专题20 双曲线(检测)-2019年高考数学25个必考点(解析版)
高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。
修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。
2.理解数形结合的思想。
3.了解双曲线的实际背景及其简单应用。
一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。
点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。
2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。
点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。
双曲线的通径为 $2a$。
3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。
考点51 双曲线 -2019年高考数学(理)必刷题(解析版)

考点51 双曲线1.中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是()A.2或B.2或C.或D.或【答案】A2.设椭圆的焦点与抛物线的焦点相同,离心率为,则()A.B.C.D.【答案】A【解析】抛物线的焦点为(0,2),∴椭圆的焦点在y轴上,∴c=2,由离心率 e=,可得a=4,∴b2=a2-c2=,故.故选A.3.已知双曲线的离心率e=2,则双曲线C的渐近线方程为A.B.C.D.【答案】D4.已知双曲线的两个顶点分别为、,点为双曲线上除、外任意一点,且点与点、连线的斜率分别为、,若,则双曲线的渐进线方程为,A.B.C.D.【答案】C【解析】根据题意得到A(-a,0),B(a,0),设P点为(x,y),根据题意得到,从而渐近线方程为,,化简为:.故答案为:C.5.已知是双曲线上不同的三点,且连线经过坐标原点,若直线的斜率乘积,则该双曲线的离心率为A.B.C.2 D.3【答案】C6.设、分别是双曲线C:的左右焦点,点在双曲线C的右支上,且,则()A.B.C.D.【答案】B【解析】由双曲线方程得,,,即,则焦点为,,∵点P在双曲线C的右支上,且,∴为直角三角形,则,故选:B.【点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键.7.已知椭圆和双曲线有相同的焦点,且离心率之积为1,为两曲线的一个交点,则的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】B8.设是双曲线的左右焦点,为左顶点,点为双曲线右支上一点,,,,为坐标原点,则A.B.C.D.【答案】D9.已知直线的倾斜角为,直线与双曲线的左、右两支分别交于、两点,且、都垂直于轴(其中、分别为双曲线的左、右焦点),则该双曲线的离心率为()A.B.C.D.【答案】D【解析】直线与双曲线的左、右两支分别交于、两点,且、都垂直于轴,根据双曲线的对称性,设点,,则,即,且,又直线的倾斜角为,直线过坐标原点,,,整理得,即,解方程得,(舍)故选D.10.设,是双曲线的左,右焦点,O是坐标原点.过作C的一条渐近线的垂线,垂足为P.若,则C的离心率为()A.B.2 C.D.【答案】C11.下列命题错误的是()A.命题“ ,”的否定是“,”; B.若是假命题,则,都是假命题C.双曲线的焦距为D.设,是互不垂直的两条异面直线,则存在平面,使得,且【答案】B12.设双曲线C:的两条渐近线互相垂直,顶点到一条渐近线的距离为1,则双曲线的一个焦点到一条渐近线的距离为()A.2 B.C.D.4【答案】B【解析】∵双曲线的两条渐近线互相垂直,∴渐近线方程为,∴.∵顶点到一条渐近线的距离为1,∴,∴,∴双曲线的方程为,焦点坐标为,∴双曲线的一个焦点到一条渐近线的距离为.13.已知双曲线的一个焦点为,则焦点到其中一条渐近线的距离为()A.2 B.1 C.D.【答案】C14.已知双曲线:的右焦点为,左顶点为.以为圆心,为半径的圆交的右支于,两点,的一个内角为,则的离心率为()A.B.C.D.【答案】C【解析】如图,设左焦点为F1,设圆与x轴的另一个交点为B,∵,△APQ的一个内角为60°∴∠PAF=30°,∠PBF=60°⇒PF=AF=a+c,⇒PF1=3a+c,在△PFF1中,由余弦定理可得.⇒3c2﹣ac﹣4a2=0⇒3e2﹣e﹣4=0⇒,故答案为:C15.已知双曲线与抛物线有相同的焦点,则该双曲线的渐近线方程为A.B.C.D.【答案】C16.已知双曲线,双曲线的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长是()A.32 B.4 C.8 D.16【答案】D17.已知双曲线的左右焦点分别为,椭圆的离心率为,直线过点与双曲线交于两点,若,且,则双曲线的两条渐近线的倾斜角分别为()A.B.C.D.【答案】C【解析】由题,∴渐近线的倾斜角为.故选:C.18.已知双曲线的左右焦点分别为,,若上存在点使为等腰三角形,且其顶角为,则的值是_______.【答案】19.在平面直角坐标系xOy中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是______.【答案】2【解析】双曲线的右焦点到一条渐近线的距离为,可得可得,即c=2a,所以双曲线的离心率为:故答案为:2.20.已知双曲线的左、右焦点分别为点,,抛物线与双曲线在第一象限内相交于点P,若,则双曲线的离心率为______.【答案】21.已知双曲线的一条渐近线与直线垂直,则该双曲线的离心率是_________。
新高考数学复习考点知识讲解与专题训练31---双曲线的方程及几何性质(解析版)

新高考数学复习考点知识讲解与专题训练专题31、 双曲线的方程及几何性质一、 双曲线的定义平面内与两个定点F 1,F 2的距离之差的绝对值等于非零常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M ⎪⎪⎪⎪| ||MF 1-||MF 2=2a },||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0.(1)当a <c 时,点P 的轨迹是双曲线; (2)当a =c 时,点P 的轨迹是两条射线; (3)当a >c 时,点P 不存在. 二 、双曲线的标准方程和几何性质一、常用结论1、过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a,也叫通径.2、与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b2=t (t ≠0).3、双曲线的焦点到其渐近线的距离为b .4、若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .题型一、双曲线的方程与渐近线的方程例1、【2020年高考天津】设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -=B .2214y x -= C .2214x y -=D .221x y -=【答案】D【解析】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a=±,所以b b a-=-,1b b a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .变式、【2018年高考天津卷理数】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .221412x y -=B .221124x y -=C .22139x y -=D .22193x y -=【答案】C【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b -=可得:2b y a=±, 不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为:0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==, 则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====,据此可得:23a =,则双曲线的方程为22139x y -=.本题选择C 选项.例2、【2018年高考全国Ⅱ理数】双曲线22221(0,0)x y a b a b-=>>的离心率A.y =B.y =C.2y x =±D.2y x =±【答案】A【解析】因为c e a ==,所以2222221312b c a e a a-==-=-=,所以b a =因为渐近线方程为by x a=±,所以渐近线方程为y =,故选A . 变式、(2020届山东省济宁市高三上期末)已知12,F F 是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,若点2F 关于双曲线渐近线的对称点A 满足11F AO AOF ∠=∠(O 为坐标原点),则双曲线的渐近线方程为( )A .2y x =±B .y =C .y =D .y x =±【答案】B【解析】如图所示:由对称性可得:M 为2AF 的中点,且2AF OM ⊥, 所以12F A AF ⊥,因为11F AO AOF ∠=∠,所以11AF FO c ==, 故而由几何性质可得160AFO ∠=,即260MOF ∠=,故渐近线方程为y =, 故选B.题型二、双曲线的离心率例3、【2018年高考全国III 理数】设1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为AB .2CD 【答案】C【解析】由题可知2PF b =,2OF c =,PO a ∴=,在2Rt POF △中,222cos PF b PF O OF c∠==, 在12Rt PF F △中,22221212212cos 2PF F F PF b PF O PF F F c∠+-==,b c=,即223c a =,e ∴=C .变式1、(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b -=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( )A B C .53D .73【答案】C【解析】取1PF 的中点M ,连接2MF ,由条件可知1111142HF PF MF ==, O 是12F F 的中点,2//OH MF ∴又1OH PF ⊥,21MF PF ∴⊥1222F F PF c ∴==,根据双曲线的定义可知122PF a c =+,12a cHF +∴=, 直线1PF 的方程是:()a y x c b=+ ,即0ax by ac -+= ,原点到直线的距离OH a ==,1OHF ∴∆中,2222a c a c +⎛⎫+= ⎪⎝⎭,整理为:223250c ac a --= , 即23250e e --= ,解得:53e = ,或1e =-(舍)故选:C变式2、【2020年高考全国I 卷理数】已知F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .【答案】2【解析】联立22222221x cx y a b a b c=⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2bBF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =,因此,双曲线C 的离心率为2. 故答案为:2.变式3、【2019年高考全国Ⅰ卷理数】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120FB F B ⋅=,则C 的离心率为____________.【答案】2 【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22,2.BF OA BF OA =∥由120FB F B ⋅=,得121,,F B F B OA F A ⊥∴⊥∴1OB OF =,1AOB AOF ∠=∠, 又OA 与OB 都是渐近线,∴21,BOF AOF ∠=∠又21πBOF AOB AOF ∠+∠+∠=,∴2160,BOF AOF BOA ∠=∠=∠=又渐近线OB 的斜率为tan 60ba=︒=,∴该双曲线的离心率为2c e a ====. 题型三、双曲线的综合问题例4、【2020年高考全国Ⅱ卷理数】设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为 A .4B .8C .16D .32【答案】B 【解析】2222:1(0,0)x y C a b a b-=>>, ∴双曲线的渐近线方程是by x a=±, 直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E两点不妨设D 为在第一象限,E 在第四象限,联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩,故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b =,∴ODE 面积为:1282ODE S a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>,∴其焦距为28c ===,当且仅当a b ==∴C 的焦距的最小值:8.故选:B .变式1、(2020届山东省临沂市高三上期末)已知P 为双曲线C :2214y x -=右支上一点,1F ,2F 分别为C 的左、右焦点,且线段12A A ,12B B 分别为C 的实轴与虚轴.若12A A ,12B B ,1PF 成等比数列,则2PF =______.【答案】6【解析】2214y x -=1222A A a ∴==,1224B B b ==,12A A ,12B B ,1PF 成等比数列212112A A PFB B ∴⋅=,解得18PF =,2826PF a ∴=-=故答案为:6变式2、【2020年高考全国Ⅲ卷理数】.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F1,F 2,P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =A . 1B . 2C . 4D . 8【答案】A【解析】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .1、【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A .2B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c =,所以双曲线的离心率ce a==故选C. 2、【2018年高考浙江卷】双曲线2213x y -=的焦点坐标是A .(0),0) B .(−2,0),(2,0) C .(0,,(0 D .(0,−2),(0,2) 【答案】B【解析】设2213x y -=的焦点坐标为(,0)c ±,因为222314c a b =+=+=,2c =, 所以焦点坐标为(2,0)±,故选B .3、(2020届山东省烟台市高三上期末)若双曲线()222210,0x y a b a b-=>>的,则其渐近线方程为( )A .230x y ±=B .320x y ±=C .20x y ±=D .230x y ±=【答案】C【解析】由题,离心率c e a ===,解得12b a =,因为焦点在x 轴上,则渐近线方程为12y x =±,即20x y ±=故选:C4、【2019年高考全国Ⅲ卷理数】双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .【答案】A【解析】由2,,a b c ====,2P PO PF x =∴=, 又P 在C 的一条渐近线上,不妨设为在by x a=上,则P P b y x a =⋅==1122PFO P S OF y ∴=⋅==△,故选A . 5、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN =A .32B .3C .D .4【答案】B【解析】由题可知双曲线C 的渐近线的斜率为3±,且右焦点为(2,0)F ,从而可得30FON ∠=︒,所以直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线y x =和y x =联立,求得M ,3(,2N ,所以||3MN ==,故选B .6、(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()1F ,点A 的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )AB C .2 D .【答案】D【解析】如下图所示:设该双曲线的左焦点为点F ,由双曲线的定义可得12PF PF a =+,所以,1APF ∆的周长为11123262AP AF PF AF AP PF a AF a a ++=+++≥++=+,当且仅当A 、P 、F 三点共线时,1APF ∆的周长取得最小值,即628a +=,解得1a =.因此,该双曲线的离心率为e == 故选:D.7、【2020年高考北京】已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】()3,0【解析】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x =,所以,双曲线C=.故答案为:()3,08、【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =,因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.9、【2020年高考江苏】在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为y =,则该双曲线的离心率是 ▲ . 【答案】32【解析】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为2y x =,即22b a a =⇒=,所以3c ==,所以双曲线的离心率为32c a =.故答案为:3221/ 21。
双曲线常见题型与典型方法归纳(修改版 附详解答案)

双曲线常见题型与典型方法归纳考点一 双曲线标准方程及性质1.双曲线的定义第一定义:平面内与两个定点21,F F 距离的差的绝对值等于|)|2(221F F a a <的点的轨迹。
(1)距离之差的绝对值.(2)当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支;当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是同一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在. 【典例】到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹( )A .椭圆B .线段C .双曲线D .两条射线 第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数)1(>e 的动点的轨迹。
2双曲线的标准方程及几何性质标准方程)0,0(12222>>=-b a by a x )0,0(12222>>=-b a bx a y 图形性 质焦点 F 1(-)0,c ,F 2()0,c F 1(),0c -,F 2(),c o焦距 | F 1F 2|=2c 222c b a =+范围 R y a x ∈≥,|| R x a y ∈≥,||对称 关于x 轴,y 轴和原点对称顶点 (-a ,0)。
(a ,0) (0,-a )(0,a )轴 实轴长2a ,虚轴长2b离心率)1(>=e ace (离心率越大,开口越大) 准线ca x 2±=ca y 2±=通径22b d a=22b d a=渐近线x ab y ±= x bay ±=注意:等轴双曲线(1)定义:实轴长与虚轴长相等的双曲线 (2)方程:222x y a -=或222y x a -= (3)离心率e =渐近线y x =±(4)方法:若已知等轴双曲线经过一定点,则方程可设为22(0)x y λλ-=≠ 【典例】 已知等轴双曲线经过点1)-,求此双曲线方程 3双曲线中常用结论(1)两准线间的距离: 22a c (2)焦点到渐近线的距离为b (3)通径的长是ab 22考点二 双曲线标准方程一 求双曲线标准方程的方法(1)定义法,根据题目的条件,若满足定义,求出相应a b c 、、即可求得方程; (2)待定系数法,其步骤是①定位:确定双曲线的焦点在哪个坐标轴上;②设方程:根据焦点的位置设出相应的双曲线方程; ③定值:根据题目条件确定相关的系数。
2020新高考数学压轴题 高中数学《双曲线》大题50道,word版,含答案解析

高中数学《双曲线》大题50题高中数学《双曲线》大题50题及答案解析1.在①m>0,且C的左支上任意一点到右焦点的距离的最小值为3+,②C的焦距为6,③C上一点到两焦点距离之差的绝对值为4.这三个条件中任选一个,补充在下面的问题中.问题:已知双曲线C:﹣=1,_____,求C的方程.2.已知双曲线C的右焦点F,半焦距c=2,点F到直线的距离为,过点F作双曲线C的两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.(1)求双曲线C的标准方程;(2)证明:直线MN必过定点,并求出此定点的坐标.3.设双曲线Γ的方程为:x2﹣=1.(1)设1是经过点M(1,1)的直线,且和Γ有且仅有一个公共点,求l的方程;(2)设11是Γ的一条渐近线,A、B是11上相异的两点.若点P是Γ上的一点,P关于点A的对称点记为Q,Q关于点B的对称点记为R.试判断点R是否可能在Γ上,并说明理由.4.在平面直角坐标系中,已知双曲线I:,A,B分别为I的左,右顶点.(1)以A为圆心的圆与I恰有三个不同的公共点,写出此圆的方程;(2)直线L过点A,与I在第一象限有公共点P,线段AP的垂直平分线过点B,求直线L的方程;(3)I上是否存在异于A、B点M、N,使+2=成立,若存在,求出所有M、N的坐标,若不存在说明理由.5.(Ⅰ)已知中心在原点的双曲线C的焦点坐标为,,且渐近线方程为,求双曲线C的标准方程;(Ⅱ)在圆x2+y2=3上任取一点P,过点P作y轴的垂线段PD,D为垂足,当点P在该圆上运动时,求线段PD的中点M的轨迹方程.6.设离心率为3,实轴长为1的双曲线E:(a>b>0)的左焦点为F,顶点在原点的抛物线C的准线经过点F,且抛物线C的焦点在x轴上.(I)求抛物线C的方程;(Ⅱ)若直线l与抛物线C交于不同的两点M,N,且满足OM⊥ON,求|MN|的最小值.7.2018年世界人工智能大会已于2018年9月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏,如图:A、B两个信号源相距10米,O是AB的中点,过O点的直线l与直线AB的夹角为45°,机器猫在直线l上运动,机器鼠的运动轨迹始终满足:接收到A点的信号比接收到B点的信号晚秒(注:信号每秒传播v0米).在时刻t0时,测得机器鼠距离O点为4米.(1)以O为原点,直线AB为x轴建立平面直角坐标系(如图),求时刻t0时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线l不超过1.5米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?8.已知离心率为2的双曲线C的一个焦点F(c,0)到一条渐近线的距离为.(1)求双曲线C的方程;(2)设A1,A2分别为C的左右顶点,P为C异于A1,A2一点,直线A1P与A2P分别交y 轴于M,N两点,求证:以线段MN为直径的圆D经过两个定点.9.已知F1,F2为双曲线的左、右焦点,过F2作垂直于x轴的垂线,在x轴上方交双曲线C于点M,且∠MF1F2=30°.(1)求双曲线C的两条渐近线的夹角θ;(2)过点F2的直线l和双曲线C的右支交于A,B两点,求△AF1B的面积最小值;(3)过双曲线C上任意一点Q分别作该双曲线两条渐近线的平行线,它们分别交两条渐近线于Q1,Q2两点,求平行四边形OQ1QQ2的面积.10.已知双曲线的一条渐近线方程为,点在双曲线上,抛物线y2=2px(p>0)的焦点F与双曲线的右焦点重合.(Ⅰ)求双曲线和抛物线的标准方程;(Ⅱ)过点F做互相垂直的直线l1,l2,设l1与抛物线的交点为A,B,l2与抛物线的交点为D,E,求|AB|+|DE|的最小值.高中数学资料共享群734924357每天都有更新!11.已知椭圆=1(a>b>0}),点A、点B分别是椭圆上关于原点对称的两点,点P是椭圆上不同于点A和点B的任意一点.(1)求证:直线PA的斜率与直线PB的斜率之积为定值,并求出定值;(2)试对双曲线=1写出具有类似特点的正确结论,并加以证明.12.如图,若F1,F2是双曲线﹣=1的两个焦点.(1)若双曲线上一点M到它的一个焦点的距离等于16,求点M到另一个焦点的距离;(2)若P是双曲线左支上的点,且|PF1|•|PF2|=32,试求△F1PF2的面积.13.已知双曲线过点(3,﹣2)且与椭圆4x2+9y2=36有相同的焦点.(1)求双曲线标准方程;(2)若点M在双曲线上,F1,F2分别是双曲线的左、右焦点,且|MF1|=2|MF2|,求△MF1F2的面积.14.设双曲线=1,其虚轴长为2,且离心率为.(1)求双曲线C的方程;(2)过点P(3,1)的动直线与双曲线的左右两只曲线分别交于点A、B,在线段AB上取点M使得=,证明:点M落在某一定直线上;(3)在(2)的条件下,且点M不在直线OP上,求△OPM面积的取值范围.15.在平面直角坐标系中,点F1、F2分别为双曲线C:的左、右焦点,双曲线C的离心率为2,点(1,)在双曲线C上.不在x轴上的动点P与动点Q关于原点O对称,且四边形PF1QF2的周长为.(1)求动点P的轨迹方程;高中数学资料共享群734924357每天都有更新!(2)在动点P的轨迹上有两个不同的点M(x1,y1)、N(x2,y2),线段MN的中点为G,已知点(x1,x2)在圆x2+y2=2上,求|OG|•|MN|的最大值,并判断此时△OMN的形状.16.已知双曲线=1(b>a>0)渐近线方程为y=±x,O为坐标原点,点在双曲线上.(Ⅰ)求双曲线的方程;(Ⅱ)已知P,Q为双曲线上不同两点,点O在以PQ为直径的圆上,求的值.17.设双曲线﹣=1的两个焦点分别为F1、F2,离心率为2.(1)若A、B分别为此双曲线的渐近线l1、l2上的动点,且2|AB|=5|F1F2|,求线段AB 的中点M的轨迹方程,并说明轨迹是什么曲线;(2)过点N(1,0)能否作出直线l,使l交双曲线于P、Q两点,且•=0,若存在,求出直线l的方程;若不存在,说明理由.18.已知双曲线,(1)求以双曲线的顶点为焦点,焦点为顶点的椭圆E的方程.(2)点P在椭圆E上,点C(2,1)关于坐标原点的对称点为D,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由.19.已知双曲线C:﹣=1(a>0,b>0)的两个焦点分别为(﹣2,0)和(2,0),点P(3,)在双曲线C上.(Ⅰ)求双曲线C的方程;高中数学资料共享群734924357每天都有更新!(Ⅱ)过点A(0,2)的直线与双曲线C交于不同的两点E、F,若坐标原点O与E、F构成的三角形面积为2,求直线l的方程.20.已知双曲线的左右两个顶点是A1,A2,曲线C上的动点P,Q关于x轴对称,直线A1P与A2Q交于点M,(1)求动点M的轨迹D的方程;(2)点E(0,2),轨迹D上的点A,B满足,求实数λ的取值范围.21.已知圆M:(x+1)2+y2=,圆N:(x﹣1)2+y2=,动圆D与圆M外切并与圆N内切,圆心D的轨迹为曲线E.(1)求曲线E的方程;(2)若双曲线C的右焦点即为曲线E的右顶点,直线y=x为C的一条渐近线.①求双曲线C的方程;②过点P(0,4)的直线l,交双曲线C于A,B两点,交x轴于Q点(Q点与C的顶点不重合),当,且λ1+λ2=﹣时,求Q点的坐标.22.已知双曲线的离心率为e,经过第一、三象限的渐近线的斜率为k,且e≥k.(1)求m的取值范围;高中数学资料共享群734924357每天都有更新!(2)设条件p:e≥k;条件q:m2﹣(2a+2)m+a(a+2)≤0.若p是q的必要不充分条件,求a的取值范围.23.已知F1,F2分别是双曲线的左右焦点,点P是双曲线上任一点,且||PF1|﹣|PF2||=2,顶点在原点且以双曲线的右顶点为焦点的抛物线为L.(Ⅰ)求双曲线C的渐近线方程和抛物线L的标准方程;(Ⅱ)过抛物线L的准线与x轴的交点作直线,交抛物线于M、N两点,问直线的斜率等于多少时,以线段MN为直径的圆经过抛物线L的焦点?24.若抛物线的顶点是双曲线x2﹣y2=1的中心,焦点是双曲线的右顶点(1)求抛物线的标准方程;(2)若直线l过点C(2,1)交抛物线于M,N两点,是否存在直线l,使得C恰为弦MN 的中点?若存在,求出直线l方程;若不存在,请说明理由.25.已知双曲线过点A(1,1),它的焦点F在其渐近线上的射影记为M,且△OFM(O为原点)的面积为.(Ⅰ)求双曲线的方程;(Ⅱ)过点A作双曲线的两条动弦AB,AC,设直线AB,直线AC的斜率分别为k1,k2,且(k1+1)(k2+1)=﹣1恒成立,证明:直线BC的斜率为定值.26.已知双曲线C:﹣=1(a>0,b>0)的一条渐近线与直线x=交于点M,双曲线C的离心率e=,F是其右焦点,且|MF|=1.(Ⅰ)求双曲线C的方程;(Ⅱ)过点A(0,1)的直线l与双曲线C的右支交于不同两点P、Q,且P在A、Q之间,若=λ且,求直线l斜率k的取值范围.27.已知双曲线C:﹣=1 的离心率是,其一条准线方程为x=.(Ⅰ)求双曲线C的方程;(Ⅱ)设双曲线C的左右焦点分别为A,B,点D为该双曲线右支上一点,直线AD与其左支交于点E,若=λ,求实数λ的取值范围.28.双曲线=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为,其中A(a,0),B(0,﹣b).(1)求双曲线的方程;高中数学资料共享群734924357每天都有更新!(2)若B1是双曲线虚轴在y轴正半轴上的端点,过B作直线与双曲线交于M,N两点,求B1M⊥B1N时,直线MN的方程.29.已知椭圆C与双曲线﹣=1有公共焦点,且离心率e=,(1)求椭圆的标准方程;(2)已知点P是椭圆C上的一动点,过点P作x轴的垂线段PD,D为垂足,当点P在椭圆上运动时,线段PD的中点M的轨迹是什么?30.已知两点A(0,﹣1),B(0,1),P(x,y)是曲线C上一动点,直线PA、PB斜率的平方差为1.(1)求曲线C的方程;(2)E(x1,y1),F(x2,y2)是曲线C上不同的两点,Q(2,3)是线段EF的中点,线段EF的垂直平分线交曲线C于G,H两点,问E,F,G,H是否共圆?若共圆,求圆的标准方程;若不共圆,说明理由.31.双曲线S的中心在原点,焦点在x轴上,离心率e=,直线x﹣3y+5=0上的点与双曲线S的右焦点的距离的最小值等于.(1)求双曲线S的方程;(2)设经过点(﹣2,0),斜率等于k的直线与双曲线S交于A,B两点,且以A,B,P (0,1)为顶点的三角形ABP是以AB为底的等腰三角形,求k的值.32.已知双曲线=1(a>0,b>0)的两条渐近线与抛物线C:y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为(1)求抛物线C的方程;(2)过点D(﹣1,0)的直线l与抛物线C交于不同的两点E,F,若在x轴上存在一点P(x0,0)使得△PEF是等边三角形,求x0的值.33.在平面直角坐标系xoy中,已知双曲线﹣y2=1的左、右顶点分别为A1,A2,点P(x0,y0),Q(x0,﹣y0)是双曲线上不同的两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)过坐标原点O作一条直线交轨迹E于A,B两点,过点B作x轴的垂线,垂足为点C,连AC交轨迹E于点D,求证:AB⊥BD.34.已知双曲线C:=1(a>0,b>0)的离心率为,实轴长为2 (Ⅰ)求双曲线C的方程;(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C 交于不同的两点A,B,证明∠AOB的大小为定值.35.已知曲线Γ上的点到F(1,0)的距离比它到直线x=﹣3的距离小2,过F的直线交曲线Γ于A,B两点.(1)求曲线Γ的方程;(2)若,求直线AB的斜率;(3)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.36.已知点在双曲线上,且双曲线的一条渐近线的方程是.(1)求双曲线C的方程;(2)过点(0,1)且斜率为k的直线l与双曲线C交于A、B两个不同点,若以线段AB 为直径的圆恰好经过坐标原点,求实数k的值.37.已知点是椭圆C:的一个顶点,椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)已知点P(x0,y0)是定点,直线交椭圆C于不同的两点A、B,记直线PA、PB的斜率分别为k1、k2,求点P的坐标,使得k1+k2=0恒成立.38.已知双曲线C:的离心率为,点(4,2)在C上.(Ⅰ)求双曲线C的方程;(Ⅱ)直线l不过原点O且不平行于坐标轴,且直线l与双曲线C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.39.已知命题P“双曲线﹣=1上任意一点Q到直线l1:bx+ay=0,l2:bx﹣ay=0的距离分别记作d1,d2则d1,d2为定值”是真命题(1)求出d1•d2的值(2)已知直线l1,l2关于y轴对称且使得椭圆C:+=1上任意点到l1,l2的距离d1,d2满足为定值,求l1,l2的方程(3)已知直线m与(2)中某一条直线平行(或重合)且与椭圆C交于M,N两点,求|OM|+|ON|的最大值.40.椭圆与双曲线有许多优美的对称性质.对于椭圆+=1(a>b>0)有如下命题:AB是椭圆+=1(a>b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k OM•k AB=﹣,为定值.那么对于双曲线﹣=1(a>0,b>0)则有命题:AB 是双曲线﹣=1(a>0,b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k OM•k AB=定值.(在横线上填上正确的结论)并证明你的结论.41.如图,已知双曲线,过点P(0,﹣1)的直线l分别交双曲线C的左、右两支于点A,B,交双曲线C的两条渐近线于点D,E(点D在y轴的左侧).(1)若,求直线l的方程;(2)求的取值范围.42.已知双曲线C1:x2﹣=1(b>0),A(x A,b2)是C1上位于第二象限内的一点,曲线C2是以点C(0,b2+1)为圆心过点A的圆上满足y>b2的部分.曲线Γ由C1上满足y≤b2的部分和C2组成.记F1,F2为C1的左、右焦点.(1)若△CF1F2为等边三角形,求x A;(2)若直线AC与Γ恰有两个公共点,求b的最小值;(3)设b=1,过A的直线l与Γ相交于另外两点P、Q,求l的倾斜角的取值范围.43.如图,在平面直角坐标系xOy中,已知等轴双曲线E:(a>0,b>0)的左顶点A,过右焦点F且垂直于x轴的直线与E交于B,C两点,若△ABC的面积为.(1)求双曲线E的方程;(2)若直线l:y=kx﹣1与双曲线E的左,右两支分别交于M,N两点,与双曲线E的两条渐近线分别交于P,Q两点,求的取值范围.44.已知曲线,Q为曲线C上一动点,过Q作两条渐近线的垂线,垂足分别是P1和P2.(1)当Q运动到时,求的值;(2)设直线l(不与x轴垂直)与曲线C交于M、N两点,与x轴正半轴交于T点,与y 轴交于S点,若,,且λ+μ=1,求证T为定点.45.设双曲线的左顶点为D,且以点D为圆心的圆D:(x+2)2+y2=r2(r>0)与双曲线C分别相交于点A,B,如图所示.(1)求双曲线C的方程;(2)求的最小值,并求出此时圆D的方程;(3)设点P为双曲线C上异于点A,B的任意一点,且直线PA,PB分别与x轴相交于点M,N,求证:|OM|•|ON|为定值(其中O为坐标原点).46.设双曲线Γ的方程为:x2﹣=1.(1)设1是经过点M(1,1)的直线,且和Γ有且仅有一个公共点,求l的方程;(2)设11是Γ的一条渐近线,A、B是11上相异的两点.若点P是Γ上的一点,P关于点A的对称点记为Q,Q关于点B的对称点记为R.试判断点R是否可能在Γ上,并说明理由.47.已知双曲线C的一个焦点为,且过点.如图,F1,F2为双曲线的左、右焦点,动点P(x0,y0)(y0≥1)在C的右支上,且∠F1PF2的平分线与x轴、y 轴分别交于点M(m,0)(﹣<m<)、N,设过点F1,N的直线l与C交于D,E两点.(Ⅰ)求C的标准方程;(Ⅱ)求△F2DE的面积最大值.48.直线上的动点P到点T1(9,0)的距离是它到点T(1,0)的距离的3倍.(1)求点P的坐标;(2)设双曲线的右焦点是F,双曲线经过动点P,且,求双曲线的方程;(3)点T(1,0)关于直线x+y=0的对称点为Q,试问能否找到一条斜率为k(k≠0)的直线L与(2)中的双曲线交于不同的两点M、N,且满足|QM|=|QN|,若存在,求出斜率k的取值范围,若不存在,请说明理由.49.已知双曲线C1:的渐近线方程为y=±x,且过点,其离心率为e,抛物线C2的顶点为坐标原点,焦点为.(I)求抛物线C2的方程;(II)O为坐标原点,设A,B是抛物线上分别位于x轴两侧的两个动点,且=12.(i)求证:直线AB必过定点,并求出该定点P的坐标;(ii)过点P作AB的垂线与抛物线交于C,D两点,求四边形ACBD面积的最小值.50.火电厂、核电站的循环水自然通风冷却塔是一种大型薄壳型建筑物.建在水源不十分充分的地区的电厂,为了节约用水,需建造一个循环冷却水系统,以使得冷却器中排出的热水在其中冷却后可重复使用,大型电厂采用的冷却构筑物多为双曲线型冷却塔.此类冷却塔多用于内陆缺水电站,其高度一般为75~150米,底边直径65~120米.双曲线型冷却塔比水池式冷却构筑物占地面积小,布置紧凑,水量损失小,且冷却效果不受风力影响;它比机力通风冷却塔维护简便,节约电能;但体形高大,施工复杂,造价较高(以上知识来自百度,下面题设条件只是为了适合高中知识水平,其中不符合实际处请忽略.图1)(1)图2为一座高100米的双曲线冷却塔外壳的简化三视图(忽略壁厚),其底面直径大于上底直径.已知其外壳主视图与左视图中的曲线均为双曲线,高度为100m,俯视图为三个同心圆,其半径分别为40m,m,30m,试根据上述尺寸计算主视图中该双曲线的标准方程(m为长度单位米).(2)试利用课本中推导球体积的方法,利用圆柱和一个倒放的圆锥,计算封闭曲线:,y=0,y=h,绕y轴旋转形成的旋转体的体积为(用a,b,h表示)(用积分计算不得分,图3、图4)现已知双曲线冷却塔是一个薄壳结构,为计算方便设其内壁所在曲线也为双曲线,其壁最厚为0.4m(底部),最薄处厚度为0.3m(喉部,即左右顶点处).试计算该冷却塔内壳所在的双曲线标准方程是,并计算本题中的双曲线冷却塔的建筑体积(内外壳之间)大约是m3(计算时π取3.14159,保留到个位即可)(3)冷却塔体型巨大,造价相应高昂,本题只考虑地面以上部分的施工费用(建筑人工和辅助机械)的计算,钢筋土石等建筑材料费用和和其它设备等施工费用不在本题计算范围内.超高建筑的施工(含人工辅助机械等)费用随着高度的增加而增加.现已知:距离地面高度30米(含30米)内的建筑,每立方米的施工费用平均为:400元/立方米;30米到40米(含40米)每立方米的施工费用为800元/立方米;40米以上,平均高度每增加1米,每立方米的施工费用增加100元.试计算建造本题中冷却塔的施工费用(精确到万元)高中数学《双曲线》大题50题答案解析1.在①m>0,且C的左支上任意一点到右焦点的距离的最小值为3+,②C的焦距为6,③C上一点到两焦点距离之差的绝对值为4.这三个条件中任选一个,补充在下面的问题中.问题:已知双曲线C:﹣=1,_____,求C的方程.【解析】选①.因为m>0,所以a2=m,b2=2m,c2=3m,所以a=,c=,因为C的左支上任意一点到右焦点的距离的最小值为a+c,所以a+c=+=3+,解得m=3,故C的方程为﹣=1;选②.若m>0,则a2=m,b2=2m,c2=3m,所以a=,c=,所以C的焦距为2c=2=6,解得m=3,则故C的方程为﹣=1;若m<0,则a2=﹣2m,b2=﹣m,c2=﹣3m,所以c=,所以C的焦距为2c=2=6,解得m=﹣3,则C的方程为﹣=1;选③.若m>0,则a2=m,所以a=,因为C上一点到两个焦点的距离之差的绝对值为4,所以2a=2=4,解得m=4,则C的方程为﹣=1;若m<0,则a2=﹣2m,所以a=,因为C上一点到两个焦点的距离之差的绝对值为4,所以2a=2=4,解得m=﹣2,则C的方程为﹣=1.2.已知双曲线C的右焦点F,半焦距c=2,点F到直线的距离为,过点F作双曲线C的两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.(1)求双曲线C的标准方程;(2)证明:直线MN必过定点,并求出此定点的坐标.【解析】(1)由题意可得c=2,c﹣=,b2=c2﹣a2,解得:a2=3,b2=1,所以双曲线的方程为:﹣y2=1;(2)证明:设F(2,0)设过F的弦AB所在的直线方程为:x=ky+2,A(x1,y1),B(x2,y2),则有中点M(+2,),联立直线AB与双曲线的方程:整理可得:(k2﹣3)y2+4ky+1=0,因为弦AB与双曲线有两个交点,所以k2﹣3≠0,y1+y2=,所以x1+x2=k(y1+y2)+4=,所以M(,);(i)当k=0时,M点即是F,此时直线MN为x轴;(ii)当k≠0时,将M的坐标中的k换成﹣,同理可得N的坐标(,﹣),①当直线MN不垂直于x轴时,直线MN的斜率k MN==,将M代入方程可得直线MN:y﹣=(x﹣),化简可得y=(x﹣3),所以直线MN恒过定点P(3,0);②当直线MN垂直于x轴时,=可得k=±1,直线也过定点P(3,0);综上所述直线MN恒过定点P(3,0).3.设双曲线Γ的方程为:x2﹣=1.(1)设1是经过点M(1,1)的直线,且和Γ有且仅有一个公共点,求l的方程;(2)设11是Γ的一条渐近线,A、B是11上相异的两点.若点P是Γ上的一点,P关于点A的对称点记为Q,Q关于点B的对称点记为R.试判断点R是否可能在Γ上,并说明理由.【解析】(1)①当直线l斜率不存在时,方程为x=1,显然与双曲线Γ相切,只有一个交点,符合题意,②当直线l的斜率存在且与双曲线Γ相切时,设斜率为k,则直线l的方程为y﹣1=k(x﹣1),即y=kx﹣k+1联立方程,消去y得:(4﹣k2)x2﹣2k(1﹣k)x﹣[(1﹣k)2+4]=0,∵直线l和双曲线Γ有且仅有一个公共点,∴△=4k2(1﹣k)2+4(4﹣k2)[(1﹣k)2+4]=0,化简得:80﹣32k=0,∴,∴直线l的方程为:y=,即5x﹣2y﹣3=0,③当直线l与双曲线Γ的渐近线平行时,也与双曲线Γ有且仅有一个公共点,∵双曲线Γ的渐近线方程为:y=±2x,∴直线l的斜率为±2,∴直线l的方程为y﹣1=2(x﹣1)或y﹣1=﹣2(x﹣1),即2x﹣y﹣1=0或2x+y﹣3=0,综上所述,直线l的方程为:x=1或5x﹣2y﹣3=0或2x﹣y﹣1=0或2x+y﹣3=0;(2)假设点R在双曲线Γ上,不妨设直线l1方程为:y=2x,设点A(x1,2x1),B(x2,2x2),点P(x0,y0),∵P关于点A的对称点记为Q,∴点Q(2x1﹣x0,4x1﹣y0),∵Q关于点B的对称点记为R.∴点R(2x2﹣2x1+x0,4x2﹣4x1+y0),∵点R在双曲线Γ上,∴,∴﹣=1,∴,又∵点P(x0,y0)在双曲线Γ:x2﹣=1上,∴x02﹣=1,∴上式化为:4(x2﹣x1)•x0﹣2(x2﹣x1)•y0=0,又∵x1≠x2,∴4x0=2y0,∴y0=2x0,又∵x02﹣=1,∴,∴0=1,此式显然不成立,故假设不成立,所以点R不可能在双曲线Γ上.4.在平面直角坐标系中,已知双曲线I:,A,B分别为I的左,右顶点.(1)以A为圆心的圆与I恰有三个不同的公共点,写出此圆的方程;(2)直线L过点A,与I在第一象限有公共点P,线段AP的垂直平分线过点B,求直线L的方程;(3)I上是否存在异于A、B点M、N,使+2=成立,若存在,求出所有M、N的坐标,若不存在说明理由.【解析】(1)双曲线I:,A(﹣2,0),B(2,0),由题意可得以A为圆心的圆经过B,则圆的半径r=4,圆的方程为(x+2)2+y2=16;(2)直线L过点A(﹣2,0),且直线的斜率存在,设直线L的方程为y=k(x+2),(k >0),联立双曲线方程消去y,可得(5﹣4k2)x2﹣16k2x﹣16k2﹣20=0,可得x A+x P=,可得x P=,y P=k(x+2)=,可得AP的中点T坐标为(,),由题意可得k TB=﹣,即为=﹣,解得k=(负的舍去),则直线L的方程为y=(x+2);(3)假设I上存在异于A、B点M、N,使+2=成立.设M(x1,y1),N(x2,y2),由+2=,可得x2=2﹣2x1,y2=﹣2y1,将M,N的坐标代入双曲线的方程可得﹣=1,即﹣=1,又﹣=1,解得x1=2,y1=0,与B重合,故不存在.5.(Ⅰ)已知中心在原点的双曲线C的焦点坐标为,,且渐近线方程为,求双曲线C的标准方程;(Ⅱ)在圆x2+y2=3上任取一点P,过点P作y轴的垂线段PD,D为垂足,当点P在该圆上运动时,求线段PD的中点M的轨迹方程.【解析】(Ⅰ)依题可知双曲线的焦点在y轴上,设其方程为:,且①,双曲线的渐近线方程为,即②.又∵a2+b2=c2…③,由①②③可得.得双曲线方程为:;(Ⅱ)设轨迹上任一点M的坐标为(x,y),点P的坐标为(x0,y0),则依题意可知D点坐标为(0,y0),∵PD的中点为M,∴,即,∵点P在圆x2+y2=3上运动,,得4x2+y2=3,经检验所求方程符合题意,∴点M的轨迹方程为.6.设离心率为3,实轴长为1的双曲线E:(a>b>0)的左焦点为F,顶点在原点的抛物线C的准线经过点F,且抛物线C的焦点在x轴上.(I)求抛物线C的方程;(Ⅱ)若直线l与抛物线C交于不同的两点M,N,且满足OM⊥ON,求|MN|的最小值.【解析】(I)离心率为3,实轴长为1,即e==3,a=,可得c=,F(﹣,0),可设抛物线的方程为y2=2px,p>0,可得=,即p=3,可得抛物线的方程为y2=6x;(Ⅱ)设直线l的方程为x=my+t,设点M(x1,y1)、N(x2,y2),则x1=,x2=,将直线l的方程与抛物线C的方程联立,得y2﹣6my﹣6t=0,由韦达定理得y1+y2=6m,y1y2=﹣6t,∵OM⊥ON,∴k OM•k ON=•=﹣=﹣1,即t=6,由△=36m2+24×6>0恒成立,则|MN|==•=6≥12,当且仅当m=0时,|MN|取得最小值12.7.2018年世界人工智能大会已于2018年9月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏,如图:A、B两个信号源相距10米,O是AB的中点,过O点的直线l与直线AB的夹角为45°,机器猫在直线l上运动,机器鼠的运动轨迹始终满足:接收到A点的信号比接收到B点的信号晚秒(注:信号每秒传播v0米).在时刻t0时,测得机器鼠距离O点为4米.(1)以O为原点,直线AB为x轴建立平面直角坐标系(如图),求时刻t0时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线l不超过1.5米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?【解析】(1)设机器鼠位置为点P,由题意可得﹣=,即|PA|﹣|PB|=8<10,可得P的轨迹为双曲线的右支,且2c=10,2a=8,即有c=5,a=4,b=3,则P的轨迹方程为﹣=1(x≥4),时刻t0时,|OP|=4,即P(4,0),可得机器鼠所在位置的坐标为(4,0);(2)设直线l的平行线l1的方程为y=x+m,联立双曲线方程﹣=1(x≥4),可得7x2+32mx+16m2+144=0,即有△=(32m)2﹣28(16m2+144)=0,且x1+x2=﹣>0,可得m=﹣,即l1:y=x﹣与双曲线的右支相切,切点即为双曲线右支上距离l最近的点,此时l与l1的距离为d==,即机器鼠距离l最小的距离为>1.5,则机器鼠保持目前运动轨迹不变,没有“被抓”的风险.8.已知离心率为2的双曲线C的一个焦点F(c,0)到一条渐近线的距离为.(1)求双曲线C的方程;(2)设A1,A2分别为C的左右顶点,P为C异于A1,A2一点,直线A1P与A2P分别交y 轴于M,N两点,求证:以线段MN为直径的圆D经过两个定点.【解析】(1)设C:,因为离心率为2,所以c=2a,.所以C的渐近线为,由,得c=2.于是a=1,,故C的方程为.(2)方法一、设P(x0,y0)(x0≠±1),因为A1(﹣1,0),A2(1,0),可得直线A1P与A2P方程为,.由题设,所以,,,MN中点坐标,于是圆D的方程为.因为,所以圆D的方程可化为.当y=0时,,因此D经过两个定点和.方法二、设P(x0,y0)(x0≠±1),因为A1(﹣1,0),A2(1,0),可得直线A1P与A2P方程为,,由题设,所以,.设P(x,y)是圆D上点,则,即,于是圆D的方程为.因为,所以圆D的方程可化为.当y=0时,,因此D经过两个定点和.9.已知F1,F2为双曲线的左、右焦点,过F2作垂直于x轴的垂线,在x轴上方交双曲线C于点M,且∠MF1F2=30°.(1)求双曲线C的两条渐近线的夹角θ;(2)过点F2的直线l和双曲线C的右支交于A,B两点,求△AF1B的面积最小值;(3)过双曲线C上任意一点Q分别作该双曲线两条渐近线的平行线,它们分别交两条渐近线于Q1,Q2两点,求平行四边形OQ1QQ2的面积.【解析】(1)双曲线的a=1,c=,可令x=c,解得y=b=b2,设M(c,b2),由∠MF1F2=30°,可得b2=2c tan30°=,解得b=,则双曲线的方程为x2﹣=1,可得双曲线的方程为y=±x,即有tanθ=||=2,可得夹角θ=arctan2;(2)当直线AB的斜率不存在,可得A(,2),B(,﹣2),可得△AF1B的面积为×2×4=4;直线AB的斜率存在,设过点F2的直线l设为y=k(x﹣),联立双曲线方程2x2﹣y2=2,可得(2﹣k2)x2+2k2x﹣3k2﹣2=0,设A(x1,y1),B(x2,y2),又x1+x2=﹣>0,x1x2=﹣>0,可得k2>2,可得△AF1B的面积为S=•2c•|y1﹣y2|=•|k(x1﹣x2)|=•|k|•=|k|•,设t=k2﹣2(t>0),可得S=4•=4•>4,综上可得△AF1B的面积的最小值为4;(3)设Q(m,n),可得2m2﹣n2=2,双曲线的渐近线方程为y=±x,Q到直线y=x的距离为d=,由平行于直线y=﹣x的直线y=﹣(x﹣m)+n,联立直线y=x,可得Q2(,),|OQ2|=|n+m|,。
高考双曲线基本知识点总结

高考双曲线基本知识点总结在高中数学课程中,双曲线是一个重要的内容,也常常在高考中出现。
双曲线作为一个二次方程的图像,具有许多有趣的性质和应用。
在这篇文章中,我们将总结一些高考双曲线的基本知识点,并探讨一些相关的应用。
一、双曲线的定义和标准方程双曲线可以由一个二次方程的图像表示,其标准方程如下:$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$其中,a和b分别代表双曲线在x轴和y轴方向的半轴长度。
双曲线的图像具有两支分离的曲线,通过对称轴将平面分成两个部分,分别称为双曲线的两个分支。
对称轴是与x轴和y轴垂直的直线,传统上被称为实轴和虚轴。
二、双曲线的基本性质1. 焦点和准线双曲线上的每个点到焦点F和F'的距离之差等于常数2a,这个常数称为焦距。
焦距是双曲线的一个重要属性,它决定了双曲线的形状。
双曲线的对称轴上存在两个点,它们与焦点的距离之差等于焦距2a,这两个点称为准线。
2. 渐近线双曲线还具有两条渐近线,分别与双曲线的两个分支无限接近但永远不会相交。
这两条渐近线分别是对称轴和过焦点的直线。
3. 离心率双曲线的离心率是一个重要的参数,它决定了双曲线的形状。
离心率定义为焦距与准线之比。
当离心率大于1时,双曲线的形状更加扁平;当离心率接近于1时,双曲线的形状更加接近于抛物线。
三、双曲线的应用1. 焦距和接近问题双曲线的焦距特性可以用于解决一些实际问题。
例如,在声学中,可以利用双曲线的焦点和准线来确定声源的位置。
同样地,在雷达技术中,焦距的应用可以用于确定目标的位置和距离。
2. 双曲线的参数方程通过引入参数t,我们可以用参数方程来表示双曲线的图像。
双曲线的参数方程如下:$x = a \sec(t)$$y = b \tan(t)$其中,sec(t)表示余切函数的倒数,tan(t)表示正切函数。
使用参数方程,可以更加灵活地描述双曲线的形状和位置,对于解决一些复杂的几何问题非常有用。
双曲线历年高考真题100题 解析版

高考真题一、单选题A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -=【答案】D 【解析】试题分析:依题意有222{3bac c a b ===+,解得1,a b ==2213y x -=.考点:双曲线的概念与性质. A .2 B .C .D .1【答案】D 【解析】试题分析:由离心率e =ca 可得:e 2=a 2+3a2=22,解得:a =1.考点:复数的运算 A .B .3C .D .【答案】A 【解析】试题分析:由已知得,双曲线C 的标准方程为x 23m −y 23=1.则c 2=3m +3,c =√3m +3,设一个焦点F(√3m +3,0),一条渐近线l 的方程为y =√3√3m=√m,即x −√my =0,所以焦点F 到渐近线l 的距离为d =√3m+3√m+1=√3,选A .【考点定位】1、双曲线的标准方程和简单几何性质;2、点到直线的距离公式.A .B .C .D .【答案】A 【解析】2=,所以,b a ,双曲线的渐近线方程为y x =,即0x ±=,选A. 考点:椭圆、双曲线的几何性质. A .B .C .D .3【答案】B 【解析】试题分析:因为P 是双曲线x 2a2−y 2b 2=1(a >0,b >0)上一点,所以||PF 1|−|PF 2||=2a ,又|PF 1|+|PF 2|=3b所以,(|PF 1|+|PF 2|)2−(|PF 1|−|PF 2|)2=9b 2−4a 2,所以4|PF 1|⋅|PF 2|=9b 2−4a 2 又因为|PF 1|⋅|PF 2|=94ab ,所以有,9ab =9b 2−4a 2,即9(ba )2−9(ba )−4=0 解得:ba =−13(舍去),或ba =43; 所以e 2=c 2a 2=a 2+b 2a 2=1+(b a )2=1+(43)2=259,所以e =53故选B.考点:1、双曲线的定义和标准方程;2、双曲线的简单几何性质. A .(1,3) B .(]1,3C .(3,+∞)D .[)3,+∞ 【答案】B 【详解】可用三角形的两边和大于第三边,及两边差小于第三边,但要注意前者可以取到等号成立,因为可以三点一线.也可用焦半径公式确定a 与c 的关系.A.B.C.D.【答案】B【解析】由题意,所以,由双曲线的定义,有,∴.A.(√2,2)B.(√2,√5)C.(2,5)D.(2,√5)【答案】B【详解】由题意得,双曲线的离心率e2=(ca )2=a2+(a+1)2a2=1+(1+1a)2,因为1a 是减函数,所以当a>1时,0<1a<1,所以2<e2<5,所以√2<e<√5,故选B.考点:双曲线的几何性质.【方法点晴】本题主要考查了双曲线的几何性质及其应用,其中解答中涉及到双曲线的标准方程及简单的几何性质的应用,函数的单调性及函数的最值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算、转化与化归思想的应用,本题的解得中把双曲线的离心率转化为1a的函数,利用函数的单调性是解答的关键,试题有一定的难度,属于中档题.A .3B .C .D .【答案】C 【解析】可得双曲线的准线为21a x c =±=±,又因为椭圆焦点为(1=.即b 2=3故b=故C.A .B .2C .3D .6【答案】A 【解析】试题分析:先根据双曲线得到其渐近线的方程,再利用圆心到渐近线的距离等于半径,就可求出r 的值.22163x y -=的渐近线方程是2y =±20y ±=,又圆心是(3,0),所以由点到直线的距离公式可得r =A .考点:1、双曲线;2、双曲线的渐近线;3、直线与圆相切;4、点到直线的距离.A .2 BC .32D .1【答案】D 【详解】由222123x y c b e a a 可知虚轴-=====,解得a=1,应选D. A .B .5C .D .【答案】D 【解析】由题意知:双曲线的一条渐近线为,由方程组2{1b y x a y x ==+,消去y,得210bx x a-+=有唯一解,所以△=2()40ba-=,所以2b a =,2c e a a ====故选D. 【考点定位】本小题考查双曲线与抛物线的基本知识,求离心率、直线与抛物线的位置关系等.A .22124x y -=B .22142-=x yC .22146x y -= D .221410x y -= 【答案】B 【解析】由2e =得222222331,1,222c b b a a a =+==,选B.A .221090x y x +-+=B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=【答案】A 【详解】圆心为(5,0),渐近线方程为430x y ±=,所以半径为4545⨯=,所以圆的方程是22(5)16x y -+=,即221090x y x +-+=,选A.A .B .12C .D .24【答案】B 【解析】试题分析:由已知可得121212|:|3:2,26,4,PF PF PF PF PF PF =-=⇒==又22212121212||||F F PF PF F F PF F =+=⇒∆是直角三角形146122S =⨯⨯=,故选B .考点:双曲线标准方程及其性质. A.2B.2CD【答案】B 【解析】本小题主要考查双曲线的几何性质、第二定义、余弦定理,以及转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000[()]1a PF e x a ex c =--=+=+,22000[)]1aPF e x ex a c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||2PF PF F F PF PF +-,即cos60222=,解得2052x =,所以2200312y x =-=,故P 到x轴的距离为0y =.A .√2B .√3C .√3+12D .√5+12【答案】D 【解析】试题分析:设该双曲线方程为x 2a 2−y 2b 2=1(a >0,b >0),得点B (0,b ),焦点为F (c ,0),直线FB 的斜率为−bc 由垂直直线的斜率之积等于-1,建立关于a 、b 、c 的等式,变形整理为关于离心率e 的方程,解之即可得到该双曲线的离心率;设该双曲线方程为x 2a 2−y 2b 2=1(a >0,b >0),可得它的渐近线方程为y =±ba x ,焦点为F (c ,0),点B (0,b )是虚轴的一个端点,∴直线FB 的斜率为k FB =0−b c−0=−b c ,∵直线FB 与直线y =ba x 互相垂直,∴−bc ×ba =−1,∴b 2=ac,∵b 2=c 2−a 2,∴c 2−a 2=ac ,∴e 2−e −1=0,∴e =1±√52∵双曲线的离心率e >1,∴e=√5+12,故选:D考点:双曲线的简单性质A .By=0 C .="0" D±y=0【答案】D 【解析】不妨设12(,0),(,0)F c F c -,则11221222OF F P OF F P F P F POP ++++==因为1260F PF ∠=,所以121212cos602F P F PF P F P F P F P ⋅⋅=⋅=,22212121212||||1cos 22PF PF F F F PF PF PF +-∠==⋅ 所以2221212||4PF PF PF PF c +=⋅+ 因为P 在双曲线上,所以122PF PF a -=则2222212121212()||244PF PF PF PF PF PF c PF PF a -=+-⋅=-⋅= 所以221244PF PF c a ⋅=-,故122212222F P F PF P F P c a ⋅⋅==-222221212||484PF PF PF PF c c a +=⋅+=-因为OP =,所以1272F P F POP +==故22121212||274F P F P F P F Pa ++⋅=,即222327ca a -=故22237b a a +=,解得b =所以双曲线的渐近线方程为0x a =0y ±=,故选DA .3B .3C .D .【答案】A 【详解】由点P 到双曲线右焦点的距离是2知P 在双曲线右支上.又由双曲线的第二定义知点P 到双曲线,双曲线的右准线方程是3x =,故点P 到y 轴的距离是3.A .12m >B .1m ≥C .1m >D .2m >【答案】C 【解析】试题分析:由题可知1a =,b =c =ce a==>1m >,故选C . 考点:双曲线的离心率.A .12B .2C .1 D【答案】B 【解析】由于对称性,我们不妨取顶点(1,0)A ,取渐近线为0x y -=,所以由点到直线的距离公式可得d ==450得到. 【考点定位】 本题考查了双曲线的渐近线及点到直线的距离公式,如果能画图可简化计算,属于简单题.A .22182x y +=B .221126x y +=C .221164x y +=D .221205x y +=【答案】D 【详解】由题意,双曲线221x y -=的渐近线方程为y x =±,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C :()222210x y a b a b+=>>上,∴22441a b +=,∵e =∴22234a b a -=,∴224b a =, ∴22205a b ==,∴椭圆方程为:221205x y +=.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质. A .12或32B .23或2 C .12或2 D .23或32【答案】A 【分析】设1122432PF t F F t PF t ===,,,讨论两种情况,分别利用椭圆与双曲线的定义求出,a c 的值,再利用离心率公式可得结果. 【详解】因为1122::PF F F PF 4:3:2=,所以可设1122432PF t F F t PF t ===,,, 若曲线为椭圆则123262a PF PF t c t =+==,,则12c e a ==; 若曲线为双曲线则,324222a t t t a t c t ,,=-===,∴32c e a ==,故选A . 【点睛】本题主要考查椭圆的定义及离心率以及双曲线的定义及离心率,属于中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解. A .2B .C .4D .【答案】C 【解析】2228x y -=可变形为22148x y -=,则24a =,2a =,24a =.故选C.A .4B .3C .2D .1【答案】C 【分析】先根据双曲线()222109x y a a -=>求出渐近线方程,再与320x y ±=比较即可求出a 的值. 【详解】由双曲线的几何性质可得,双曲线()222109x y a a -=>的渐近线方程为3y x a=±,又因为渐近线方程为320x y ±=,即32y x =±,故2a =,选C .【点睛】本题主要考查双曲线的渐近线方程的求法,属基础题.ABC .2D .3【答案】B 【分析】先设2(,),0aP t t c>,由两直线垂直,结合直线的斜率公式可得221tta a c c c c⋅=-+-,再结合三角形的面积公式可得24ct ab =,然后由双曲线离心率的求法求解即可. 【详解】解: 由P 是准线上一点,设2(,),0a P t t c>,又1(,0)F c -,2(,0)F c ,由12PF PF ⊥,可得221tt aa cc cc⋅=-+-,解得t =因为12·4PF PF ab =, 由三角形的面积公式有24ct ab =,2a =, 即223c a =,即==ce a, 故选:B. 【点睛】本题考查了直线的斜率公式及三角形的面积公式,重点考查了双曲线离心率的求法,属中档题.A.ab B .22b a + C .a D .b 【答案】B 【解析】略A .221520x y -=B .221205x y -=C .D .【解析】试题分析:由已知得2,2,bb a a=∴=在方程210y x =+中令0y =,得2222225,5,525,5,20,x c c a b a a b =-∴=-∴=+====∴所求双曲线的方程为221520x y -=,故选A . 考点:1.双曲线的几何性质;2.双曲线方程的求法. A .(0,)B .(1,)C .(,1)D .(,+∞)【答案】B 【解析】试题分析:求出渐近线方程及准线方程;求得它们的交点A ,B 的坐标;利用圆内的点到圆心距离小于半径,列出参数a ,b ,c 满足的不等式,求出离心率的范围. 解:渐近线y=±x . 准线x=±,求得A ().B (),左焦点为在以AB 为直径的圆内, 得出,,b <a ,c 2<2a 2 ∴,故选B .点评:本题考查双曲线的准线、渐近线方程形式、考查园内的点满足的不等条件、注意双曲线离心率本身要大于1. A .2B .2C .4D .4【答案】B试题分析:根据题意,点(﹣2,﹣1)在抛物线的准线上,结合抛物线的性质,可得p=4,进而可得抛物线的焦点坐标,依据题意,可得双曲线的左顶点的坐标,即可得a的值,由点(﹣2,﹣1)在双曲线的渐近线上,可得渐近线方程,进而可得b的值,由双曲线的性质,可得c的值,进而可得答案.解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(﹣2,0),即a=2;点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,由双曲线的性质,可得b=1;则c=,则焦距为2c=2;故选B.点评:本题考查双曲线与抛物线的性质,注意题目“双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1)”这一条件的运用,另外注意题目中要求的焦距即2c,容易只计算到c,就得到结论.A.B.C.D.【答案】A【解析】由双曲线的基本性质对称轴是坐标轴,这时只须考虑双曲线的焦点在x轴的情形.因为有且只有一对相较于点O、所成的角为60°的直线A1B1和A2B2,所以直线A1B1和A2B2,关于x轴对称,并且直线A1B1和A2B2,与x轴的夹角为30°,双曲线的渐近线与x轴的夹角大于30°且小于等于60°,否则不满足题意.可得,即,,所以e>.同样地,当,即,所以e≤2.所以双曲线的离心率的范围是.故选A.A .a 2=B .a 2=3C .b 2=D .b 2=2【答案】C 【解析】由题意,C 2的焦点为(±,0),一条渐近线方程为y=2x ,根据对称性易知AB 为圆的直径且AB=2a∴C 1的半焦距c=,于是得a 2﹣b 2=5 ①设C 1与y=2x 在第一象限的交点的坐标为(x ,2x ),代入C 1的方程得:②,由对称性知直线y=2x 被C 1截得的弦长=2x ,由题得:2x=,所以③由②③得a 2=11b 2④ 由①④得a 2=5.5,b 2=0.5 故选CA .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等【答案】D 【解析】 双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同. 故选D .A .14y x =±B .13y x =±C .12y x =±D .y x =±【答案】C 【详解】c e a ===2214b a =,即12b a =,故渐近线方程为12b y x x a =±=±.本题考查双曲线的基本性质,考查学生的化归与转化能力.A .y=±2xB .y=C .12y x =±D .2y x =±【答案】B 【解析】双曲线的离心率为a=渐进性方程为b y x a =±,计算得b a =故渐进性方程为y =. 【考点定位】本小题考查了离心率和渐近线等双曲线的性质. A .B .C .D .【答案】C 【解析】由于对称性,我们不妨取顶点(2,0)A ,取渐近线为20x y -=,所以由点到直线的距离公式可得5d ==【考点定位】本题考查了双曲线的渐近线及点到直线的距离公式,属于简单题.A BC .2D .3【答案】B 【详解】通径|AB|=2222b a a =⋅得2222222222233b a c a a c aa c e =⇒-===⇒⇒⇒= BA .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -=【答案】A试题分析:双曲线的渐近线为b y x a=,所以0bx ay -=,22650x y x +-+=变形为()2234x y -+=,所以圆心为()3,0,2r =()222222329435,4b c c a c c a b =∴=∴-==∴==,所以双曲线方程为22154x y -=考点:双曲线方程及性质 A .1 B .2C .3D .4【答案】D 【解析】 由已知,取顶点,渐近线,则顶点到渐近线的距离为,解得.A .B .2C D .1【答案】A 【解析】试题分析:双曲线焦点到渐近线的距离为b ,所以距离为b =考点:双曲线与渐近线. A .B .C .D .【答案】A试题分析:由题意,得c=√5,ba =12,又a2+b2=c2,所以a=2,b=1,所以双曲线的方程为x24−y21=1,选A.【考点】双曲线【名师点睛】求双曲线的标准方程的关注点:(1)确定双曲线的标准方程需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.①若双曲线的焦点不能确定时,可设其方程为Ax2+By2=1(AB<0).②若已知渐近线方程为mx+ny=0,则双曲线方程可设为m2x2-n2y2=λ(λ≠0).A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【答案】C【解析】试题分析:利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.故选C.点评:本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.A B.54C.43D.53【答案】D 【解析】因为双曲线22221x y a b-=的一条渐近线经过点(3,-4),2225349163c b a c a a e a ∴=∴-=∴==,(),. 故选D.考点:双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线22221x y a b -=共渐近线的可设为2222(0)x y a bλλ-=≠;(2)若渐近线方程为b y x a =±,则可设为2222(0)x y a bλλ-=≠;(3) 双曲线的焦点到渐近线的距离等于虚半轴长b ;(4) 22221(0.0)x y a b a b -=>>的一条渐近线的斜率为b a ==可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 【答案】D 【解析】 依题意,,,因为,由于,,,所以当时,,,,,所以12e e <;当时,,,而,所以,所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >. 考点:双曲线的性质,离心率.A .22=14y x -B .22=14x y -C .22=14y x -D .22=14x y -【答案】C 【解析】试题分析:焦点在y 轴上的是C 和D ,渐近线方程为ay x b=±,故选C . 考点:1.双曲线的标准方程;2.双曲线的简单几何性质.A B .2C D【答案】D 【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,,过点M 作MN x⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,3MN a =,故点M 的坐标为(2,3)M a a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以2e =,故选D .考点:双曲线的标准方程和简单几何性质.A .2 B.C .4D.【答案】C 【解析】试题分析:设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .考点:双曲线的方程与几何性质 A .14B .13C.4D.3【答案】A 【解析】试题分析:由已知设21,2,F A m F A m ==则由定义得12122,2,4,2.F A F A a m a F A a F A a -=∴===122,24.ce F F c a a====在12AF F ∆中,由余弦定理得()()2222222121212124441cos 22244a a a AF F F AF AF F AF F F a a+-+-∠===⋅⨯⨯,故选A . 考点:1.双曲线的几何性质(焦点三角形问题);2.余弦定理.A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=【答案】B 【解析】由题意得224,14,188x y a b c a b c ==-⇒===-=- ,选B. 【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b-=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.A .13B .1 2C .2 3D .32【答案】D 【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3=±y ,所以||3PF =,又点A 的坐标是(1,3),故△APF 的面积为133(21)22⨯⨯-=,选D . 点睛:本题考查圆锥曲线中双曲线的简单运算,属容易题.由双曲线方程得(2,0)F ,结合PF 与x 轴垂直,可得||3PF =,最后由点A 的坐标是(1,3),计算△APF 的面积.得的弦长为2,则C 的离心率为 ( ) A .2 BCD【答案】A 【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d ==,则点()2,0到直线0bx ay +=的距离为2bd c===即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A . 点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).A .223=144x y -B .224=143x y -C .22=144x y -D .22=1412x y -【答案】D 【解析】试题分析:根据对称性,不妨设(,)A x y 在第一象限,则,∴221612422b b xy b b =⋅=⇒=+,故双曲线的方程为221412x y -=,故选D. 【考点】双曲线的渐近线【名师点睛】求双曲线的标准方程时注意:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论. ①若双曲线的焦点不能确定时,可设其方程为Ax 2+By 2=1(AB <0).②若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0).A .y =B .y =C .y x =D .y x = 【答案】A 【解析】分析:根据离心率得a,c 关系,进而得a,b 关系,再根据双曲线方程求渐近线方程,得结果.详解:2222221312,c b c a b e e a a a a-==∴==-=-=∴=因为渐近线方程为by x a=±,所以渐近线方程为y =,选A. 点睛:已知双曲线方程22221(,0)x y a b a b-=>求渐近线方程:22220x y by x a b a -=⇒=±.A .32B .3C .D .4【答案】B 【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得3(,2M N ,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线y =和y x =联立,求得3(,2M N,所以3MN==,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线MN的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.A.22139x y-=B.22193x y-=C.221412x y-=D.221124x y-=【答案】A【详解】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后利用离心率求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(),0F c(c>0),则A Bx x c==,由22221c ya b-=可得:2bya=±,不妨设:22,,,b bA cB ca a⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay-=,据此可得:21bc bdc-==,22bc bdc+==,则12226bcd d bc+===,则23,9b b==,双曲线的离心率:2cea====,据此可得:23a=,则双曲线的方程为22139x y-=.本题选择A选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()22220x y a bλλ-=≠,再由条件求出λ的值即可.A .(√2,+∞)B .(√2,2)C .(1,√2)D .(1,2)【答案】C 【解析】 c 2=a 2+1,e 2=c 2a2=a 2+1a 2=1+1a 2,∵a >1,∴0<1a 2<1 ,1<e 2<2 ,则0<e <√2,选C.A .221412x y -=B .221124x y -=C .2213x y -=D .2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=. 本题选择D 选项.【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b -=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.A .221412x y -=B .22179x y -=C .22188x y -=D .221124x y -=【答案】A 【详解】 可得渐近线方程为,将x=a 代入求得.由条件知,半焦距,所以由得,.又因,所以解得,.双曲线C 的方程为221412x y -=故选A .A .220x -25y =1B .25x -220y =1C .280x -220y =1D .220x -280y =1【答案】A 【详解】由题意得,双曲线的焦距为10,即22225a b c +==, 又双曲线的渐近线方程为by x a=0bx ay ⇒-=,点1(2)P ,在C 的渐近线上, 所以2a b =,联立方程组可得,所以双曲线的方程为22=1205x y -.考点:双曲线的标准方程及简单的几何性质.A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(⋃D .(,(2,)-∞+∞【答案】A 【详解】 由题意,根据双曲线的对称性知D 在x 轴上,设,0)Dx (,则由 BD AB ⊥得:,因为D 到直线BC 的距离小于a,即01b a<<,所以双曲线渐近线斜率1,0)(0,1)bk a =±∈-⋃(,故选A .A .2B .C .4D .【答案】C 【解析】试题分析:双曲线方程变形为22148x y -=,所以28b b =∴=2b =考点:双曲线方程及性质A.3 B.2 CD【答案】B【详解】M N,是双曲线的两顶点,M O N,,将椭圆长轴四等分∴椭圆的长轴长是双曲线实轴长的2倍双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故答案选BA.14B.35C.34D.45【答案】C【解析】由x2-y2=2知,a2=2,b2=2,c2=a2+b2=4,∴,c=2.又∵|PF1|-|PF2|=2a,|PF1|=2|PF2|,∴|PF1,|PF2.又∵|F1F2|=2c=4,∴由余弦定理得cos∠F1PF22224+-34. 故选C.二、填空题 【答案】,.【解析】 由题意得:,,,∴焦距为,渐近线方程为.考点:双曲线的标准方程及其性质 【答案】【解析】 因为的方程为,所以的一条渐近线的斜率,所以的一条渐近线的斜率,因为双曲线、的顶点重合,即焦点都在轴上,设的方程为,所以,所以的方程为.考点:双曲线的性质,直线的斜率.【答案】y x = 【解析】由题意得:1C :223,(0)x y λλ-=≠,设(,)Q x y ,则(,2)P x y ,所以2234x y λ-=,即2C 的渐近线方程为y x = 考点:双曲线渐近线【答案】22x y 1412-=【解析】 解:由已知得,22,4221412b c c e a a a x y==∴===∴=∴-=双曲线的方程为【答案】16 【分析】根据双曲线的焦点坐标,判断出双曲线焦点所在的坐标轴,再根据222c a b =+列方程,求得m 的值. 【详解】双曲线的焦点坐标为()0,5F ,故焦点在y 轴上,由222c a b =+得259,16m m =+=. 【点睛】本小题主要考查根据双曲线的焦点坐标求双曲线的方程,属于基础题.【答案】44 【详解】由题意因为PQ 过双曲线的右焦点(5,0), 所以P ,Q 都在双曲线的右支上, 则有6,6FP PA PQ QA -=-=,两式相加,利用双曲线的定义得28FP FQ +=,所以△PQF 的周长为284FP FQ PQ b ++=+=28+16=44. 故答案为44.【答案】1) 【详解】因为在12PF F ∆中,由正弦定理得211221sin sin PF PF PF F PF F =∠∠,则由已知,得21a c PF PF =,即12aPF cPF =,12c PF PF a=, 由双曲线的定义知212222222c a PF PF a PF PF a PF a c a-=-=⇒=-,, 由双曲线的几何性质知22222,20,a PF c a c a c ac a c a>->-⇒--<-所以2210,e e --<解得11e <<,又1()e ∈+∞,,故双曲线的离心率1)e ∈【答案】2【解析】设(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以点到直线的距离恒大于直线10x y -+=与渐近线0x y -=之间距离,因此c 的最大值为直线10x y -+=与渐近线0x y -=之间距离,为2.2=考点:双曲线渐近线,恒成立转化【答案】【分析】根据题意,根据1,,P A F 三点共线,求出直线1AF 的方程,联立双曲线方程,即可求得P 点坐标,则由11APF AFF PFF S S S ∆∆∆=-即可容易求得.【详解】设双曲线的左焦点为1F ,由双曲线定义知,12PF a PF =+,∴△APF 的周长为|P A|+|PF|+|AF|=|P A|+12a PF ++|AF|=|P A|+1PF +|AF|+2a ,由于2||a AF +是定值,要使△APF 的周长最小,则|P A|+1PF 最小,即P 、A 、1F 共线,∵(A ,()13,0F -∴直线1AF的方程为13x +=-,即3x =-代入2218y x -=整理得2960y +-=,解得y =y =-舍),所以P 点的纵坐标为∴11116622APF AFF PFF S S S ∆∆∆=-⨯⨯⨯⨯=故答案为:【点睛】本题考查双曲线中三角形面积的求解,涉及双曲线的定义,属综合中档题.【答案】2+【详解】双曲线22221x y a b-=的右焦点为(,0)c .不妨设所作直线与双曲线的渐近线b y x a =平行,其方程为()b y x c a =-,代入22221x y a b -=求得点P 的横坐标为222a c x c+=,由2222a c ac +=,得2()410c c a a -+=,解之得2c a =+2c a =1ca>),故双曲线的离心率为2+考点:1.双曲线的几何性质;2.直线方程.【答案】2214x y -=【详解】依题意,设所求的双曲线的方程为224x y λ-=.点M 为该双曲线上的点,16124λ∴=-=.∴该双曲线的方程为:2244x y -=,即2214x y -=.故本题正确答案是2214x y -=.【答案】2y x =± 【解析】||||=4222A B A B p p pAF BF y y y y p ++++=⨯⇒+= , 因为22222222221202x y a y pb y a b a bx py⎧-=⎪⇒-+=⇒⎨⎪=⎩,所以222A B pb y y p a a +==⇒=⇒渐近线方程为2y x =±. 【名师点睛】1.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为221Ax By +=的形式,当0A >,0B >,A B ≠时为椭圆,当0AB <时为双曲线.2.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.【答案】2 【解析】222222221,,13c a b a b m e m a a +=====+=,2m =.渐近线方程是y ==.P ,Q ,其焦点是F 1 ,F 2 ,则四边形F 1 P F 2 Q 的面积是________.【答案】【解析】右准线方程为10x ==,渐近线方程为3y x =±,设(,1010P ,则Q ,1(F ,2F ,则S == 点睛:(1)已知双曲线方程22221x y a b -=求渐近线:22220x y b y x a b a-=⇒=±;(2)已知渐近线y mx =可设双曲线方程为222m x y λ-=;(3)双曲线的焦点到渐近线的距离为b ,垂足为对应准线与渐近线的交点.【答案】48 【解析】根据双曲线方程2222y x a b -=1知a 2=16,b 2=m ,并在双曲线中有a 2+b 2=c 2,∴离心率e =c a =2,22c a=4=1616m+,m =48.【答案】 【解析】试题分析:222227,3,7310,2a b c a b c c ==∴=+=+=∴==【考点】双曲线性质【名师点睛】本题重点考查双曲线几何性质,而双曲线的几何性质与双曲线的标准方程息息相关,明确双曲线标准方程中各个量的对应关系是解题的关键,22221(0,0)x y a b a b-=>>揭示焦点在x 轴,实轴长为2a ,虚轴长为2b ,焦距为2c =b y x a =±,离心率为c a =【解析】试题分析:根据对称性,不妨设,短轴端点为,从而可知点在双曲线上,∴.考点:双曲线的标准方程及其性质.【名师点睛】本题主要考查了双曲线的标准方程及其性质,属于容易题,根据对称性将条件中的信息进行 等价的转化是解题的关键,在求解双曲线的方程时,主要利用,焦点坐标,渐近线方程等性质,也会与三角形的中位线,相似三角形,勾股定理等平面几何知识联系起来. 【答案】11 【详解】由双曲线的方程2221(0)9x y b b-=>,可得3a =,根据双曲线的定义可知1226PF PF a -=±=±, 又因为15PF =,所以2||11PF =.【答案】5【解析】由双曲线的标准方程可得渐近线方程为3y x a=±,结合题意可得5a =. 【名师点睛】1.已知双曲线方程22221(0,0)x y a b a b -=>>求渐近线:22220x y b y x a b a-=⇒=±.2.已知渐近线y mx =设双曲线的标准方程为222m x y λ-=.3.双曲线的焦点到渐近线的距离为b ,垂足为对应准线与渐近线的交点.【答案】3【解析】 如图所示,由题意可得|OA|=a ,|AN|=|AM|=b , ∵∠MAN=60°, ∴, ∴=设双曲线C 的一条渐近线y=bax 的倾斜角为θ,则tanθ=||||AP OP =. 又tan θ=b a,b a =,解得a 2=3b 2,∴3==.答案:3点睛:求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量,,a b c的方程或不等式,再根据222b c a=-和cea=转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围).【答案】12 y x =±【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【详解】∵双曲线2214xy-=的a=2,b=1,焦点在x轴上而双曲线22221x ya b-=的渐近线方程为y=±bxa∴双曲线2214xy-=的渐近线方程为y=±12x故答案为y=±1 2 x【点睛】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想【答案】4【详解】分析:根据离心率公式cea=,及双曲线中,,a b c的关系可联立方程组,进而求解参数a的值.。
双曲线高考6大常考基础题型总结(解析版)--2024高考数学常考题型精华版

第20讲双曲线高考6大常考基础题型总结【考点分析】考点二:双曲线的通径过双曲线的焦点且与双曲线实轴垂直的直线被双曲线截得的线段,称为双曲线的通径.通径长为22b a.考点三:双曲线常考性质结论①双曲线的焦点到两条渐近线的距离为常数b ;顶点到两条渐近线的距离为常数ab c;②双曲线上的任意点P 到双曲线C 的两条渐近线的距离的乘积是一个常数222a b c;考点四:双曲线焦点三角形面积为2tan2b θ(可以这样理解,顶点越高,张角越小,分母越小,面积越大)【题型目录】题型一:利用双曲线定义解题题型二:求双曲线的标准方程题型三:双曲线焦点三角形面积题型四:双曲线的渐近线有关题型题型五:双曲线的离心率问题题型六:双曲线的最值问题【典型例题】题型一:利用双曲线定义解题【例1】已知双曲线()222:1012x y C a a -=>的左右焦点分别为1F 、2F ,0y +=,若点M在双曲线C 上,且15MF =,则2MF =()A .9B .1C .1或9D .1或7【例2】已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=【例3】已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为.【答案】121,22,a c PF PF a ==∴-==22112224PF PF PF PF ∴-+=22212121221212,(2)8,24,()8412,PF PF PF PF c PF PF PF PF PF PF ⊥∴+==∴=∴+=+=∴+= 【例4】已知曲线C 的方程为221mx ny +=,下列说法正确的是()A .若0mn >,则曲线C 为椭圆B .若0mn <,则曲线C 为双曲线C .若曲线C 为焦点在x 轴的椭圆,则0m n >>1n【题型专练】1.设双曲线221169x y -=的左焦点为F ,点P 为双曲线右支上的一点,且PF 与圆2216x y +=相切于点N ,M 为线段PF 的中点,O 为坐标原点,则MN MO -=()A .12B .1C .32D .22.已知F 1、F 2分别为双曲线C :29x -227y =1的左、右焦点,点A 为C 上一点,点M 的坐标为(2,0),AM为∠F 1AF 2的角平分线.则|AF 2|=.3.方程132m m +=-+表示双曲线的一个充分不必要条件是()A .23m -<<B .20m -<<C .2m <-或3m >D .32m -<<题型二:求双曲线的标准方程【例1】与椭圆22:11612y x C +=共焦点且过点(的双曲线的标准方程为()A .2213y x -=B .2221yx -=C .22122y x -=D .2213y x -=【答案】C 【解析】【分析】求出椭圆的焦点坐标,利用双曲线的定义可求得a 的值,再由b =b 的值,结合双曲线的焦点位置可求得双曲线的标准方程.【详解】椭圆C 的焦点坐标为()0,2±,设双曲线的标准方程为()222210,0y x a b a b-=>>,由双曲线的定义可得2a =-=,a ∴2c = ,b ∴=因此,双曲线的方程为22122y x -=.故选:C.【例2】已知圆22:(4)16M x y ++=,M 为圆心,P 为圆上任意一点,定点(4,0)A ,线段PA 的垂直平分线l 与直线PM 相交于点Q ,则当点P 在圆上运动时,点Q 的轨迹方程为()A .221(2)412x y x -=≤-B .221412x y -=C .221(1)3y x x -=≤-D .2213y x -=【例3】已知双曲线H :219x y a -=(0a >),以原点为圆心,双曲线的虚半轴长为半径的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形ABCD 的面积为4a ,则双曲线的方程为()A .22199x y -=B .221189x y -=C .221279x y -=D .221369x y -=【例4】已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,点M 在双曲线C 的右支上,12MF MF ⊥,若1MF 与C 的一条渐近线l 垂直,垂足为N ,且12NF ON -=,其中O 为坐标原点,则双曲线C 的标准方程为()A .2212016x y -=B .221204x y -=C .221416x y -=D .221420x y -=,【题型专练】1.已知双曲线的对称轴为坐标轴,两个顶点间的距离为2,焦点在y ,则双曲线的标准方程是()A .2212y x -=B .2212x y -=C .2212xy -=D .2212y x -=2.已知双曲线C 的焦点为1F ,)2F ,点P 在双曲线C 上,满足112PF F F ⊥,14PF =,则双曲线C 的标准方程为()A .2214x y -=B .2214y x -=C .22132x y -=D .22123x y -=3.已知圆M :()2224x y ++=,M 为圆心,P 为圆上任意一点,定点()2,0A ,线段PA 的垂直平分线l 与直线PM 相交于点Q ,则当点P 在圆上运动时,点Q 的轨迹方程为()A .221(2)412x y x -=≤-B .221412x y -=C .221(1)3y x x -=≤-D .2213y x -=4.已知双曲线方程为222x y k -=,焦距为6,则k 的值为________.故答案为:±6.5.(2022·重庆·三模)已知双曲线C :()222210,0x y a b a b-=>>的左右焦点为1F ,2F ,左右顶点为1A ,2A ,过2F 的直线l 交双曲线C 的右支于P ,Q 两点,设12PA A α∠=,21PA A β∠=,当直线l 绕着2F 转动时,下列量保持不变的是()A .1PQA △的周长B .1PF Q 的周长与2PQ之差C .tan tan αβD .tan tan αβ⋅【答案】BD 【解析】【分析】如图所示:当直线l 的倾斜角越小时,点1PQA △的周长越大,可判断A ,根据双曲线定义求解可判断B ,设(),P x y ,则tan ,tan y y a xx aαα==-+-根据商与积的值可判断CD .【详解】如图所示:当直线l 的倾斜角越小时,点1PQA △的周长越大,故A 不正确;1PF Q 的周长为1122442PF QF PQ a PF QF PQ a PQ++=+++=+所以1PF Q 的周长与2PQ之差为4a ,故B 正确;设(),P x y ,则tan ,tan y ya x x aαα==-+-,由tan tan a xa xαβ-=+不是常量,故C 不正确;由22222222221tan tan x b y y a y b a x a x a x a x aαβ⎛⎫- ⎪⎝⎭⋅=⋅==-+---为常量,故D 正确;故选:BD题型三:双曲线焦点三角形面积【例1】设双曲线2222:1(00)x y C a b a b,-=>>的左、右焦点分别为1F ,2F.P 是C 上一点,且12F P F P ⊥.若△12PF F 的面积为4,则a =()A .1B .2C .4D .8【答案】A【思路导引】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【解析】解法一:ca=c ∴=,根据双曲线的定义可得122PF PF a -=,12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥ ,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选A .解法二:由题意知,双曲线的焦点三角形面积为2tan 221θb S F PF =.∴︒45tan 2b =4,则2=b ,又∵5==ace ,∴1=a .解法三:设n PF m PF ==21,,则421==mn S F PF ,a n m 2=-,5,4222===+ace c n m ,求的1=a .【例2】已知1F ,2F 是双曲线C :()2210,0436x y a b -=>>的左、右焦点,M ,N 是C 上关于原点对称的两点,且12MN F F =,则四边形12MF NF 的面积是______.,即可求得四边形【题型专练】1.已知1F ,2F 分别是双曲线C :22144x y -=的左、右焦点,P 是C 上一点,且位于第一象限,120PF PF ⋅= ,则()A .PB .12PF =C .12PF F △的周长为4D .12PF F △的面积为42.设1F ,2F 是双曲线2:13C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则△12PF F 的面积为()A .72B .3C .52D .2【答案】B【解析】由已知,不妨设12(2,0),(2,0)F F -,则1,2a c ==,∵121||1||2OP F F ==,∴点P 在以12F F 为直径的圆上,即12F F P 是以P 为直角顶点的直角三角形,故2221212||||||PF PF F F +=,即2212||||16PF PF +=,又12||||22PF PF a -==,∴2124||||PF PF =-=2212||||2PF PF +-12||||162PF PF =-12||||PF PF ,解得12||||6PF PF =,∴12F F P S =△121||||32PF PF =,故选B .题型四:双曲线的渐近线有关题型焦点在x 轴上的渐近线为⎪⎪⎭⎫ ⎝⎛=-±=02222b y a x x a b y 焦点在y 轴上的渐近线为⎪⎪⎭⎫ ⎝⎛=-±=02222b x a y x b a y 若双曲线的方程为122=+ny mx ,要求渐近线只需令022=+ny mx ,解出即可即已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、基础过关题1. (2018高考·北京卷)已知椭圆M :,双曲线N :若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为______;双曲线N 的离心率为______. 【答案】;2利用已知条件求出正六边形的顶点坐标,代入椭圆方程,求出椭圆的离心率;利用渐近线的夹角求解双曲线的离心率即可.本题考查椭圆以及双曲线的简单性质的应用,考查计算能力.2. (2018高考·全国卷III)设12F F ,是双曲线22221x y C a b -=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( )A .5B .2C 3D 2【答案】C【解析】∵2||PF b =,2||OF c =,∴ ||PO a =;又因为1||6||PF OP =,所以1||6PF a =; 在2Rt ΔPOF 中,22||cos ||PF bOF cθ==; ∵在12Rt ∆PF F 中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅, ∴222222222224(6)464463322b c a bb c a b c a c a b c c +-=⇒+-=⇒-=-⋅ 223c a ⇒=3e ⇒=.学科%网3. (2018高考·天津卷) 已知双曲线的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点设A ,B 到双曲线的同一条渐近线的距离分别为和,且,则双曲线的方程为A. B. C. D.【答案】C【解析】解:由题意可得图象如图,CD 是双曲线的一条渐近线,即,,,,,ACDB 是梯形,F 是AB 的中点,,,所以,双曲线的离心率为2,可得,可得:,解得.则双曲线的方程为:.故选:C .画出图形,利用已知条件,列出方程组转化求解即可.本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.4.(2016·广州联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为10,点P (2,1)在C 的一条渐近线上,则C的方程为( ) A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 【答案】 A5.(2016·全国乙卷)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .(-1,3) B .(-1,3) C .(0,3) D .(0,3)【答案】 A【解析】 ∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距), ∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3,故选A. 学#科网6.(2016·南昌联考)已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,若在双曲线的右支上存在一点M ,使得(OM →+OF 2→)·F 2M →=0(其中O 为坐标原点),且|MF 1→|=3|MF 2→|,则双曲线的离心率为( ) A.5-1B.3+12C.5+12D.3+1【答案】 D7.(2016·庐江第二中学月考)已知椭圆x 2a 21+y 2b 21=1(a 1>b 1>0)的长轴长、短轴长、焦距成等比数列,离心率为e 1;双曲线x 2a 22-y 2b 22=1(a 2>0,b 2>0)的实轴长、虚轴长、焦距也成等比数列,离心率为e 2,则e 1e 2等于( )A.22B .1 C. 3 D .2 【答案】 B【解析】 由b 21=a 1c 1,得a 21-c 21=a 1c 1,∴e 1=c 1a 1=5-12. 由b 22=a 2c 2,得c 22-a 22=a 2c 2,∴e 2=c 2a 2=5+12. ∴e 1e 2=5-12×5+12=1.8.(2015·课标全国Ⅰ)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝⎛⎭⎫-33,33 B.⎝⎛⎭⎫-36,36 C.⎝⎛⎭⎫-223,223 D.⎝⎛⎭⎫-233,233 【答案】 A【解析】 由题意知a =2,b =1,c =3,∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0). ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0,即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上,∴x 22-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33.故选A. 学*科网 9.已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( ) A .(1,+∞) B .(1,2) C .(1,1+2) D .(2,1+2)【答案】 B10.(2016·北京)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________;b =________. 【答案】 1 2【解析】 由2x +y =0,得y =-2x ,所以ba =2.又c =5,a 2+b 2=c 2,解得a =1,b =2.11.中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴与双曲线实半轴之差为4,离心率之比为3∶7. (1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.【答案】(1) 椭圆方程为x249+y236=1,双曲线方程为x29-y24=1;(2) 4 5二、能力提高题1.(2016·浙江)设双曲线x2-y23=1的左,右焦点分别为F1,F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是________.【答案】(27,8)【解析】如图,由已知可得a=1,b=3,c=2,从而|F1F2|=4,由对称性不妨设P在右支上,设|PF2|=m,则|PF1|=m+2a=m+2,由于△PF1F2为锐角三角形,结合实际意义需满足⎩⎪⎨⎪⎧(m +2)2<m 2+42,42<(m +2)2+m 2,解得-1+7<m <3,又|PF 1|+|PF 2|=2m +2,∴27<2m +2<8.2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为________. 【答案】 533.(2015·课标全国Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 的周长最小时,该三角形的面积为________. 【答案】 126【解析】 设左焦点为F 1,|PF |-|PF 1|=2a =2,∴|PF |=2+|PF 1|,△APF 的周长为|AF |+|AP |+|PF |=|AF |+|AP |+2+|PF 1|, △APF 周长最小即为|AP |+|PF 1|最小,当A 、P 、F 1在一条直线时最小,过AF 1的直线方程为x -3+y 66=1,与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时S △AP F =S △AF 1F -S △F 1PF =12 6.学科*网4.(2016·湖北部分重点中学第一次联考)在面积为9的△ABC 中,tan ∠BAC =-43,且CD →=2DB →,现建立以A 点为坐标原点,以∠BAC 的平分线所在直线为x 轴的平面直角坐标系,如图所示 . (1)求AB ,AC 所在直线的方程;(2)求以AB ,AC 所在直线为渐近线且过点D 的双曲线的方程;(3)过D 分别作AB ,AC 所在直线的垂线DF ,DE (E ,F 为垂足),求DE →·DF →的值.【答案】(1) AC 所在直线方程为y =2x ,AB 所在直线方程为y =-2x .; (2) 双曲线的方程为x 24-y 216=1.(3)4825(3)由题意知〈DE →,DF →〉=π-∠BAC , ∴cos 〈DE →,DF →〉=-cos ∠BAC =35,设D (x 0,y 0),则x 204-y 2016=1.又∵点D 到AB ,AC 所在直线距离分别为|DF →|=|2x 0+y 0|5,|DE →|=|2x 0-y 0|5,∴DE →·DF →=|DE →||DF →|·cos 〈DE →,DF →〉 =|2x 0-y 0|5·|2x 0+y 0|5×35=4825.5.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点是F 2(2,0),且b =3a .(1)求双曲线C 的方程;(2)设经过焦点F 2的直线l 的一个法向量为(m,1),当直线l 与双曲线C 的右支交于不同的两点A ,B 时,求实数m 的取值范围,并证明AB 中点M 在曲线3(x -1)2-y 2=3上;(3)设(2)中直线l 与双曲线C 的右支交于A ,B 两点,问是否存在实数m ,使得∠AOB 为锐角?若存在,请求出m 的取值范围;若不存在,请说明理由. 【答案】(1) 双曲线C 的方程为x 2-y 23=1; (2) m ∈(-∞,-3)∪(3,+∞),证明见【解析】。
(3) 不存在实数m ,使得∠AOB 为锐角. 【解析】(1)c =2,c 2=a 2+b 2, ∴4=a 2+3a 2,∴a 2=1,b 2=3, ∴双曲线C 的方程为x 2-y 23=1. 学%科网。