初中数学竞赛条件分式求值的方法与技巧(含答案)
第一讲 分式运算中的常用技巧

第一讲 分式运算中的常用技巧在分式运算中,若能认真观察题目结构特征,灵活运用解题技巧,选择恰当的运算方法,常常收到事半功倍的效果。
现就分式运算中的技巧与方法举例说明。
一、分组通分法: 例1、计算:xy xy x y x y x y x y x y x --+-----+-24352思路点拔:如果我们将四个分式同时通分,运算量较大且容易出错,仔细观察会发现第一、三项,第二、四项分别为同分母分式,因此先将同分母分式相加减,然后再通分,能简化运算。
※例2、计算:500099009999500010050002002250001001122222222+-++-+++-++-k k k (上海市“宇振杯”竞赛题)思路点拔 首尾配对,考查一般情形,把数值计算转化为分式的运算:2500010010000200250001002001005000100500010010020010020010050001005000)100(100)100()100(5000100222222222222222222=+-+-=+--+++-=++--+-+++-=+----++-n n n n n n nn n n n n n n nn n n n n n n n n n 二、整体通分法:例3.化简:21a a --a-1思路点拔:本题是一个分式与整式的加减运算.如能把(-a-1)看作一个整体,并提取“-”后在通分会使运算更加简便.通常我们把整式看作分母是1的分式. 三、逐项通分法 例4.计算4214121111xx x x ++++++- 思路点拔 :本题中原所有分式的最简公分母是()()()()241x 1x 1x 1x -+++,若按此通分解答过程的繁琐性就不用说了;如果我们进行分组、分步通分就不会因为出现“庞大”的分子导致在计算中出错;比如,若我们先计算111x 1x+-+,最简公分母为()()1x 1x -+即21x -,则111x 1x +-+2221x 1x 21x 1x 1x +-=+=---,后面的如法炮制,过程清楚,计算简便. 四、先约分,后通分例5.计算:2262a a a a +++22444a a a -++思路点拔 :按常规的解法本题应先找出两个分式分母的最简公分母()2x x 2+后通分,化成同分母的分式后再相加;细心的同学会发现,若把两个分式的分子、分母分解因式后,先约分就已经是同分母了,就“省去”了通分的过程;相比较先约分、再相加显得更为简捷. 五、裂项相加法 例6、 已知122432+--=--+x Bx A x x x ,其中A 、B 为常数,则4A -B 的值为( )(江苏省竞赛题)A .7B .9C .13D .5思路点拨 对等式右边通分,比较分子的对应项系数求出A 、B 的值. 例7、化简:111.....(1)(1)(2)(99)(100)x x x x x x ++++++++. 思路点拔 :本题的多个分式相加,无法通分,而式子的特点是:每个分式的分母都是两个连续整数的积(若a 是整数),联想到111)1()1()1(1+-=+-+=+x x x x x x x x ,这样可抵消一些项. 例8.化简:))(())(())((a c b c ba abc b a c c a b a c b -----------思路点拔 :本题采用通分的方式,计算量大,式子的特点是:每个分式的分子可用分母的两个因式的差表示,如:ca b a c a b a b a c a c a b a c b ---=-----=---11))(()()())((a b c b a b c b c b a b a b c b a c ---=-----=---11))(()()())((bc a c a c b c a c b c a c b c b a ---=-----=---11))(()()())((※例9.化简:222()()()()()()a bcb ac c aba b a c b c b a c a c b ---++++++++.思路点拔 :本题采用通分的方式,计算量大,仔细观察式子的特点,发现每个分式的分母是两个因式的积的形式,可考虑把分子通过添项的方法化成分母的两个因式的和或差的形式,即:ba bc a a c a b a c a b b a a c a b a bc ab ab a c a b a bc a +-+=+++-+=+++-+=++-))(()()())(()()())((22cb ca b b a b c b b a c c b b a b c b ac bc bc b a b c b ac b +-+=+++-+=+++-+=++-))(()()())(()()())((22ac ab c c b c a c b c a a c c b c a c ab ac ac c b c a c ab c +-+=+++-+=+++-+=++-))(()()())(()()())((22六、分式的换元化简 ※例10.化简:)2)(2())(()2)(2())(()2)(2())((z y x x z y z y z x x z y z y x y x y z z y x z y x x z x y +--+--+-+-+--+-++--- 思路点拔:注意到分母与分子的项与项之间的关系,如x -2y+z=(x -y)-(y -z),x+y-2z=(y-z)-(z-x), y+z-2x=(z-x)-(x-y)采用换元法,设x-y=a,y-z=b,z-x=c,原分式可化为:))(())(())((b a a c bca c cb bac b b a ac ---+---+---,再通分,可简化运算。
条件分式求值的常用方法整理精选汇总

条件分式求值的常用方法整理精选汇总条件分式是一种数学表达式,具有形如$\frac{P(x)}{Q(x)}$的形式,其中$P(x)$和$Q(x)$是多项式。
在计算条件分式的值时,我们需要将$x$带入到分式中,首先计算分子$P(x)$及分母$Q(x)$的值,然后再计算两者的比值。
为了理解条件分式求值的常用方法,我们将从以下几个方面进行整理精选汇总:1.理解分子与分母的含义:分子$P(x)$是条件分式的分子部分,通常是一个与$x$相关的多项式。
分母$Q(x)$是条件分式的分母部分,也是一个与$x$相关的多项式。
理解分子和分母的含义对于正确进行求值非常重要。
2.找出分式的定义域:在进行条件分式求值之前,我们必须确定$x$的取值范围,即分式的定义域。
如果$x$的一些取值会导致分母等于0,那么这些值必须被排除在求值的范围之外。
因此,我们需要找出使得$Q(x)$等于0的$x$值,并将这些值从求值范围中排除。
3.化简分式:在求值之前,我们可以尝试对分子和分母进行化简。
通过因式分解、提取公因式等方式,将分子和分母简化为最简形式,可以使得计算更加简洁明了。
4.将$x$带入分子和分母:一旦找到了适当的定义域,并将分式化简为最简形式,就可以开始将$x$的取值代入分子和分母。
对分子部分的多项式$P(x)$计算其值,再对分母部分的多项式$Q(x)$计算其值。
这样就得到了最终的条件分式。
需要注意的是,如果$x$的一些取值导致分母$Q(x)$等于0,那么这些取值必须被排除在求值范围之外。
5.检查结果的合理性:求得条件分式的值后,应当对结果进行检查,确保其在定义域范围内是合理的。
特别是需要注意的是,在进行有理函数求值时,有可能得到无理数或者是不可约分的分式,这些结果在定义域范围内可能是有效的,所以需要特别注意。
通过以上的步骤,我们可以正确地计算条件分式的值。
需要注意的是,在计算过程中要仔细检查每一步的操作,确保求值的正确性。
另外,如果定义域非常复杂或者分子、分母都有高次数的项时,求解条件分式可能需要更加复杂的技巧和方法,这就需要灵活运用数学知识来处理。
解答分式求值问题常用的小妙招

数学篇分式求值运算是初中代数的重要内容之一.由于分式的形式多样,分式求值问题也存在着多种不同的解法.下面介绍“引入参数”“拆项变形”“整体代入”“巧取倒数”这四种分式求值的方法,供同学们学习与参考.一、借助参数求分式的值在分式求值问题中,如果出现等比例式,就可以引入参数,将等比设成参数,将所有未知量都转换成含有参数的式子,再将之代入分式求得分式的值,这样求解过程将变得非常简单.例1若c 4=b 5=a 6≠0,则b +c a 的值为_____.分析:题中“c 4=b 5=a 6”是一个等比例式,可以设公共比为“t ”,这样可以得到c =4t ,b =5t ,a =6t ,然后将a 、b 、c 的值代入b +c a 即可求出值.解:∵c 4=b 5=a 6≠0,∴设c 4=b 5=a 6=t (t ≠0),∴有a =6t ,b =5t ,c =4t .将a =6t ,b =5t ,c =4t 代入b +c a 有:b +c a =5t +4t 6t =96=32,∴b +c a 的值为32.评注:该题中是一个等比例式,可以通过“引入参数”的方法将比值具体化,将a 、b 、c都替换成含有t 的参数,然后代入到b +c a 中,最后通过约分就能得到具体的数值.二、通过拆项求分式的值在求解比较复杂的分式时,我们可以根据具体的题目特征,对部分分式进行拆分,再配凑出较为容易计算的项来求解.结合题目的结论和条件往中间项配凑,往往能化繁为简,变难为易.例2若1a +1b =5a +b ,则b 2a 2+a 2b 2=_____.分析:待求分式“b 2a 2+a 2b 2”中的“b 2a 2”和“a 2b 2”互为倒数,如果能求出其中一个或知道“a b +b a ”,就可以对其进行平方后求得结果.再细看题目条件“1a +1b =5a +b”,需要配凑出“b a ”或“a b ”,我们可以考虑通分并整理得到“a 2+b 2=3ab ”.再将“a 2+b 2=3ab ”两边同除“ab ”,可得到“a b +b a =3”.解:∵1a +1b =5a +b ,通分并整理可得,a 2+b 2=3ab ,两边同除ab 可得,a b +b a =3,两边平方并整理可得,b 2a 2+a 2b 2=7.解答分式求值问题常用的小妙招江苏省盐城市新洋初级中学王伟解题指南19数学篇评注:此题看起来比较复杂,但是待计算的“b 2a 2+a 2b 2”是非常对称的,可以考虑由“a b +b a ”变形得出.通过通分找出a 、b 的其他数量关系“a 2+b 2=3ab ”,再同除ab 得到需要的“a b +b a ”.所以,本题的解题思路是由两端往中间变换.三、通过整体代换求分式的值整体代入的方法一般用于比较复杂的题目中,这类题目往往有共同的“局部”,解题时将共同的“局部”视为一个整体,然后直接整体代入求值.这种方法可以大大减少计算量,降低解题难度.例3若22y 2+3y +7的值为14,则14y 2+6y -1的值为().A.1 B.-1 C.-17 D.15分析:仔细观察条件“22y 2+3y +7=14”和结论“14y 2+6y -1”,发现有公共部分“2y 2+3y ”,可以转化为4y 2+6y =2(2y 2+3y ).若能计算出“2y 2+3y ”,则整个题目就能迎刃而解.解:∵22y 2+3y +7的值为14,∴22y 2+3y +7=14,∴2y 2+3y =1,∴4y 2+6y =2(2y 2+3y )=2×1=2,∴14y 2+6y -1=12-1=1,即14y 2+6y -1=1.∴此题选择A 项.2四、巧取倒数求分式的值倒数法往往出现在分数式的化简求值问题中.当分母相对分子而言比较复杂时,我们可以采用取倒数的方法将分式简单化,通过变形整理后得到“倒数”的具体值,再次通过“倒数法”还原待求值.例4若x +1x =3,则x 2x 4+x 2+1的值为().A.10 B.8 C.110 D.18分析:该题“x 2x 4+x 2+1”中分母比较复杂,若分子、分母调换一下位置,求解将会变得容易些.所以采用“巧取倒数法”解此题.设t =x 2x 4+x 2+1,则1t =x 4+x 2+1x 2=x 2+1x 2+1.而题目条件中“x +1x =3”通过平方可以轻松求出x 2+1x 2的值为7,从而求得1t =8,进而求解出t =18.解:设t =x 2x 4+x 2+1,则1t =x 4+x 2+1x 2=x 2+1x 2+1,∵x +1x =3,∴x 2+1x 2=(x +1x )2-2x ⋅1x =7,∴1t =x 2+1x 2+1=8,∴t =18,即x 2x 4+x 2+1=18.故D 项正确.评注:“取倒数法”可以简化解题过程,但是一定要记住在解题结束前再次采用“倒数法”将数值倒回来.分式的求值问题是一种常见问题.它涉及面广,技巧性强,也是中考中出现频率较高的问题.解答这类问题要认真分析条件式和解题指南。
条件分式求值的方法与技巧(含解析)-

条件分式求值的方法与技巧(含解析)-求条件分式的值是分式化简、计算的重要内容,解题要紧有以下三个方面:【一】将条件式变形后代入求值例1432z y x ==,z y x z y x +--+22求的值、 解:设432z y x ===k , 那么x =2k ,y =3k ,z =4k 、 ∴原式=545443224322==+-⨯-⨯+k k k k k k k k 、 说明:连比,常设比值k 为参数,这种解题方法叫参数法、 例2的值求b a b a b ab a +-=-+,0622、 解:由0622=-+b ab a 有〔a +3b 〕〔a -2b 〕=0,∴a +3b =0或a -2b =0,解得a =-3b 或a =2B 、当a =-3b 时,原式=233=+---bb b b ; 当a =2b 时,原式=3122=+--b b b b 、 【二】将求值变形代入求值、例3)11()11()11(,0cb a ac b b a c c b a +++++=++求的值、 解:原式=1)111(1)111(1)111(-+++-+++-++ac b a b a c b c b a c =3))(111(-++++a b c c b a ∵a +b +c =0,∴原式=-3、例431=+xx ,的值求1242++x x x 、 分析:∵1)1(111222224-+=++=++x x x x x x x , ∴可先求值式的倒数,再求求值式的值、 解:∵1)1(12224-+=++x x xx x 8132=-=,∴811242=++x x x 、 【三】将条件式和求值式分别变形后代入求值、例5yxy x y xy x y x ---+=-2232,311则分式的值为__________、 解法一:∵311=-yx , ∴y -x =3xy ⇒x -y =-3xy 、 ∵原式=xyy x xy y x 2)(3)(2--+- 53233)3(2=--+-=xy xy xy xy 、 解法二:将分子、分母同除以xy 〔≠0〕、 ∴原式=xy x y 121232---+ 5332323)11(2)11(23=--⨯-=-----=yx y x 分析:∵填空题不需要写出解题过程,故可取满足等式的特别值求解、解法三:取x =21,y =-1, )31211(=+=-yx 、 ∴原式.532/52/3)1()1(21221)1(2)1(213212==---⨯⨯--⨯--⨯⨯+⨯=注意:特别值法是解填空题或选择题常用的解题方法或技巧、取特别值要注意满足条件等式,其原那么是要便于计算、例6a 2+2a -1=0,求分式24)44122(22+-÷++--+-a a a a a a a a 的值、 解:原式=42])2(1)2(2[2-+⋅+--+-a a a a a a a 42)2()1()2)(2(2-+⋅+--+-=a a a a a a a a 42)2(42-+⋅+-=a a a a a aa a a 21)2(12+=+= ∵0122=-+a a ,∴122=+a a ,∴原式=1、注意:本例是将条件式化为“122=+a a ”代入化简后的求值式再求值,这种代入的技巧叫做整体代入、练习1、231=-x x ,求分式221xx +的值、 2、01342=+++x x x ,先化简后求xx x -+-3932的值、 3、化简求值43326512222-+---+÷+--a a a a a a a a ,其中a =-3、 4、abc =1,那么111++++++++c ca c b bc b a ab a 的值为________、 参考答案1、417; 2、0〔原式=x +3〕; 3、)42(522--=-a 原式; 4、1〔取a =b =c =1〕、。
八年级数学培优辅导讲义竞赛训练导学案 分式的运算 分式的化简与求值 含答案解析

八年级数学培优辅导讲义竞赛训练导学案分式的化简与求值典例剖析【例l 】 已知2310a a -+=,则代数式361a a +的值为 .(“希望杯”邀请赛试题)解题思路:目前不能求出a 的值,但可以求出13a a+=,需要对所求代数式变形含“1a a +”.【例2】 已知一列数1234567,,,,,,,a a a a a a a 且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为( ) A .648 B .832 C .1168 D .1944(五城市联赛试题) 解题思路:引入参数k ,把17a a 用k 的代数式表示,这是解决等比问题的基本思路.【例3】 3(0)x y z a a ++=≠.求222()()()()()()()()()x a y a y a z a z a x a x a y a z a --+--+---+-+-. (宣州竞赛试题) 解题思路:观察发现,所求代数式是关于x a y a z a ---、、的代数式,而条件可以拆成x a y a z a ---、、的等式,因此很自然的想到用换元法来简化解题过程.【例4】 已知1,2,3,xy yz zxx y y z z x===+++求x 的值. (上海市竞赛试题)解题思路:注意到联立等式得到的方程组是一个复杂的三元一次方程组,考虑取倒数,将方程组化为简单的形式.【例5】 不等于0的三个正整数,,a b c 满足1111a b c a b c++=++,求证:,,a b c 中至少有两个互为相反数.解题思路:,,a b c 中至少有两个互为相反数,即要证明()()()0a b b c c a +++=.(北京市竞赛试题)【例6】 已知,,a b c 为正整数,满足如下两个条件:①32;a b c ++=②14b c a c a b a b c bc ac ab +-+-+-++= 解题思路:本题熟记勾股定理的公式即可解答.(全国初中数学联赛试题)能力训练1.若a b c d b c d a ===,则a b c d a b c d-+-+-+的值是 .(“希望杯”邀请赛试题)2.已知2131xx x =-+,则24291x x x =-+ . (广东竞赛试题)3.若2221998,1999,2000a x b x c x +=+=++=且24abc =,则111c a b ab bc ac a b c++--- 的值为 .(“缙云杯”竞赛试题)4.已知232325x xy y x xy y +-=--,则11x y -= .5.如果111,1a b b c+=+=,那么1c a +=( ).A .1B .2C .12D .14(“新世纪杯”竞赛试题)6.设有理数,,a b c 都不为0,且0a b c ++=,则222222222111b c a c a b a b c+++-+-+-的 值为( ).A .正数B .负数C .零D .不能确定7.已知4360,270(0)x y z x y z xyz --=+-=≠,则22222223657x y z x y z++++的值为( ). A .0 B .1 C .2 D .不能确定8.已知211xx mx =-+,则36331x x m x -+的值为( ) A .1 B .313m + C .2132m - D .2131m + 9.设0a b c ++=,求222222222a b c a bc b ac c ab+++++的值.10.已知111x y z y z x+=+=+其中,,x y z 互不相等,求证2221x y z =. (天津市竞赛试题)11.设,,a b c 满足1111a b c a b c++=++, 求证2121212121211111n n n n n n a b c a b c ------++=++.(n 为自然数)(波兰竞赛试题)12.三角形三边长分别为,,a b c .(1)若a a b cb c b c a ++=+-,求证:这个三角形是等腰三角形; (2)若1111a b c a b c-+=-+,判断这个三角形的形状并证明.13.已知1ax by cz ===,求444444111111111111a b c x y z+++++++++++的值. (“华杯赛”试题)14.解下列方程(组): (1)18272938x x x x x x x x +++++=+++++; (江苏省竞赛试题)(2)596841922119968x x x x x x x x ----+=+----; (“五羊杯”竞赛试题)(3)111211131114x y z y z x z x y ⎧+=⎪+⎪⎪+=⎨+⎪⎪+=⎪+⎩.(北京市竞赛试题)B 级1.设,,a b c 满足0a b c ++=,0abc >,若a b c x a b c=++, 111111()()()y a b c b c c a a b=+++++,则23x y xy ++= .2.若0abc ≠,且a b b c c a c a b+++==,则()()()a b b c c a abc +++= . 3.设,,a b c 均为非零数,且2(),3(),4()ab a b bc b c ac a c =+=+=+,则a b c ++= .4.已知,,x y z 满足1x y z y z x z y x ++=+++,则222x y z y z x z y x+++++的值为 . 5.设,,a b c 是三个互不相同的正数,已知a c c bb a b a-==+,那么有( ). A .32b c = B .32a b = C .2b c = D .2a b =6.如果0a b c ++=,1114a b c ++=-,那么222111a b c++的值为( ).A .3B .8C .16D .207.已知2519910x x --=,则代数式42(2)(1)1(1)(2)x x x x -+----的值为( ).A .1996B .1997C .1998D .199998.若615325x y x y y x y x -==-,则222245623x xy y x xy y-+-+的值为( ). A .92 B .94C .5D .6 (全国初中数学联赛试题)9.已知非零实数,,a b c 满足0a b c ++=. (1)求证:3333a b c abc ++=; (2)求()()a b b c c a c a bc a b a b b c c a---++++---的值. (北京市竞赛试题)10.已知2410a a ++=,且42321322a ma a ma a++=++.求m 的值. (北京市竞赛试题)11.完成同一件工作,甲单独做所需时间为乙、丙两人合做所需时间的p 倍,乙单独做所需时间为甲、(天津市竞赛试题)12.设222222222,,222b c a a c b b a c A B C bc ac ab+-+-+-===,当3A B C ++=-时,求证:2002200220023A B C ++=.(天津市竞赛试题)13.某商场在一楼和二楼之间安装了一自动扶梯,以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯上走到二楼(扶梯行驶,两人也走梯).如果两人上梯的速度都是匀速的,每次只跨1级,且男孩每分钟走动的级数是女孩的2倍.已知男孩走了27级到达扶梯顶部,而女孩走了18级到达顶部. (1)扶梯露在外面的部分有多少级?(2)现扶梯近旁有一从二楼下到一楼的楼梯道,台阶的级数与自动扶梯的级数相等,两人各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘自动扶梯上楼(不考虑扶梯与楼梯间的距离).求男孩第一次追上女孩时走了多少级台阶?(江苏省竞赛试题)专题07 分式的化简求值例1 181提示:3363111aa a a +=+例2 A 提示:7665544332216a a a a a a a a a a a a k •••••==71a a =58328,得k=31±,又25443322151k a a a a a a a a a a =•••= 例3油x+y+z=3a ,得(x-a )+(y-a )+(z-a )=0.设x-a=m ,y-a=n ,z-a=p ,则m+n+p=0,即p=-(m+n ).原式=222p n m pm np mn ++++=()222p n m n m p mn ++++=()()2222n m n m n m mn ++++-=-21 例4 x=512 提示:由已知条件知xy ≠0,yz ≠0,取倒数,得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+++,31,21,1zx x z zx z y xy y x 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+,3111,2111,111x z z y y x ①+②+③,得1211111=++z y x 例5 提示:由已知条件,得()()a bc acb abc bc ac b ab +++++++22=()()[]()c a b a c b a b ++++=()()()0=+++a c c b b a例6 由勾股定理,结论可表示为等式:a=b+c ,①或b=a+c ,②或c=b+a ,③,联立①③,只需证a=16或或b =16或c =16,即(a -16)(b -16)(c -16)=0. ④ 展开只需证明0=abc -16(ab +bc +ac )+162(a +b +c )-163=abc -16(ab +bc +ac )+163 ⑤ 将①平方、移项,有a 2+b 2+c 2=322-2(ab +bc +ca ),⑥ 又将②移项、通分,有 0=14-(++b c a bc ++c a b ac -+a b c ab ++)①② ③=14-(2+ab ac aabc-+2+bc ab babc-+2ac bc cabc+-)=222 8()4()4abc ab bc ac a b cabc-+++++=28()4[322()]4abc ab bc ac ab bc caabc-+++-++把⑥代入等式中,0=3 16()164abc ab bc acabc-+++=23 16()16()164abc ab bc ac a b cabc-+++++-=(16)(16)(16)4a b cabc---当a-16=0时,由①有a=16=b+c为斜边的直角三角形.同理,当b=16或c=16时,分别有b=a+c或c=b+a 个直角三角形.A级1. 0或-22. 15∵231x xx-+=1,∴x+1x=4.又∵42291x xx-+=5,∴24291xx x-+=153. 184.35. A6. C 提示:b 2+c 2-a2=-2bc7.B8. C 提示:取倒数,得x+1x=1+m,原式的倒数=x3+31x-m39. 1 提示:2a2+bc=2a2+b(-a-b)=a2-ab+a2-b2=(a-b)(a+a+b)=(a-b)(a-c)10. 提示:由x+1y=y+1z,得x-y=1z-1y,得zy=y zx y--11. 提示:参见例5得(a+b)(b+c)(a+c)=012. (1)∵()a b cbc+=()b cb c a++-,∴(b+c)(ab+ac-a2-bc)=0.∴(b+c)(a-b)(c-a)=0.∵b+c≠0,∴a=b或c=a.∴这个三角形为等腰三角形.(2)∵1a+1c=1+a b c-+1b,∴a cac+=()a ca b c b+-+∴(a-b+c)=ac,∴(a-b)(b-c)=0, a=b或b=c,∴这个三角形为等腰三角形.13. 3 x=1a,y=1b,c=1z,∴411a++411x+=411a++4111a+=1,∴原式=3.14. (1)x=-11 2(2)x=123 14(3)(x,y,z)=(2310,236,232)提示:原方程组各方程左端通分、方程两边同时取倒数.B级1. 22. -1或8 提示:设a bc+=b ca+=c ab+=k,则k=-1或2 3.1128354. 0 提示:由xy z+=1-yz x+-zx y+,得:14=x-xyz x+-xzx y+5. A6. C7. D 提示:原式=4(2)(2)(1)(2)x x xx x-+---=3(2)1x xx-+-=3261281x x x xx-+-+-=2(1)5(1)8(1)1x x x x xx---+--=x2-5x+88. A 提示:由已知条件得x=3y9. (1)由a +b +c =0,得a +b =-c ∴a 3+b 3+c 3=-3ab (a +b )=3abc(2)∵(a b c -+b c a -+c a b -)·ca b-=1+22c ab , ∴同理:(a b c -+b c a -+c ab -)·a bc -=1+22a bc ,(a b c -+b c a -+c a b -)·bc a -=1+22b ac ,∴左边=3+22c ab +22a bc+22c ab =3+3332()a b c abc ++=910. ∵a 2+4a +1=0,∴a 2+1=-4a ,①a ≠0. 4232122a ma a ma a++++=2222(1)(2)2(1)a m a a a ma ++-++=3.把①代入上式中,222216(2)8a m a a ma +--+=3,消元得1692)8m m+--+=3,解得m =19.11. 设甲、乙、丙三人单独完成此项工作分别用a 天、b 天、c 天,则,,bc a p b c ac b q a c ab c x a b ⎧=⋅⎪+⎪⎪=⋅⎨+⎪⎪=⋅⎪+⎩即111,111,111p a b c q b a c x c a b ⋅=+⋅=+⋅=+解得x =14. 12. 由A +B +C =-3得(2222b c a bc+-+1)+222222(1)(1)0.22c a b a b c ac ab +-+-+++=即222222()()()0222b c a c a b a b c bc ac ab+-+-+-++=分解因式,得(b +c -a )(a +b -c )(a -b +c )=0b +c -a , a +b -c ,a -b +c 中至少有一个为0,不妨设b +c -a =0,代入式中, A 2002+B 2002+C 2002=(-1)2002+12002+12002=3.13.(1)设女孩速度x 级/分,电梯速度y 级/分,男孩速度2x 级/分,楼梯S 级,则27271818.S x y S xy -⎧=⎪⎪⎨-⎪=⎪⎩,得13.5271818S S -=-,327418S S -=-,∴S =54. (2)设男孩第一次追上女孩时走过扶梯m 编,走过楼梯n 编,则女孩走过扶梯(m -1)编,走过楼梯(n -1)编,男孩上扶梯4x 级/分,女孩上扶梯3x 级/分.545454(1)54(n 1)423m m m x x x x --+=+,即114231m n m n --+=+,得6n +m =16,m ,n 中必有一个是正整数,且0≤︱m -n ︱≤1.①16m n -=,m 分别取值,则有②m =16-6n ,分别取值,则有 显然,只有m =3,n =126满足条件,故男孩所走的数=3×27+126×54=198级. ∴男孩第一次追上女孩时走了198级台阶.。
七年级数学尖子生培优竞赛专题辅导第十讲代数式的化简与求值(含答案)

第十讲代数式的化简与求值趣题引路】如图10-1所示的八个点处各写一个数字,已知每个点处所写的数字等于和这个点有线段相连的三个点" + b + c + 〃 + *(e+ /" + &+力)</ + Z> + c + J- i(e + / + g + 〃)解答如下:-a=d + h + e , b=a + c+ f , J + 宀, d=a + c + h.3 3 3 32(a + b + c + d) + (e + f + g +力)/• a+b+e= ------------------ --------------------- .3设a+b+c+cl=/n, e+f+g+h=n ・• a. , . 2m + n■ ■ a+b+c+d= -----3. 2/n + n..m= ---------- ,3m=n.即a+b+c+d=e+f+g+h ・知识拓展】1.在前面几讲中我们分别学习了整式、分式以及根式的恒等变形与证明,苴中也涉及到它们的化简与求值.本讲主要是把这三种类型的代数式综合起来,其中求值问题是代数式运算中的非常重要的内容.2.对于代数式的化简、求值,常用到的技巧有:(1)因式分解,对所给的条件、所求的代数式实施因式分解,达到化繁为简的目的;(2)运算律,适当运用运算律,也有助于化简;(3)换元、配方、待定系数法、倒数法等;(4)有时对含有根式的等式两边同时实施平方,也不失为一种有效的方法.例1已知x=4-d,求"f—X+lh+T的值. x— 8x + 15处的数字的平均数,则代数式a + h + c + cl + ^(e+ f + f* + h)a + h + c + d --(e+ f + g+h)3 32m - n 32 3m一n2m -m 3 3-------- x --------- =—2 3m - m 4应填扌.图10-1解析:由已知得(x—4尸=3,即A2—8x+13=0.所以兀** - 6A?— 2f +1 8A' + 23 _ x2 (x"— 8x + 13) + 2x(才—8x +13) + (A*~— 8x + 13) + 10 _ 10 _、F x2-8x + 15 (X2-8X +13)+2 込—…点评:本题使用了整体代换的作法.例2已知A+Y+Z=3. (^),求匕上空学二遊二岀£2竺凹的值. (x-6/f+(y-t/f+(z-6/f解析:分式的分子、分母是轮换对称形式,可考虑用换元法.解:由x+y+z=3e 得(x—a)(y—a)(z~a)=0.设x—“=〃】, y—a=n> z~a—p>贝0 m+n+p=0・•••" = — (〃?+〃)・•『i 弋—mn + n P + m P —mn + P(m + n) —nm一(m + n)2_ -m2一mn一n2_1八m2 + n2 + p2 nf + n2 + p2 nr + n2 + (m + n)2 2(nr + mn + n2) 2 *点评:实际上,本例有巧妙的解法,将〃?+”+" = 0两边平方,得加2 + "2+卩2=一2(”山+ " + 〃初,.・.mn + np + mp _1m2 +n2 + 2 "例 3 已知" + i = + 求(“ + 〃)(/+、)(「+ “)的值.c b a abc解析:对于分式等式,如岀现两个(或两个)以上的等于号,可设为一个字母为h解:设c^b-c =a-b + c = -a + b + c=k cb aa + b-c = ck,① < a —b +c = bk 9 (^)-a + b + c = ak・③① + ②+③,得:R("+b+e)="+b+c・当“+b+e0 时,k=l,此时a+b=2c,“+c=2b, b+c=2a・.(a + h)(b + c)(c + a) _ 2a ■ 21} ■ 2cabc abc当“+〃+c=0 时♦“ + b= —Ct a + c= —b,〃+c= —a.・・.原式=(-“)•(如p)=_l.abc点评:注意本例须按a+h+c等于零和不等于零两种情况进行讨论.例4 已知“+b+c=l, a2-\-b2+c2=2. a3+b3+c3=39求(1) “be 的值;(2) a4+b4-^c4的值. 解析:•••以+胪+5=2, :•(“+b+c)2—2(ab+be+ca)=2.A ab-¥bc~i rca = ——•2又•••帀+沪+"=3,(“+b+c)(</2+b2-\-c2— ab—be—ca) + 3abc=3 ・:.1x(2+ —)+3“bc=3・2:.abc=-,即"c的值为丄.6 6又•: a4+沪+c4=(a2+护+c2)2—2(crb2+b2c2+c2a2)=4 —2[(ab+be+ca)2—2abc{a + 方+c)]=4—2(丄4 cl ix 25—2x- xl)=—・6 6•••/+戸+疋的值为色.6点评:这道题充分体现了三个数的平方和,三个数的立方和,及三个数四次方和的常规用法,这些常用处理方法对我们今后的学习是十分重要的.好题妙解】佳题新题品味例1 (2003年河北初中数学应用竞赛题)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为",第二次提价的百分率为b:乙商场:两次提价的百分率都是⑺(">0, 2 b>0);丙商场:第一次提价的百分率为几第二次提价的百分率为",则提价最多的商场是( )A.甲B.乙C•.丙 D.不能确定解析用代数式表示三个商场提价后的价格,再比较大小.解:(1)甲商场两次提价后,价格为(l+“)(l+b)=l+“+b+“b.(2)乙商场两次提价后,价格为(1 + 口)(1 + 口)=1+(“+坊+(口)2:2 2 2(3)丙商场两次提价后,价格为(1+")(1+“)=/+"+b+“b.因为(爭)2 —“b>0,所以(字)2>“b.故乙商场两次提价后,价格最髙.选B.例2已知非零实数“、b、c满足0+护+以=1, “(J.+J_)+b(丄+ b + c(丄+丄)=一3,求a+b+c的 b c a c a b 值.解析:因为ubc^O,在已知的第二个等式两边同乘以“be,得"2(c+b)+b2(c+")+c2(“+")= —3"bc, 即ab(a+/?)+bc(b-\-c)4-ac(a+c) + 3abc=0.将&历c 拆开为ubc+abc+ubc,可得ab(“+b+c)+bc(a+b+ c)+ac(a+/?+c)=0・于是(a+b+c)(ab+he+ac)=0.所以a+h+c=0或ab+bc+ac=0.若ab+bc+ac=O.由(a+b+c)2=a2+b2+c2+2cd^2bc+2cic= 1 得“+b+c=±l ・ \ 所以“+"+c的值可能为6 — 1 >1.中考真题欣赏例1 (2003年陕西中考题)先化简,再求值:皆胃L岳,其中眉存—x + 1 (x2+1)(A+ l)(x-l) x-3 _ x-1 x-3 _ 2 尿 = - : 一 = — =0+1 (x + 1) A +1x + 1 x + 1 x + 1解析:当x= 73 + 1时,原式== 4一2逅.V3+2例2 (重庆市)阅读下而材料:在计算3+5+7+9+11 + 13+15+17+19+21时,我们发现,从第一个数开始,以后的每个数与它的前一个数的差都是一个相同的左值.具有这种规律的一列数,除了直接相加外,我们还可以用公式5= 必+巴二12xd计算它们的和.(公式中的〃表示数的个数,“表示第一个数的值,〃表示这个相差的泄值), 2那么3+5+7+9+11 + 13+15 + 17+19+21 = 10x3+巴” x2=120・2用上而的知识解决下列问题:为保护长江,减少水上流失,我市某县决泄对原有的坡荒地进行退耕还林.从1995年起在坡荒地上植树造林,以后每年又以比上一年多植相同面积的树木改造坡荒地.由于每年因自然灾害、树木成活率、人为因素等的影响,都有相同数量的新坡荒地产生,下表为1995、1996、1997年的坡荒地面积和植树的面积的统汁数据•假设坡荒地全部种上树后,不再有水上流失形成新的坡荒地,问到哪一年,可以将全县所有的坡荒地全部种上树木.解析:1997 年减少了24 000-22 400=1 600.m年减少了1 200+400x(/?/-1 996)・1 200+1 600+…+ 1 200+400(加一1 996)=25 200.令n=m—\ 995»得必1200 + 盲_><400一1)=400x HX3+———-=25200. 2 ..・.% +竺匸—6326n+n(n-1)=126n:+5n-126=0.m 二9,血二一14 (舍去).m=1995+9=2004.••• 到2004年,可以将坡荒地全部种上树木°竞赛样题展示例1 (2003年“信利杯”)某校初三两个毕业班的学生和教师共100人一起在台阶上拍毕业照留念,摄影师要将苴排列成前多后少的梯形队阵(排数>3),且要求各行的人数必须是连续的自然数,这样才能使后一排的人均站在前一排两人间的空挡处,那么,满足上述要求的排法的方案有( )A. 1种B.2种C. 4种D. 0种解析设最后一排有k个人,共有n排,那么从后往前各排的人数分别为k, k+1, lc+2,…,k+ (n-l),由题意可知如+ 答丄= 100,即〃[2« + (“-1)] = 200.因为k, n都是正整数,且n$3,所以n<2k+ (n-l),且n与2k+ (n-l)的奇偶性不同。
2020-2021学年八年级数学北师大版下册第五章《分式与分式方程》竞赛题(解析版)

2020-2021学年八年级数学北师大版下册第五章《分式与分式方程》竞赛题 学校:___________姓名:___________班级:___________考号:___________ 一,单项选择题(本大题共8小题)1.当x 分别取2020、2018、2016、…、2、0、12、14、…、12016、12018、12020时,计算分式11x x -+的值,再将所得结果相加,其和等于( ) A .1-B .1C .0D .2020【答案】A【分析】 先把互为倒数的两个数代入并求和,得0,再把没有倒数的0代入即可.【详解】解:把2020代入11x x -+,得20192021, 把12020代入11x x -+,得20192021-,相加得零, 设x=a (a≠0)代入11x x -+,得11a a -+, 把x=1a 代入11x x -+,得11a a --+, 故互为倒数的两个数代入分式后,和为0,把0代入11x x -+,得-1, 故选:A .【点睛】本题考查了分式求值运算和数字规律,解题关键是通过计算发现互为倒数的两个数代入分式后,和为0.2.若关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解,关于y 的分式方程13244ay y y -+=---有整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .2D .5【答案】B【分析】先解不等式组,由不等式组有解,可得a <4,再解分式方程,当2a ≠且1a ≠时,分式方程的解为:4,2y a =--再由,y a 为整数,分类讨论可得答案. 【详解】 解:()3222x x a x x ⎧-->-⎪⎨+<⎪⎩①② 由①得:36x x -+>2,-2x ∴->8,-x \<4,由②得:a x +<2,xx \>,a关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解, a ∴<4,13244ay y y -+=---Q , ()1324,ay y ∴--=--24,ay y ∴-=-()24,a y ∴-=-当2a =时,方程无解,则2,a ≠44,22y a a -∴==--- 检验:40,y -≠440,2a ∴--≠- 44,2a ∴≠-- 21,a ∴-≠-1,a ∴≠,y a 为整数,21a ∴-=± 或22a -=±或24,a -=±3a ∴=或1a =或4a =或0a =或6a =或2,a =-a ∴<4, 2,a ≠1,a ≠∴ 3a =或0a =或 2.a =-经检验:3a =或0a =或2a =-符合题意,()302 1.∴++-=故选:.B【点睛】本题考查的是一元一次不等式组的解法,分式方程的解法,分类讨论数学思想,掌握以上知识是解题的关键.3.一支部队排成a 米长队行军,在队尾的战士要与最前面的团长联系,他用t 1分钟追上了团长、为了回到队尾,他在追上团长的地方等待了t 2分钟.如果他从最前头跑步回到队尾,那么他需要的时间是( )A .1212t t t t +分钟B .12122t t t t +分钟 C .12122t t t t +分钟 D .12122t t t t +分钟 【答案】C【分析】 根据题意得到队伍的速度为2a t ,队尾战士的速度为12a a t t +,可以得到他从最前头跑步回到队尾,那么他需要的时间是122aa a a t t t ++,化简即可求解 【详解】 解:由题意得:12212122t a a a a t t t t t t =+++分钟. 故选:C【点睛】本题考查了根据题意列分式计算,理解题意正确列出分式是解题关键.4.已知113x y -=,则分式5xy 5xy y x y x+---的值为( ) A .8B .72C .53-D .4【答案】A【分析】 由113x y-=,得3y x xy -=,3x y xy -=-.代入所求的式子化简即可. 【详解】 解:由113x y-=,得3y x xy -=, ∴555()15168()32y xy x y x xy xy xy xy y xy x y x xy xy xy xy+--++====-----. 故选:A .【点睛】本题解题关键是用到了整体代入的思想.5.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =4 【答案】B【分析】 先计算21M N x x ++-=()()222M N x M N x x ++-++- ,根据已知可得关于M 、N 的二元一次方程组227M N M N +⎧⎨-+⎩== ,解之可得. 【详解】 解:21M N x x ++- =()()()()1221M x N x x x -+++-=()()222M N x M N x x ++-++- ∴2272x x x ++-=()()222M N x M N x x ++-++- ∴227M N M N +⎧⎨-+⎩==, 解得:13M N -⎧⎨=⎩=, 故选B .【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减法则,并根据已知等式得出关于M 、N 的方程组.6.如果2220x x +-=,那么代数式214422x x x x x x -+⋅--+的值为( ) A .2-B .1-C .1D .2【答案】A【分析】 由2220x x +-=可得222x x +=,再化简214422x x x x x x -+⋅--+,最后将222x x +=代入求值即可.【详解】解:由2220x x +-=可得222x x +=214422x x x x x x -+⋅--+ =()22122x x x x x -⋅--+ =22x x x x --+ =()()22422x x x x x x --++ =242x x-+=42- =-2故答案为A .【点睛】本题考查了分式的化简求值,正确化简分式以及根据2220x x +-=得到222x x +=都是解答本题的关键.7.当4x =-的值为( ) A .1BC .2D .3【答案】A【分析】 根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式= 将4x =代入得,原式===1=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.8.已知13x x +=,则2421x x x ++的值是( ) A .9B .8C .19D .18【答案】D【分析】 根据13x x += 可知21()9x x += 即2217x x += ,把2421x x x ++ 分子、分母同时除以2x 得2217x x += ,把2217x x +=代入即可. 【详解】 由13x x +=得21()9x x+=,即2217x x += 2421x x x ++=22111x x++, 把2217x x +=代入得22111x x ++=11178=+ , 故选D【点睛】本题考查利用恒等变形求分式的值,利用分式的性质,找到可以等量代换的代数式是解题关键.二、填空题(本大题共6小题)9.关于x 的分式方程11211a x x-+=--的解为正数,则a 的取值范围是________ . 【答案】4a <且2a ≠.【分析】去分母,化成整式,计算分母为零时,a 的值,计算方程的解,根据解是正数,转化为不等式,确定a 的范围,最后将分母为零时的a 值除去即可.【详解】 ∵11211a x x-+=--, 去分母,得-1+a-1=2(1-x ),当x=1时,解得a=2;当x≠1时,解得x=42a -, ∵方程的解为正数, ∴42a ->0, ∴a <4,∴a <4且a≠2,故答案为a <4且a≠2.【点睛】本题考查了分式方程的解,探解时,熟练把解转化为相应的不等式,同时,把分母为零对应的值扣除是解题的关键.10.若240x y z -+=,4320x y z +-=.则222xy yz zx x y z ++++的值为______ 【答案】16-【分析】先由题意2x−y+4z=0 ,4x+3y−2z=0,得出用含x 的式子分别表示y ,z ,然后带入要求的式中,化简便可求出.【详解】2x-y+4z= 0①,4x+3y- 2z= 0②,将②×2得: 8x+ 6y-4z=0③. ①+③得: 10x+ 5y= 0,∴y= -2x ,将y= - 2x 代入①中得:2x- (-2x)+4z=0∴z=-x将y= -2x ,z=-x ,代入上式 222xy yz zx x y z ++++ =()()()()()()222·22?·2x x x x x x x x x -+--+-+-+-=222222 224x x x x x x -+-++=22 6 x x -=1 6 -故答案为:1 6 -【点睛】本题考查了分式的化简求值,解题的关键是根据题目,得出用含x的式子表示y,z.本题较难,要学会灵活化简.11.已知三个数,x,y,z满足443,,33xy yz zxx y y z z x=-==-+++,则y的值是______【答案】12 7【分析】将443,,33xy yz zxx y y z z x=-==-+++变形为133,,344x y y z z xxy yz zx+++=-==-,得到111113113,,344y x z y x z+=-+=+=-,利用11113()()2z y x z+-+=,求出1132x y=-,代入1113y x+=-即可求出答案.【详解】∵443,,33 xy yz zxx y y z z x=-==-+++,∴133,,344x y y z z xxy yz zx+++=-==-,∴111113113,,344y x z y x z+=-+=+=-,∴11113 ()()2z y x z+-+=,得1132y x -=, ∴1132x y =-, 将1132x y =-代入1113y x +=-,得276y =, ∴y=127, 故答案为:127. 【点睛】 此题考查分式的性质,分式的变形计算,根据分式的性质得到111113113,,344y x z y x z +=-+=+=-是解题的关键. 12.已知方程11x c x c +=+(c 是常数,0c ≠)的解是c 或1c ,那么方程2131462a a x x a+++=-(a 是常数,且0a ≠)的解是________. 【答案】32a +或312a a + 【分析】 观察方程:11x c x c+=+(c 是常数,c≠0)的特点,发现此方程的左边是未知数与其倒数的和,方程右边的形式与左边的形式完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接求解.本题需要将方程x +2131462a a x a++=- 变形,使等号左边未知数的系数变得相同,等号右边的代数式可变为31222a a ++.为此,方程的两边同乘2,整理后,即可写成方程11x c x c+=+的形式,从而求出原方程的解. 【详解】 将2131462a a x x a+++=- 整理得 112323x a x a+=++-, 即112323x a x a -+=+-,所以23x a -=或1a , 故答案为:32a x +=或312a a +. 【点睛】 本题考查了阅读理解能力与知识的迁移能力.关键在于将所求方程变形为已知方程的形式.难点是方程左边含未知数的项的系数不相同.13.对于两个不相等的实数,a b ,我们规定符号max{,}a b 表示,a b 中的较大值,如:{}max 2,44=,故{}max 3,5=__________;按照这个规定,方程{}21max ,x x x x--=的解为__________.【答案】5 1-1【分析】 按照规定符号可求得{}max 3,5=5;根据x 与x -的大小关系化简所求方程,求出解即可.【详解】{}max 35=,5;故答案为:5;当x x >-,即0x >时,方程化简得:21x x x -=, 去分母得:221x x =-,整理得:2210x x -+=,即()210x -=解得:1x =,经检验:1x =是分式方程的解;当x x <-,即0x <时,方程化简得:21x x x--=, 去分母得:221x x -=-,整理得:2210x x +-=,解得:1x =-+不合题意,舍去)或1-经检验:1x =-故答案为:1-1.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.弄清题中的新定义是解本题的关键. 14.设有三个互不相等的有理数,既可表示为-1,a +b ,a 的形式,又可表示为0,-b a,b 的形式,则20192020-a b 的值为____. 【答案】-1【分析】由题意三个互不相等的有理数,既可表示为-1、+a b 、a 的形式,又可表示为0、b a-、b 的形式,可知这两个三数组分别对应相等.从而判断出a 、b 的值.代入计算出结果. 【详解】 解:三个互不相等的有理数,既可表示为-1、+a b 、a 的形式,又可表示为0、b a -、b 的形式,∴这两个三数组分别对应相等.a b ∴+、a 中有一个是0,由于b a有意义,所以0a ≠, 则0a b +=,所以a 、b 互为相反数. ∴1b a=-, ∴1b a -= ∴1b =-,1a =.∴()2019202011111-=-=--. 故答案是:-1.【点睛】本题考查了有理数的概念,分式有意义的条件,有理数的运算等相关知识,理解题意是关键.三、解答题(本大题共4小题)15.解方程组:113311x x y x x y⎧+=⎪+⎪⎨⎪-=⎪+⎩.【答案】10.5x y =⎧⎨=-⎩.【分析】 设1a x=,1b x y =+,把原方程组转化为二元一次方程组,求解后,再解分式方程即可.【详解】 解:设1a x=,1b x y =+, 则原方程组化为:331a b a b +=⎧⎨-=⎩①②, ①+②得:44a =,解得:1a =,把1a =代入①得:13+=b ,解得:2b =, 即1112x x y⎧=⎪⎪⎨⎪=+⎪⎩, 解得:10.5x y =⎧⎨=-⎩, 经检验10.5x y =⎧⎨=-⎩是原方程组的解, 所以原方程组的解是10.5x y =⎧⎨=-⎩. 【点睛】本题考查了换元法解方程组,解题关键是抓住方程组的特征,巧妙换元,熟练的解二元一次方程组和分式方程,注意:分式方程要检验.16.(1)先化简:23111x x x x x x ⎛⎫-÷⎪-+-⎝⎭,再从1-,0,1,2中取一个你喜欢的数代入求值.(2)已知12x x-=,求221x x +,1x x +. 【答案】(1)8;(2)6;±【分析】(1)原式括号中两项通分并利用异分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=0代入计算即可求出值.(2)将已知等式两边平方,利用完全平方式展开,即可求出所求式子的值.【详解】解:(1)23111x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭ =(3(1)(1)(1)(1)(1)(1)x x x x x x x x +---+-+)÷2x 1x - =2224-1x x x +21x x- =24x +∵ 21x - ≠0,0x ≠∴x ≠1或x ≠-1,0x ≠当x=2时,原式=4+4=8.(2)12x x -= 21x 4x ⎛⎫= ⎪⎝⎭-41222=+-x x 2216x x +=; 21x x ⎛⎫ ⎪⎝⎭+ =221x 2x ++=8 1xx+=±【点睛】本题考查了分式的化简求值和完全平方式,熟练掌握公式和运算法则是解题的关键. 17.阅读下面材料:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:11x x -+,21x x -这样的分式就是假分式;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:31x +,221x x +这样的分式就是真分式.我们知道,假分数可以化为带分数,例如:86222223333+==+=,类似地,假分式也可以化为“带分式”(即整式与真分式的和的形式)参考上面的方法解决下列问题:()1将分式11x x -+,422311x x x +-+化为带分式. ()2当x 取什么整数值时,分式212x x -+的值也为整数? 【答案】(1)112x +-,22321x x +-+;(2)1x =-,3,3-,7-时,分式的值也为整数.【分析】(1)两式根据材料中的方法变形即可得到结果;(2)原式利用材料中的方法变形,即可确定出分式的值为整数时整数x 的值.【详解】解:(1)12111222x x x x x --+==+---, 42222222231(1)2(1)332111x x x x x x x x x +-+++-==+-+++; (2)212(2)552222x x x x x -+-==-+++, 当21x +=,即1x =-;当25x +=,即3x =;当21x +=-,即3x =-;当25x +=-,即7x =-,综上,1x =-,3,3-,7-时,分式的值也为整数.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.对于平面直角坐标系xOy 中的点(), P a b ,若点P'的坐标为 ,b a ka b k 骣çè+ç+÷÷ø(其中k 为常数,且0k ≠),则称点P'为点P 的“k 之雅礼点”.例如:()1, 4P 的“2之雅礼点”为4'12142()P +?,,即()'3, 6P . (1)①点()1,3P --的 “3之雅礼点”P'的坐标为___________; ②若点P 的“k 之雅礼点” P'的坐标为()2, 2,请写出一个符合条件的点P 的坐标_________;(2)若点P 在x 轴的正半轴上,点P 的“k 之雅礼点”为P'点,且'OPP D 为等腰直角三角形,则k 的值为____________;(3)在(2)的条件下,若关于x 的分式方程32233x mx k x x-++=--无解,求m 的值. 【答案】(1)①()2,6--; ②()1, 1;(2)±1;(3)3m =-或53m =-或1m =-. 【分析】(1)①只需把133a b k =-=-=,,代入 ,b a ka b k 骣çè+ç+÷÷ø即可求出P′的坐标;②由P′(2,2)可求出k=1,从而有a+b=2.任取一个a 就可求出对应的b ,从而得到符合条件的点P 的一个坐标.(2)设点P 坐标为(a ,0),从而有P′(a ,ka ),显然PP′⊥OP ,由条件可得OP=PP′,从而求出k .(3)分1k =和1k =-两种情况,根据方程无解求出m 的值即可.【详解】(1)①∵把133a b k =-=-=,,代入 ,b a ka b k 骣çè+ç+÷÷ø, 得()2,6--,∴P′的坐标为()2,6--;②令k=1,把k=1代入 ,b a ka b k 骣çè+ç+÷÷ø得到a+b=2,当a=1时,b=1,所以点P 的一个坐标()1, 1;(2)∵点P 在x 轴的正半轴上,∴b=0,a >0∴点P 的坐标为(a ,0),P′(a ,ka ),∴PP′⊥OP ,∵'OPP D 为等腰直角三角形,∴OP=PP′,∴a=ka ,±∵a >0,∴k=1±;(3)当1k =时,去分母整理得:()34m x += ∴原方程无解∴①3m =-②3x =,则53m =- 当1k =-时,去分母整理得: ()12m x +=-原方程无解∴①1m =-②3x =,则53m =- 综上,3m =-或53m =-或1m =-. 【点睛】本题考查了坐标系的新定义问题,读懂题目信息,理解“k 之雅礼点”的定义是解题的关键.。
分式求值问题的解题技巧

分式求值问题的解题技巧(二) 六、特殊值法【例6】(2004年安庆市初中数学竞赛题)已知abc≠0,且a+b+c=0,则a 111111()()()b c a c c a a b+++++的值为_______.解:依题意,不妨令a=1,b=1,c=-2,则原式=(1-12)+(-12+1)-2(1+1)=-3.评注:根据填空题的特点,取满足条件的a 、b 、c 的特殊值,问题立即获解,令人耳目一新.七、解方程(组)法【例7】(2003年合肥市初中数学竞赛题)已知x 、y 、z 、a 、b 、c 都为实数,•且1,x y z a b c a a a x y z++=++=0,求222222x y z abc++的值.解:由已知得abc≠0,xyz≠0.将x y z abc++=1两边平方得222222222x y zx y x z y zabc a b a c b c+++++=1 ① 将x b c ayz++=0两边同乘以xyz abc,得yz xz xy bcacab++=0. ②①-②×2得222222x y z abc++=1.评注:将待求值的分式整体视为一个未知数,再利用已知条件,通过解方程或方程组求出这个未知数.八、构造一元二次方程法【例8】(2002年沈阳市初中数学竞赛题)已知2a 2-7a=-2,2β2+2=7β,且α≠β,求22αββα+的值.解:由已知条件,得2a 2-7a+2=0,2β2-7β+2=0.因α≠β,故是一元二次方程2x 2-7x+2=0的两个不等实根. ∴α+β=72,αβ=1,于是,原式=33αβαβ- =α3-β3= (α-β)(α2+αβ+β2)2[()]αβαβ+-27[()1]2-=±评注:这里不直接求α与β的值,而是从α与β所满足的方程的共同特征出发,构造出一个一元二次方程,使问题顺序获得解. 九、整体拆出法【例9】(2004年太原市初中数学竞赛题)若实数x 、y 、z 满足3x+7y+z=•1•和4x+10y+z=2005,求分式3200420042004x yx y z+++的值.解:由题意得方程组371,4102005.2(3)()1,3(3)()2005.32004,4007.x y z x z x y x y z x y x y z x y x y z ++=⎧⎨++=⎩++++=⎧∴⎨++++=⎩+=⎧⎨++=-⎩解之得于是原式=312004()4007x y x y z +=-++.评注:这里待求分式的分母是2004(x+y+z ),分子是x+3y ,尝试从已知的不定方程组中整体拆出x+y+z 和x+3y ,果然获得成功,再整体消元就能立即求出x+y+z 与x+3y 这两个整体的值.十、竖式相除法【例10】(2002年杭州市初中数学竞赛题)已知x 2-5x+1=0,求4322291021x x x x x ---++的值.解:视2x 4-9x 3-x 2-10x+2为被除式,x 2-5x+1为除式,利用竖式相除法得 2x 4-9x 3-x 2-10x+2=(2x 2+x+2)(x 2-5x+1)+(-x ).∵x2-5x+1=0.∴2x4-9x3-x2-10x+2=-x.再由x2-5x+1=0,得x2+1=5x.于是原式=1 55xx-=-.评注:这里多项式2x4-9x3-x2-10x+2的次数高于多项式x2-5x+1的次数,•将它们整体相除,进而将第一个多项式降次(变为-x),使复杂问题简单化.竖式相除法是解决这类问题的有效方法.以上介绍了初中数学竞赛中分式求值问题的十种解题技巧,解题的关键在于把握相关式子(已知的或待求的)在整体上的结构特点,选择恰当的技巧,有时候需要几种技巧融为一体,共同发挥作用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条件分式求值的方法与技巧
求条件分式的值是分式化简、计算的重要内容,解题主要有以下三个方面:
一、将条件式变形后代入求值
例1已知4
32z y x ==,z y x z y x +--+22求的值. 解:设4
32z y x ===k , 则x =2k ,y =3k ,z =4k . ∴ 原式=5
45443224322==+-⨯-⨯+k k k k k k k k . 说明:已知连比,常设比值k 为参数,这种解题方法叫参数法. 例2已知的值求
b a b a b ab a +-=-+,0622. 解:由0622=-+b ab a 有(a +3b )(a -2b )=0,
∴ a +3b =0或a -2b =0,
解得a =-3b 或a =2b .
当a =-3b 时,原式=
233=+---b
b b b ; 当a =2b 时,原式=3122=+--b b b b . 二、将求值变形代入求值.
例3已知)1
1()11()11(,0c
b a a
c b b a
c c b a +++++=++求的值. 解:原式=1)111(1)111(1)111(-+++-+++-++a
c b a b a c b c b a c =3))(111(-++++a b c c b a ∵ a +b +c =0,
∴ 原式=-3. 例4已知31=+x
x ,的值求1242++x x x . 分析:∵ 1)1(111222224-+=++=++x x x
x x x x , ∴ 可先求值式的倒数,再求求值式的值.
解:∵ 1)1(12224-+=++x x x
x x 8132=-=,
∴ 8
11242=++x x x . 三、将条件式和求值式分别变形后代入求值.
例5 已知y
xy x y xy x y x ---+=-2232,311则分式的值为__________. 解法一:∵ 311=-y
x , ∴ y -x =3xy ⇒x -y =-3xy .
∵ 原式=xy
y x xy y x 2)(3)(2--+- 5
3233)3(2=--+-=xy xy xy xy . 解法二:将分子、分母同除以xy (≠0). ∴原式=x
y x y 121232---+ 5
332323)11(2)11(23=--⨯-=-----=y
x y x 分析:∵ 填空题不需要写出解题过程,故可取满足已知等式的特殊值求解. 解法三:取x =2
1,y =-1,
)31211(=+=-y
x . ∴原式
.532/52/3)1()1(2
1221)1(2)1(213212==---⨯⨯--⨯--⨯⨯+⨯
= 注意:特殊值法是解填空题或选择题常用的解题方法或技巧.取特殊值要注意满足条件等式,其原则是要便于计算.
例6 已知a 2+2a -1=0,求分式2
4)44122(22+-÷++--+-a a a a a a a a 的值. 解:原式=4
2])2(1)2(2[2-+⋅+--+-a a a a a a a 42)2()1()2)(2(2
-+⋅+--+-=a a a a a a a a 42)2(42-+⋅+-=
a a a a a a
a a a 21)2(12+=+= ∵ 0122=-+a a ,
∴ 122
=+a a ,
∴ 原式=1.
注意:本例是将条件式化为“122=+a a ”代入化简后的求值式再求值,这种代入的技巧叫做整体代入.
练习
1.已知231=-x x ,求分式221x
x +的值. 2.已知01342=+++x x x ,先化简后求x
x x -+-3932的值. 3.化简求值4
3326512222-+---+÷+--a a a a a a a a ,其中a =-3. 4.已知abc =1,则
111++++++++c ca c b bc b a ab a 的值为________.
参考答案
1.4
17; 2.0(原式=x +3); 3.)42(522--=-
a 原式; 4.1(取a =
b =
c =1).。