条件变好了.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【一题多解】分式求值问题
是不是一提起代数式中的一题多解问题,就会感觉满脑子昏昏沉沉,像一头扎进了无穷无尽的字母与符号中……
代数式其丰富的内涵,多变的方法,灵活的思路让领略过其威力的人不禁暗暗称绝.
今天,小魔方就来介绍代数问题的冰山一角——“分式求值”问题.
例题
哇,看到这个式子是不是有些吓一跳呢,分式中分母的四次项的确有些可怕,不过,相信在数学王国的套路中摸爬滚打了n年的我们,还是能做到兵来将挡,水来土掩的,不信,请看:
解法一:整体代入法
其实遇到这种项数很多或次数很大的代数式时,最重要的是找到一块跳板,可以将要求的大型代数式化成小型的一个个碎块,而一般使用的碎块都包含在题目所给出的前提条件中.有些时候可能需要多次化简.但,不要放弃,已经被数学王国锻炼出来的我们知道这是必经之路.
解法二:降次法
这在分子分母出现高次项的分式计算中非常常见,也是应对它们的绝佳武器.
不过除了应对高次项的降次方法,数学王国的套路大法仓库里还有我们需要的逆向思维,如分式方程中的倒数法.欲知后事如何,请看下法:
解法三:倒数法
相比于几何,代数中的一题多解问题就更多且套路更深了,但是掌握了以上三种方法,你就获得了打开分式求值问题的钥匙,在对待基础的求值上无往而不利.
End。