直线与方程练习题(精选)

合集下载

(完整版)直线与方程练习题及答案详解

(完整版)直线与方程练习题及答案详解

直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。

4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

直线方程练习题

直线方程练习题

直线方程练习题一、选择题1. 已知直线l过点A(2,3)且与直线3x-4y+5=0平行,求直线l的方程。

A. 3x-4y-1=0B. 3x-4y+13=0C. 4x-3y+6=0D. 4x-3y-6=02. 直线l1: ax+by+c=0与直线l2: cx+dy+e=0平行,那么以下哪个条件是正确的?A. ad-bc=0B. ac-bd=0C. a/c=b/dD. a/c≠b/d3. 已知直线l的方程为y=kx+b,若该直线过点(1,0)且斜率为1,则k 的值为:A. 0B. -1C. 1D. 24. 直线方程x+y-2=0与x-y+2=0的交点坐标是:A. (0,2)B. (2,0)C. (-2,0)D. (0,-2)5. 已知直线l1: 2x-3y+4=0与直线l2: x+y-2=0,求它们之间的距离。

A. 1B. 2C. 3D. 4二、填空题1. 若直线方程为ax+by=c,且a、b不全为0,则直线的斜率k=______。

2. 直线方程y=2x+3与x轴的交点坐标为______。

3. 若直线l过点(-1,2)且斜率为-2,则直线l的方程为______。

4. 已知直线方程为x-2y+4=0,求与该直线垂直的直线方程。

5. 已知直线方程为3x+4y-5=0,求直线上点(1,-1)到该直线的距离。

三、解答题1. 已知直线l1: 2x-y+3=0与直线l2: x+y+1=0,求它们所围成的三角形的顶点坐标。

2. 已知直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0相交,求交点坐标。

3. 已知直线l1: 3x+4y-7=0与直线l2: 6x-8y+15=0,判断它们是否平行或重合,并说明理由。

4. 已知直线l: y=-2x+5与x轴相交于点A,与y轴相交于点B,求点A和点B的坐标。

5. 已知直线l1: 2x-y+1=0与直线l2: x-2y+2=0,求它们所成的角的正切值。

四、证明题1. 证明:若直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0垂直,则有ad+bc=0。

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。

30° B。

45° C。

60° D。

90°2.如果三个点A(3,1)。

B(-2,b)。

C(8,11)在同一直线上,那么实数b等于多少?A。

2 B。

3 C。

9 D。

-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。

y + 2 = (3/√3)(x + 1) B。

y - 2 = 3/2(x - 1) C。

3x - 3y + 6 - 3 = 0 D。

3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。

相交 B。

平行 C。

重合 D。

异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。

(-2,1) B。

(2,1) C。

(1,-2) D。

(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。

第一、二、三象限 B。

第一、二、四象限 C。

第一、三、四象限 D。

第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。

√(23/2) B。

√(2/23) C。

√(23+5) D。

√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。

y = -2x + 4 B。

y = (1/2)x + 4 C。

y = -2x - 3 D。

y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。

2 B。

1 C。

-1 D。

-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。

3x - y + 5 = 0.x + 2y - 7 = 0 B。

直线与方程(练习题)

直线与方程(练习题)

直线与方程课堂训练1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 5.直线1x =的倾斜角和斜率分别是( )A .045,1B .0135,1-C .090,不存在D .0180,不存在 6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 7.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( )A .524=+y xB .524=-y xC .52=+y xD .52=-y x8.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( ) A.21 B.21- C.2- D.29.直线x a y b 221-=在y 轴上的截距是( ) A .b B .2b - C .b 2D .±b 10.直线13kx y k -+=,当k 变动时,所有直线都通过定点( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)11.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( )A .平行B .垂直C .斜交D .与,,a b θ的值有关课后练习1.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程。

直线与方程练习题(精选)

直线与方程练习题(精选)

直线与方程练习题一、选择题1.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 2.下列说法的正确的是( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x ayb+=1表示 D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程()()()()y y x x x x y y --=--121121表示3.若()()P a b Q c d ,、,都在直线y mx k =+上,则PQ 用a c m 、、表示为( )A .()a c m ++12B .()m a c -C .a c m-+12D . a c m -+124.△ABC 中,点(4,1)A -,AB 的中点为(3,2)M ,重心为(4,2)P ,则边BC 的长为( )A .5B .4C .10D .85.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+=6.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A.[]2,2- B.(][)+∞⋃-∞-,22,C.[)(]2,00,2⋃- D.()+∞∞-,7.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=08.若y =a |x |的图象与直线y =x +a (a >0)有两个不同交点,则a 的取值范围是( )A .0<a <1B .a >1C .a >0且a ≠1D .a =19.直线xcos θ+y +m =0的倾斜角范围是( )A. 3,44ππ⎡⎤⎢⎥⎣⎦B. 30,,44πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭C.0,4π⎡⎤⎢⎥⎣⎦D.3,,4224ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦10已知点)2,1(-A ,)2,2(-B ,)3,0(C ,若点),(b a M )0(≠a 是线段AB 上的一点,则直线CM 的斜率的取值范围是( ) (A)[-25,1] (B)[-25,0]∪(0,1) (C)[-1,25] (D) ][)+∞⋃--∞,125,(11.已知直线l 过点P(-2,1),且倾斜角α满足sin α+cos α=-51,则l 的方程是( )(A)3x +4y +2=0 (B)3x -4y -2=0 (C)3x -4y +2=0或3x +4y +2=0 (D)3x +4y -10=0 12.点P (x ,y )在直线x +2y +1=0上移动,函数f(x ,y )=2x +4y 的最小值是 ( )(A)22(B) 2 (C)22(D)4213.若动点),(),(2211y x B y x A 、分别在直线1l :07=-+y x 和2l :05=-+y x 上移动,则AB 中点M 到原点距离的最小值为( )A .23B .32C .33D .24 14.点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为( )A. (4,0)B. (13,0)C. (5,0)D. (1,0)15.设a,b,c 分别是△ABC 中,角A ,B ,C 所对边的边长,则直线sinA ·x+ay+c =0与bx-sinB ·y+sinC =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直16过点P (1,2)且与原点O 距离最大的直线l 的方程( ).A.250x y +-= B. 240x y +-= C.370x y +-= D.350x y +-=二、填空题1.光线从点(2,1)A 出发射入y 轴上点Q , 再经y 轴反射后过(4,3)B , 则点Q 的坐标是2.已知ABC ∆的顶点(2,1),(6,3)B C -,其垂心为(3,2)H -,则顶点A 的坐标是 .3.已知直线31y kx k =++.(33x -≤≤)上的点都在x 轴上方,则实数k 的取值范围是 .4.将直线1y x =绕它上面一点(115°得到的直线方程是 .5.已知直线l 在y 轴上的截距为-3,且它与两坐标轴围成的三角形的面积为6,则直线l 的方程 .6.直线1l :220x my m +--=,2l :10mx y m +--=,当m = 时,12l l ⊥7.(1)若a b c -+=,则直线ax by c ++=必经过一个定点是 .(2)已知直线方程为(2+λ)x +(1-2λ)y +4-3λ=0必过定点 .8.(1)已知1122234,234x y x y -=-=,则过点1122(,),(,)A x y B x y 的直线l 的方程是(2)一直线被两直线1l :460x y ++=,2l :3560x y --=截得的线段的中点恰好是坐标原点,则该直线方程是9.已知直线l 过点(3,-1),且与两轴围成一个等腰直角三角形,则l 的方程为 .10.已知点(3,8)A -、(2,2)B ,点P 是x 轴上的点,当AP PB+最小时点P的坐标是 . 11.若y =kx2x +3y -6=0的交点位于第一象限,直线l 的倾斜角的取值范围 .12.已知(1,0)(1,0)M N -、,点P 为直线210x y --=上的动点.则22PM PN +的最小值 . 13.已知函数()f x =,设,a b R ∈,且a b ≠,则|()()|f a f b -,||a b -的大小关系 .14.直线2x -y -4=0上一点P 与两定点A (4,-1),B (3,4)的距离之差的最大值是 15.在函数24y x =的图象上一点P 到直线45y x =-的最短的距离是 .16.直线30x y +=上一点P 到原点的距离与到直线320x y +-=的距离相等.则点P 的坐标 17.△ABC 中,(3,3),(2,2),(7,1)A B C --. 则∠A的平分线AD 所在直线的方程是 .18.已知点P 到两个定点M (-1,0)、N (1,0,点N 到直线PM 的距离为1.则直线PN 的方程 .19.光线从A (-3,4)点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点D (-1,6),则BC 所在直线的方程是 .20.已知直线,32:1+=x y l若2l 与1l 关于y 轴对称,则2l 的方程为__________ ;若3l 与1l 关于x 轴对称,则3l 的方程为_________ . 若4l 与1l 关于x y =对称,则4l 的方程为___________ ;22.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.23.直线l 过原点,且平分□ABCD 的面积,若B (1, 4)、D (5, 0),则直线l 的方程是 .24.方程1=+y x 所表示的图形的面积为_________。

直线与直线方程-练习

直线与直线方程-练习
直线与直线方程
索引
1.直线 x+ 3y+3=0 的倾斜角 α 为( D )
A.30° C.120°
B.60° D.150°
解析 由已知得斜率 k=- 33=tan α,
又倾斜角 0°≤α<180°,所以 α=150°.
1 2 3 4 5 6 7 8 9 10
2.直线ax2-by2=1 在 y 轴上的截距是( B )
1 2 3 4 5 6 7 8 9 10
(2)若直线l在x轴、y轴上的截距均不为0,点P(a,b)在直线l上,求3a+3b的最 小值. 解 由题意及(1)得l的方程为x+y-3=0, ∵点P(a,b)在直线l上, ∴a+b=3, ∴3a+3b≥2 3a·3b=2 3a+b=6 3, 当且仅当 a=b=32时等号成立.
∴3a+3b 的最小值是 6 3.
1 2 3 4 5 6 7 8 9 10
5.(多选)若方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则实数m
可以取下列哪些值( ACD )
A.0
B.1
C.2
D.3
解析 因为方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,
所以2m2+m-3=0,m2-m=0不能同时成立,
两式同时成立时解得m=1,所以m≠1.故选ACD.
7.过点(1,3)且在x轴上的截距为2的直线方程是__3_x_+__y_-__6_=__0. 解析 由题意知直线过点(2,0)和点(1,3),由两点式可得3y--00=x1- -22, 整理得 3x+y-6=0.
1 2 3 4 5 6 7 8 9 10
8.若直线(2t-3)x+y+6=0不经过第一象限,则t的取值范围为___32_,__+__∞__ . 解析 方程可化为 y=(3-2t)x-6,因为直线不经过第一象限, 所以 3-2t≤0,得 t≥32.

直线与方程练习题

直线与方程练习题

直线与方程练习题一、填空题1. 直线斜率为2,过点(-1, 3),则直线方程为__________。

2. 直线过点(2, -5)和点(4, 1),则直线方程为__________。

3. 直线过点(-3, 4)且与x轴垂直,则直线方程为__________。

4. 直线过点(0, 7)且平行于y轴,则直线方程为__________。

5. 直线过点(3, -2)且平行于直线2x + 3y = 1,则直线方程为__________。

二、选择题1. 斜率为3,过点(1, 2)的直线方程可能是:A. y = 3x + 1B. y = 3x - 1C. y = -3x + 1D. y = -3x - 12. 过原点(0, 0)且垂直于直线2x + 3y = 6的直线方程可能是:A. x = 2B. x = -2C. y = 2D. y = -23. 过点(2, -5)且平行于直线3x - 2y = 9的直线方程可能是:A. 3x - 2y = 19B. 3x - 2y = -19C. 3x - 2y = 4D. 3x - 2y = -44. 过点(3, 4)且平行于x轴的直线方程可能是:A. x = 3B. x = -3C. y = 3D. y = -35. 过点(-2, 1)且与直线4x + 5y = 10垂直的直线方程可能是:A. 5x - 4y = 10B. 5x - 4y = -10C. 4x + 5y = 2D. 4x + 5y = -2三、应用题1. 设直线L过点(1, 2)和点(4, 7),求直线L的斜率和截距,并写出直线L的方程。

2. 已知直线L过点(-3, 5)且与x轴垂直,求直线L的方程。

3. 直线L过点(1, -4)且平行于直线2x - 3y = 6,求直线L的方程。

4. 直线L过点(-2, -1)且平行于y轴,求直线L的方程。

5. 直线L过点(3, 2)且与直线3x - 4y = 5垂直,求直线L的方程。

高一数学直线与方程相关习题及答案

高一数学直线与方程相关习题及答案

直线与方程一、选择题1.若A -2,3,B 3,-2,C ),21(m 三点共线,则m 的值为A.B .-C .-2D .22.如图,在同一直角坐标系中,表示直线y =ax 与y =x +a 正确的是3.两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是A.B.C. D. 4.直线l 1:3-ax +2a -1y +7=0与直线l 2:2a +1x +a +5y -6=0互相垂直,则a 的值是A .-B.C. D.5.直线kx -y +1-3k =0,当k 变动时,所有直线都通过定点A .0,0B .0,1C .3,1D .2,16.已知A 2,4与B 3,3直线l 对称,则直线l 的方程为A .x +y =0B .x -y =0C .x +y -6=0D .x -y +1=07.已知直线l 过点1,2,且在x 轴上的截距是在y 轴上的截距的2倍,则直线l 的方程为A .x +2y -5=0B .x +2y +5=0C .2x -y =0或x +2y -5=0D .2x -y =0或x -2y +3=08.直线y =x +3k -2与直线y =-x +1的交点在第一象限,则k 的取值范围是 A.)1,32(- B.)0,32(-C .)1,0( D.⎥⎦⎤⎢⎣⎡-1,32 9.经过点2,1的直线l 到A 1,1、B 3,5两点的距离相等,则直线l 的方程A .2x -y -3=0B .x =2C .2x -y -3=0或x =2D .以上都不对10.直线l 过点P 1,3,且与x ,y 轴正半轴围成的三角形的面积等于6的直线方程是A .3x +y -6=0B .x +3y -10=0C .3x -y =0D .x -3y +8=0二、填空题11.直线l 方程为y -a =a -1x +2,且l 在y 轴上的截距为6,则a =________.12.已知点m,3到直线x +y -4=0的距离等于,则m 的值为________.13.经过两条直线2x +y +2=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线方程为________.14.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且线段AB 的中点为)10,0(aP ,则线段AB 的长为________. 三、解答题15.已知两条直线l 1:x +m 2y +6=0,l 2:m -2x +3my +2m =0,当m 为何值时,l 1与l 2 1相交;2平行;3重合.16.若一束光线沿着直线x -2y +5=0射到x 轴上一点,经x 轴反射后其反射线所在直线为l ,求l 的方程.17.在平面直角坐标系xOy 中,已知直线l 的方程为2x +k -3y -2k +6=0,k ∈R . 1若直线l 在x 轴、y 轴上的截距之和为1,求坐标原点O 到直线l 的距离; 2若直线l 与直线l 1:2x -y -2=0和l 2:x +y +3=0分别相交于A ,B 两点,点P 0,2到A 、B 两点的距离相等,求k 的值.18.已知△ABC 的顶点B -1,-3,AB 边上高线CE 所在直线的方程为x -3y -1=0,BC 边上中线AD 所在的直线方程为8x +9y -3=0.1求点A 的坐标;2求直线AC 的方程.直线与方程答案1—5:ACCBC6-10:DCACA11:12:-1或313:2x+3y-2=014:1015:解当m=0时,l1:x+6=0,l2:x=0,∴l1∥l2.当m=2时,l1:x+4y+6=0,l2:3y+2=0,∴l1与l2相交.当m≠0且m≠2时,由=,得m=-1或m=3,由=,得m=3.故1当m≠-1且m≠3且m≠0时,l1与l2相交.2当m=-1或m=0时,l1∥l2.3当m=3时,l1与l2重合.16:解直线x-2y+5=0与x轴交点为P-5,0,反射光线经过点P.又入射角等于反射角,可知两直线倾斜角互补.∵k1=,∴所求直线斜率k2=-,故所求方程为y-0=-x+5,即x+2y+5=0.17:解1令x=0时,纵截距y0=2;令y=0时,横截距x0=k-3;则有k-3+2=1k=2,所以直线方程为2x-y+2=0,所以原点O到直线l的距离d==.2由于点P0,2在直线l上,点P到A、B的距离相等,所以点P为线段AB的中点.设直线l与2x-y-2=0的交点为Ax,y,则直线l与x+y+3=0的交点B-x,4-y,由方程组解得即A3,4,又点A在直线l上,所以有2×3+k-3×4-2×k+6=0,即k=0.18:解1设点Ax,y,则解得故点A的坐标为-3,3.2设点Cm,n,则解得m=4,n=1,故C4,1,又因为A-3,3,所以直线AC的方程为=,即2x+7y-15=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与方程练习题一、选择题1.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠mC .1≠mD .1≠m ,23-≠m ,0≠m 2.下列说法的正确的是 ( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x a y b+=1表示 D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程 ()()()()y y x x x x y y --=--121121表示3.若()()P a b Q c d ,、,都在直线y mx k =+上,则PQ 用a c m 、、表示为( )A .()a c m ++12B .()m a c -C .a cm -+12 D . a c m -+124.△ABC 中,点(4,1)A -,AB 的中点为(3,2)M ,重心为(4,2)P ,则边BC 的长为( )A .5B .4C .10D .85.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+=6.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( )A.[]2,2- B.(][)+∞⋃-∞-,22, C.[)(]2,00,2⋃- D.()+∞∞-,7.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=08.若y =a |x |的图象与直线y =x +a (a >0)有两个不同交点,则a 的取值范围是( )A .0<a <1B .a >1C .a >0且a ≠1D .a =19.直线xcos θ+y +m =0的倾斜角范围是( )A. 3,44ππ⎡⎤⎢⎥⎣⎦B. 30,,44πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭C. 0,4π⎡⎤⎢⎥⎣⎦D. 3,,4224ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦10已知点)2,1(-A ,)2,2(-B ,)3,0(C ,若点),(b a M )0(≠a 是线段AB 上的一点,则直线CM 的斜率的取值范围是( )(A)[-25,1] (B)[-25,0]∪(0,1) (C)[-1,25] (D) ][)+∞⋃--∞,125,( 11.已知直线l 过点P(-2,1),且倾斜角α满足sin α+cos α=-51,则l 的方程是( ) (A)3x +4y +2=0 (B)3x -4y -2=0(C)3x -4y +2=0或3x +4y +2=0 (D)3x +4y -10=012.点P (x ,y )在直线x +2y +1=0上移动,函数f(x ,y )=2x +4y 的最小值是 ( ) (A)22 (B) 2 (C)22 (D)42 13.若动点),(),(2211y x B y x A 、分别在直线1l :07=-+y x 和2l :05=-+y x 上移动,则AB 中点M 到原点距离的最小值为( )A .23B .32C .33D .2414.点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为( )A. (4,0)B. (13,0)C. (5,0)D. (1,0)15.设a,b,c 分别是△ABC 中,角A ,B ,C 所对边的边长,则直线sinA ·x+ay+c =0与bx-sinB ·y+sinC =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直16过点P (1,2)且与原点O 距离最大的直线l 的方程( ).A. 250x y +-=B. 240x y +-=C. 370x y +-=D. 350x y +-=二、填空题1.光线从点(2,1)A 出发射入y 轴上点Q , 再经y 轴反射后过(4,3)B , 则点Q 的坐标是2.已知ABC ∆的顶点(2,1),(6,3)B C -,其垂心为(3,2)H -,则顶点A 的坐标是 .3.已知直线31y kx k =++.(33x -≤≤)上的点都在x 轴上方,则实数k 的取值范围是 .4.将直线1y x =+绕它上面一点(1沿逆时针方向旋转15°得到的直线方程是 .5.已知直线l 在y 轴上的截距为-3,且它与两坐标轴围成的三角形的面积为6,则直线l 的方程 .6.直线1l :220x my m +--=,2l :10mx y m +--=,当m = 时,12l l ⊥7.(1)若0a b c -+=,则直线0ax by c ++=必经过一个定点是 .(2)已知直线方程为(2+λ)x +(1-2λ)y +4-3λ=0必过定点 .8.(1)已知1122234,234x y x y -=-=,则过点1122(,),(,)A x y B x y 的直线l 的方程是(2)一直线被两直线1l :460x y ++=,2l :3560x y --=截得的线段的中点恰好是坐标原点,则该直线方程是9.已知直线l 过点(3,-1),且与两轴围成一个等腰直角三角形,则l 的方程为 .10.已知点(3,8)A -、(2,2)B ,点P 是x 轴上的点,当AP PB +最小时点P 的坐标是 .11.若y =kx 2x +3y -6=0的交点位于第一象限,直线l 的倾斜角的取值范围 .12.已知(1,0)(1,0)M N -、,点P 为直线210x y --=上的动点.则22PM PN +的最小值 .13.已知函数()f x =,设,a b R ∈,且a b ≠,则|()()|f a f b -,||a b -的大小关系 .14.直线2x -y -4=0上一点P 与两定点A (4,-1),B (3,4)的距离之差的最大值是15.在函数24y x =的图象上一点P 到直线45y x =-的最短的距离是 .16.直线30x y +=上一点P 到原点的距离与到直线320x y +-=的距离相等.则点P 的坐标17.△ABC 中,(3,3),(2,2),(7,1)A B C --. 则∠A 的平分线AD 所在直线的方程是 .18.已知点P 到两个定点M (-1,0)、N (1,0,点N 到直线PM 的距离为1.则直线PN 的方程 .19.光线从A (-3,4)点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点D (-1,6),则BC 所在直线的方程是 .20.已知直线,32:1+=x y l若2l 与1l 关于y 轴对称,则2l 的方程为__________ ;若3l 与1l 关于x 轴对称,则3l 的方程为_________ .若4l 与1l 关于x y =对称,则4l 的方程为___________ ;22.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.23.直线l 过原点,且平分□ABCD 的面积,若B (1, 4)、D (5, 0),则直线l 的方程是 .24.方程1=+y x 所表示的图形的面积为_________。

25.将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(,)m n 重合, n m +的值是___________________。

26.函数()f x =的最小值是 。

27.已知直线,32:1+=x y l 2l 与1l 关于直线x y -=对称,3l ⊥2l ,则3l 的斜率是______.28.若方程x 2-xy-2y 2+x+y =0表示的图形是 。

29.已知实数x ,y 满足2x +y =8,当2≤x ≤3时,则y x 的最值是 . 30.与点A(1,2)距离为1,且与点B(3,1)距离为2的直线有______条. 三.解答题1.已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点.(1)证明:点C 、D 和原点O 在同一直线上. (2)当BC 平行于x 轴时,求点A 的坐标.2.过点)1,4(P 作直线l 分别交x 轴的正半轴和y 轴的正半轴于点A 、B ,当AOB ∆ (O 为原点)的面积S 最小时,求直线l 的方程,并求出S 的最小值3.在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB 、AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合(如图所示)。

将矩形折叠,使A 点落在线段DC 上。

(1)若折痕所在直线的斜率为k ,试求折痕所在直线的方程;(2)当230k -+≤≤时,求折痕长的最大值;(3)当21k -≤≤-时,折痕为线段PQ ,设2(2||1)t k PQ =-,试求t 的最大值。

21、解:(1) ①当0=k 时,此时A 点与D 点重合, 方程21=y ②当0≠k 时,将矩形折叠后A 点落在线段DC 上的点记为(,1)G a ,所以A 与G 关于折痕所在的直线对称,有1OG k k ⋅=-⇒11k a⋅=-⇒a k =- 故G 点坐标为)1,(k G -,从而折痕所在的直线与OG 的交点坐标(线段OG 的中点)为)21,2(k M -折痕所在的直线方程)2(21k x k y +=-,即2122k y kx =++由①②得折痕所在的直线方程为:2122k y kx =++ (2)当0=k 时,折痕的长为2; 当230k -+≤≤时,折痕直线交BC 于点21(2,2)22k M k ++,交y 轴于21(0,)2k N + ∵22222211||2[(2)]4444(743)32163222k k y MN k k +==+-++=+≤+-=- ∴折痕长度的最大值为321632(62)-=->2。

最大值为)26(2-(3)当21k -≤≤-时,折痕直线交DC 于1(,1)22k P k -,交x 轴于21(,0)2k Q k+- ∵22222111||1[()]1222k k PQ k k k +=+---=+ ∴22(2||1)t k PQ k k =-=+ ∵21k -≤≤- ∴222k k+≤-(当且仅当2(2,1)k =-∈--时取“=”号)∴当k=t取最大值,t的最大值是-。

相关文档
最新文档