一种最短路线问题的两种解法
邮递员问题最短路径的解法

邮递员问题最短路径的解法1. 简介邮递员问题是指一个邮递员需要按照一定的顺序访问多个地点,并返回起始地点的问题。
邮递员需要选择一条最短的路径,以最小化总行驶距离或时间。
2. 问题描述邮递员问题可以具体描述为:给定一个地图,地图上有多个地点,每个地点都有一个坐标和一个编号。
邮递员需要从起始地点出发,依次访问所有地点,并最终返回起始地点。
3. 算法解法解决邮递员问题的算法有很多种,下面介绍两种常见的解法。
3.1. 蚁群算法蚁群算法是一种模拟自然界蚁群觅食行为的算法。
在蚁群算法中,每只蚂蚁都只能看到局部信息,通过蚂蚁之间的合作和信息交流,最终找到整个系统的全局最优解。
蚁群算法解决邮递员问题的基本步骤如下: 1. 初始化蚂蚁的位置,通常将蚂蚁放置在起始地点。
2. 蚂蚁按照一定的规则选择下一个要访问的地点,例如选择离当前位置最近且未访问过的地点。
3. 更新蚂蚁的位置和访问状态,标记已经访问过的地点。
4. 重复步骤2和步骤3,直到所有地点都被访问过。
5. 计算蚂蚁行走的路径长度,并保存最短路径。
3.2. 动态规划算法动态规划算法是一种通过拆分问题,定义问题的状态,以及定义状态之间的关系,从而逐步求解问题的算法。
动态规划算法解决邮递员问题的基本步骤如下: 1. 定义子问题:将整个问题拆分为多个子问题,每个子问题表示从起始地点出发,经过一部分地点,并最终返回起始地点的最短路径。
2. 定义状态:根据子问题的定义,确定状态的表示方法,例如使用一个二维数组来表示子问题的最短路径长度。
3. 状态转移方程:根据子问题之间的关系,建立状态之间的转移方程,例如使用动态规划的递推公式计算子问题的最短路径。
4. 解决子问题:按照子问题的顺序,依次计算每个子问题的最优值,并保存中间结果。
5. 求解原问题:根据子问题的最优值,计算原问题的最优值,并得到最短路径。
4. 算法比较蚁群算法和动态规划算法是两种常见的解决邮递员问题的方法,它们各有优缺点。
最短路线问题二

最短路线这一讲里,我们将会解决这个特殊的计数问题:最短路线问题。
怎样计数从A 到B 的最短路线的条数呢?我们将介绍一种非常巧妙的方法——对角线法(也叫标号法)。
【例1】 咱们先做个游戏:在方格纸上任取一点A 作为起点,再在A 的右上方任取一点B 作为终点划一条由A 到B 的最短路线。
聪明的小朋友,你能划出来吗?总共能划出几条呢?分析:教师可提问如ACIHGFB 是最短路线吗?为什么不是?如果要划从A 到B 的最短路线,那么从A 点出发只能向上或向右(每一条都是横划2格竖划2格),可以是ACDEB 、ACIEB 、ACIFB 、AHGFB 、AHIEB 、AHIFB 这六条路线。
在上面这个游戏中,你是用什么方法找到从A 到B 的最短路线呢?如果A 、B 两点变成图1、2、3的位置,那么从A 到B 的最短路线有几条呢?分析:图1、2、3中从A 到B 的最短路线均为6条。
小朋友们,你是怎么做的?你发现了什么规律?如果图形变得复杂,还要保证找出的路线既不重又不漏呢?你又该如何解决呢?我们一起来看【例2】。
【例2】阿呆和阿瓜到少年宫参加2008北京奥运会志愿者培训。
请你想一想他们从学校到少年宫的最短路线最多有多少种?分析:我们采用对角线法(如图)从学校到少年宫共有10种走法。
我们观察图发现每一个小格右下角上标的数正好是这个小格右上角与左下角的数的和,这个和就是从出发点A到这点的所有最短路线的条数.这样,我们可以通过计算来确定从A→B的最短路线的条数,而且能够保证“不重”也“不漏”。
聪明的小朋友,你总结出什么规律了吗?请填在下面的空格内:【例3】下图是动物王国的街道平面图,纵横各有5条路,森林之王老虎先生通知大家去运动场开会,如果迟到就要挨罚喝100杯水。
爱睡懒觉的树袋熊一觉醒来,呀,要迟到了,想想那100杯水,树袋熊都快晕了。
善良的小朋友们,快来给树袋熊找找最近的吧!分析:教师可参考例1的解答过程,用对角线法(如下图)解,所以共有20条路线。
轴对称最短路线问题原理

轴对称最短路线问题原理
一、问题描述
轴对称最短路线问题,即求平面上两点间沿轴对称线走的最短距离。
二、问题解法
1. 构造对称轴
首先需要找到两点的对称轴,对称轴的构造方法有多种,常用的有以
下两种:
(1)连接两点,垂直平分线即为对称轴。
(2)以两点为圆心,以它们之间的距离为半径,画两个圆;两圆的交
点就是对称轴。
2. 沿对称轴转换
对称轴将平面分为两个对称部分,假设起点在对称轴左侧(或右侧),求出终点在对称轴右侧(或左侧)的最短距离,即为要求的轴对称最
短路线。
3. 求最短距离
最短距离可以使用最短路算法(如 Dijkstra 算法、Bellman-Ford 算法等)来计算。
三、应用领域
轴对称最短路线问题常见于自动化生产线、机器人运动等领域,在这
些领域中,机器人需要在不碰撞的情况下从一个点到达另一个点,同
时保证走的路径最短。
该问题的解决方法可以为机器人运动路径规划
提供参考。
迷宫最短路径问题的计算机解法

迷宫最短路径问题的计算机解法的信息目录迷宫最短路径问题的计算机解法的信息 (1)1.问题描述 (1)2.数据的输入与输出 (2)2.1.输入迷宫问题的大小规模 (2)2.2.建立数值迷宫图形 (2)2.3.走向(Direction) 控制 (2)2.4.数据输出 (2)3.数据结构 (2)3.1.数组(Array) (3)3.2.栈(Stack) (3)3.3.队列(Queue) (3)4.算法基本思想 (3)4.1.基本算法思想 (3)4.1.1.步骤一: (3)4.1.2.步骤二: (3)4.1.3.步骤三 (3)4.2.具体实施 (4)4.2.1.其一: (4)4.2.2.其二: (4)5.算法细化参考 (4)6.算法分析 (5)6.1.时间复杂性 (5)6.1.1.其一: (5)6.1.2.其二: (5)6.2.空间复杂性 (5)6.2.1.其一: (5)6.2.2.其二: (6)扳手1-1 (1)拉车1-2 (1)钢材1-3 (2)迷宫最短路径问题的计算机解法的信息迷宫最短路径问题的计算机解法的信息迷宫最短路径( the Shortest Path ofLabyrinth) 问题是一个典型的搜索、遍历问题,其程序设计思想在许多计算机运算程序、计算机管理程序中均有应用。
一般来说,用计算机解决一个具体问题时,大致需要经过下列几个步骤:首先要从具体问题抽象出一个适当的数学模型,然后设计一个解此数学模型的算法,最后编出程序,进行调试、调整,直至得到最终解答。
其中,寻求数学模型的实质是分析问题,从中提取操作的对象,并找出这些操作对象之间的关系,然后用数学语言加以描述。
但是,迷宫最短路径问题处理的对象不仅仅是纯粹的数值,而且还包括字符、表格、图象等多种具有一定结构的数据,这些非数值计算问题无法用数学方程加以描述,这就给程序设计带来一些新的问题。
迷宫最短路径( the Shortest Path ofLabyrinth) 问题是一个典型的搜索、遍历问题,其程序设计思想在许多计算机运算程序、计算机管理程序中均有应用。
最短路径原理

最短路径原理最短路径原理什么是最短路径•最短路径是图论中的一个经典问题,旨在寻找两个顶点之间权值和最小的路径。
Dijkstra算法•Dijkstra算法是最短路径问题中一种常用的解法。
•此算法从起点开始,逐步确定到达其他顶点的最短路径。
Dijkstra算法步骤1.初始化–创建两个集合:一个用于存储已经找到最短路径的顶点,一个用于存储未找到最短路径的顶点。
–将起点加入已找到最短路径集合,其余顶点加入未找到最短路径集合。
–初始化从起点到各顶点的距离为无穷大,起点到自身的距离为0。
2.寻找最短路径–选择未找到最短路径集合中,距离起点最近的顶点,将其加入已找到最短路径集合。
–更新与该顶点相邻的顶点的距离,若通过该顶点到达邻接顶点的路径更短,则更新距离。
3.重复步骤2,直到所有顶点都加入已找到最短路径集合。
示例让我们通过一个简单的示例来说明Dijkstra算法应用于最短路径的原理。
假设有一个无向图,顶点分别为A、B、C、D和E,边的权值分别为:AB(5)、AC(3)、BD(2)、CD(1)、DE(4)。
首先,我们从顶点A开始,初始化距离。
初始时,A到A的距离为0,A到B、C、D和E的距离为无穷大。
经过第一轮计算后,已找到最短路径的集合为{A},未找到最短路径的集合为{B, C, D, E}。
此时,A到C的距离为3,A到B、D和E的距离依然为无穷大。
经过第二轮计算,选择距离A最近的顶点C,将C加入已找到最短路径集合。
更新距离后,A到B的距离为8,A到D的距离为4,A到E的距离为7。
重复以上步骤,直到所有的顶点都加入已找到最短路径集合。
最后得到A到B的最短路径为:A->C->D->B,权值和为7。
总结通过Dijkstra算法,我们可以找到两个顶点之间的最短路径,并计算出最小的权值和。
该算法从起点开始,逐步确定最短路径,直到所有顶点都被加入已找到最短路径集合。
使用这一算法,我们可以在实际应用中解决各种问题,比如路线规划、网络中数据包的传输等。
最短线路问题

最短线路问题古希腊亚里山大里亚城有一位久负盛名的学者,名叫海伦.有一天,有位将军不远千里专程前来向海伦求教一个百思不得其解的问题:如图28-1,从甲地出发到河边饮马,然后再到乙地军营视察,显然有许多走法.问走什么样的路线最短呢?精通数理的海伦稍加思索,便作了完善的回答.这个问题后来被人们称作“将军饮马”问题.事实上,不仅是将军有这样的烦恼,运动着的车、船、飞机,包括人们每天走路都要遇到这样的问题.古今中外的任何旅行者总希望寻求最佳的旅行路线,尽量走近道,少走冤枉路.我们把这类求近道的问题统称最短线路问题.啊!原来这就是最短线路问题,我们已经在小学教科书上几次接触过.比如,三年级(第六册)书上说:“从学校到电影院有三条路(图28-2),小云要看电影走哪条路最近?”;又如,四年级(第八册)书上说:“通过度量可以知道‘从直线外一点到这条直线所画的各线段中,以和这条直线垂直的线段为最短’.”另外,从某种意义上说,上节的一笔画问题也属这类问题.看来最短线路问题在生产、科研和日常生活中确实重要且应用广泛.但是.怎样走才是近道呢?这可不是件容易的事.它慢慢地引起了数学家的兴趣,并用数学这个强有力的工具解决了它.下面来看看数学家是怎样解决的.问题28.1 假如直线AB是一条公路,在路两侧有甲、乙两个村子(如图28-3),现在要在公路上修一个公共汽车站,让这两村的人到车站的路线之和最短.问车站应修建在什么地方?分析如果只考虑甲村人距公路最近,由教材上的结论,只要由甲村向AB画一条垂线,交AB于C,那么C离甲村最近,但离乙村又远了.同样只考虑乙村近的线路乙—D—甲也不是最近的.怎样才能使甲、乙两村整体考虑时最近(即距离之和最短)呢?根据我们的经验:两个地点之间走直线最近.所以,在甲、乙之间连一条直线与AB相交于P点,则在P点建站就合要求了.注意:以上我们是凭经验作出的解答.但是数学家解决问题,总是要用一些公认的结论去对问题进行严格的证明才算正确,并把公认的结论称作公理.下面我们把解决最短线路问题时常用的公理列在下面.公理1 连接两点的所有线中,直线段最短.公理2 三角形的两边之和大于第三边.公理3 直线外一点到直线的所有线中垂线段最短.公理是从实践中总结出来的任何人都承认的原始道理.当然,有同学会想:“你那个公理我不承认行不行呢?”那可不行,比如图28-4(1)中,有一只鸡子在B点觅食,你在A点处放一些米,那么鸡子一定会沿直线AB跑过来吃食,决没有一只蠢鸡子沿B→C→A或沿B→D→A的路线跑过来.这表明:公理不但人类公认,连动物界也都遵循它.下面我们就用上述公理来解决一些最短线路问题.问题28.2 如图28-5,点A、B位于直线l的同侧,在l上找一点P,使得AP+PB最小.分析这就是“将军饮马”问题,我们看看海伦是怎么解决的.海伦发现这是一个求折线和最短的问题.从上面的公理1只知道两点间直线段最短.那么,显然要把折线变成直线再解.如果直接连AB,与l不会相交.怎么办呢?由问题28.1得到启发:当A、B位于l的异侧时,就有交点了.于是我们就希望在l的另一侧找一点A′,使得连A′B与l相交于P点后(这时A′P+PB最短)线段A′P与AP一样长.由对称的知识可知道,A关于l的对称点就有资格扮演A′的角色.解如图28-5,先作A关于l的对称点A′,连接A′B与l相交于P点,则AP+PB就最小。
专地的题目训练蚂蚁爬行地最短路径(含答案详解)

蚂蚁爬行的最短路径1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:(1)否,0+5-3+10-8-9+12-10=-3,故没有回到0; (2)(|+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114粒2. 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB 即为最短路线.AB = 51222=+.3.(2006•茂名)如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是 cm第6题.解:由题意得,从点A 沿其表面爬到点B 的最短路程是两个棱长的长,即2+2=4.4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是( )A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒B解:根据两点之间线段最短可知选A . 故选A .5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )解:如图,AB =()1012122=++.故选C .16. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为( )解:展开正方体的点M 所在的面, ∵BC 的中点为M , 所以MC =21BC =1, 在直角三角形中AM = =.7.如图,点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是 cm 。
解:将盒子展开,如图所示:AB =CD =DF +FC =21EF + 21GF =21×20+21×20=20cm . 故选C .8. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为 .解:将正方体展开,连接M 、D 1, 根据两点之间线段最短,MD =MC +CD =1+2=3,MD 1= 132322212=+=+DD MD .9.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用 2.5秒钟.解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB = = cm ;(2)展开底面右面由勾股定理得AB ==5cm ;第7题1AB A 1B 1D CD 1C 124所以最短路径长为5cm ,用时最少:5÷2=2.5秒.10.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。
六年级下册奥数试题——最短路线.(含答案)人教版

8-8 最短路线教学目标1.准确运用“标数法”解决题目2.培养学生的实际操作能力.知识精讲知识点说明从一个地方到另外一个地方,两地之间有许多条路,就有许多种走法,如果你能从中选择一条最近的路走,也就是指要选择一条最短的路线走,这样你就可以节省许多时间了,那么如何能选上最短的路线呢?亲爱的小朋友们,你要记住两点:⑴两点之间线段最短.⑵尽量不走回头路和重复路,这样的话,你就做到了省时省力.例题精讲例 1】一只蚂蚁在长方形格纸上的 A 点,它想去 B 点玩,但是不知走哪条路最近.小朋友们,你能给它找到几条这样的最短路线呢?解析】(方法一)从A点走到B点,不论怎样走,最短也要走长方形AHBD 的一个长与一个宽,因此,在水平方向上,所有线段的长度和应等于AD ;在竖直方向上,所有线段的长度和应等于DB .这样我们走的这条路线才是最短路线.为了保证这一点,我们就不应该走“回头路”,只能向右和向下走.所有最短路线:A C D GB 、AC F G B、 A E F G BA C F I B、 A E F I B、 A E H I B这种方法不能保证“不漏”.如果图形再复杂些,做到“不重”也是很困难的.(方法二)遵循“最短路线只能向右和向下走”,观察发现这种题有规律可循.①看C点:只有从A到C的这一条路线.同样道理:从A到D 、从 A 到 E 、从 A 到H 也都只有一条路线.我们把数字“ 1 ”分别标在C、D、E、 H 这四个点上.②看 F 点:从 A 点出发到 F ,可以是 A C F ,也可以是 A E F ,共有两种走法.那么我们在F点标上数字“ 2”(2=1 1).③ 看G 点:从 A G 有三种走法,即: A C D G 、 A C F G 、 A E F G.在G点标上数字“ 3”(3=1 2).④看I 点:共有三种走法,即:A C F I 、 A E F I 、 A E H I ,在I 点标上“ 3” (3=1 2).⑤看B点:从上向下走是G B ,从左向右走是I B ,那么从出发点 A B有六种走法,即: A C D G B、 A C F G B、A E F G B、A C F I B、A E F I B、A E H I B,在B点标上“ 6”( 6 33),观察发现每一个小格右下角上标的数正好是这个小格右上角与左下角的数的和,这个和就是从出发点 A 到这点的所有最短路线的条数.此法能够保证“不重”也“不漏”,这种方法叫“对角线法”或“标号法”.巩固】如图所示,从A点沿线段走最短路线到 B 点,每次走一步或两步,共解析】 共有 9种,即: A A B O C 、B O DC 、A D OBC ,最短的路是: A OC 、 A O B C 、 A B CA D C 、 A D O C C .解析】 这是一个较复杂的最短路线问题,我们退一步想想,先看看简单的情况.从 A 到 B 的各种不同走法中先选择一条路线来分析:如果按路线 A →C →D →E → F → B 来走,这条路线共有 5条线段,每次走 一步或两步,要求从 A 走到 B ,会有几种走法?这不是“上楼梯”问题吗.根 据“上楼梯”问题的解法可得在 A →C →D →E →F → B 这条路线中有 8 种符合条件的走法.而对于从 A 到 B 的其他每条最短路线而言,每一条路 线都有 5 条线段,所以每条路线都有 8 种走法.进一步:从 A 到B 共有多少条最短路线?这正是 “最短路线”问题!用“标 数法”来解决,有 10 条.综上所述,满足条件的走法有 8 10 80种.巩固】 从A 到 B 的最短路线有几条呢?解析】 图中从 A 到B 的最短路线都为 6 条.巩固】 有一只蜗牛从 A 点出发 ,要沿长方形的边或对角线爬到 C 点,中间不许 爬回 A 点,也不能走重复的路,那么,它有多少条不同的爬行路线?最短 的是哪条呢?有多少种不同走法?D DE EFBDEACFB AC CB例 2】 阿呆和阿瓜到少年宫参加 2008 北京奥运会志愿者培训.如果他们从学校出发,共有多少种不 同的最短路线?解析】 从学校到少年宫的最短路线, 只能向右或向下走. 我们可以先看 A点:从 学校到 A 点最短路线只有 1种走法,我们在 A 点标上 1.B 、E 、F 、G 点同 理.再看 J 点:最短路线可以是 A J 、E J 共2条,我们在 J 点标上 2.我 们发现 2 1 1正好是对角线 A 点和 E 点上的数字和.所有的最短路线都符 合这个规律,最终从学校到少年宫共有 10 种走法.巩固】 方格纸上取一点 A 作为起点,再在 A 的右上方任取一点 B 作为终点,画一条由 A 到B 的最短路线,聪明的小朋友, 你能画出来吗?总共能画出几条 呢?解析】 根据“标号法”可知共有 10 种,如图.学校学校1 1 12 3J136 1 4 I10BAAC D 少年宫巩固】如图,从 F 点出发到G 点,走最短的路程,有多少种不同的走法?G分析】 共 有 115种.小聪明想从北村到南村上学,可是他不知道最短路线的走法共有几种?小朋友们,快帮帮忙呀!北村“五一”长假就要到了,小新和爸爸决定去黄山玩.聪明的小朋友请你找找看从北京到黄山的最短路线共有几条呢?采用对角线法(如图)这道题的图形与前几题的图形又有所区别,因此, 在解题时要格外注意是由哪两点的数之和来确定另一点的.从北京到黄 山最近的道路共有 10 条.2456 3 6 10 1521 4 10 20 3565 1535 7126 北村1 1 11 1 1 1巩固】 分析】 根 据“对角线法”知共有 126种,如图.南村北京1 1 12 1122 3241 3710黄山解析】北京巩固】从甲到乙的最短路线有几条?解析】有11条.例 4 】古希腊有一位久负盛名的学者,名叫海伦.他精通数学、物理,聪慧过人.人一天一位将军向他请教一个问题:如下图,将军从甲地骑马出发,要到河边让马饮水,然后再回到乙地的马棚,为了使行走的路线最短,应该让马在什么地方饮水?甲地乙地河流解析】本题主要体现最值思想和对称的思想,教师应充分引导孩子观察行走路线的变化情况逐步引导学生通过对称来找到相应的点,进一步了解图形最值问题中应该如何解决问题.例 5 】学校组织三年级的小朋友去帮助农民伯伯锄草,大家从学校乘车出发,去往的李家村(如图).爱动脑筋的嘟嘟就在想,从学校到李家村共有多少种不同的最短路线呢?解析】我们采用对角线法(如图),从学校到李家村共有81种不同的最短路线.学校2 310 103 64 105 15 25 356 21 46 81甲学校11拓展] 亲爱的小朋友们,你们觉得从 A 到 B 共有几条最短路线呢?解析】 此 题与上题不同,但方法相同.我们采用对角线法(如图)可知:可以选择的最短路线共有 41 条.例 6】 阿花和阿红到少年宫参加 2008 北京奥运会志愿者培训.他们从学校出发 到少年宫最多有多少种不同的行走路线?少年宫 少年宫解析】 采用对角线法(如图) .可得从学校到少年宫共有 90 种走法.铺垫] 小海龟在小猪家玩,它们想去游乐场坐碰碰车,爱动脑筋的小朋友,请你想一想,从小猪家到游乐场共有几条最短路线呢?解析】 “对角线”法(如图) ,共 14 条.例 7 】 阿强和牛牛结伴骑车去图书馆看书,第一天他们从学校直接去图书馆;游乐场游乐场14 59 5243 211 1 1 小猪家第二天他们先去公园看大熊猫再去图书馆;第三天公园修路不能通行.咱们学而思的小朋友都很聪明,请你们帮阿强和牛牛想想这三天从 学校到图书馆的最短路线分别有多少种不同的走法?仍 然用对角线法求解.第一天(无限制条件)共有 16条;第二天(必须 经过公园)共有 8条;第三天(必须不经过公园)共有 8 条.大熊和美子准备去看望养老院的李奶奶, 可是市中心在修路 (城市的街道 如图所示 ),他们从学校到养老院最短路线共有几条呢?聪明的小朋友, 请你们快想想吧!方法二)可以直接求,即把含有市中心的田字格挖去,共有 66 条.解析】巩固】市中心学校解析】 (方法一)用“对角线法”求出:从学校到养老院共 心的 60 条,所以可行的路有: 126 60 66(条). 126条.必经过市中515 35 70 126 410 203556 3610 市中心152123456学校养老院111学校 养老院养老院养老院5 15 25 40 661 4 10 10 15 2651 3 6111 2 3 4 5 6学校 1 1 1例 8】如图,从X 到Y 最短路线总共有几种走法?分析】如图,共有716种.例 9】如图,从A到B沿网格线不经过线段CD和EF 的最短路径的条数是多少条?解析】由于不能经过线段CD和EF ,所以我们必须先在网络图中拆除然后再在拆除了CD和EF以后的网络图中进行标数(如下图所示).运用标数法可求出满足条件的最短路径有78 条.Y18 3685170 342 71617 28 49 85 172 37416 21 2 36 87 2021 5 15 15 51 115151 4 10 36 6413 6 10 15 21 281 2 3 4 5 6 7X 1 1 1 1 11CD和EF ,巩固】下图为某城市的街道示意图,C处正在挖下水道,不能通车,从A到B 处的最短路线共有多少条?解析】从A到B的最短路线有431条.解析】本题中的运动方向已经由箭头标示出来,所以关键要分析每一点的入口情况.B431B174110 5564 55 55 30 129C25 18 12 7 398 7 6 5 4 3 2 111 1 1 1 1 1 1例 10 】按图中箭头所指的方向行走,从A到I 共有多少条不同的路线?1742571910A通过标数法我们可以得出从 A 到I 共有 29条不同的路径.例 11】 按图中箭头方向所指行走,从 A 到G 有多少种不同的路线?解析】 运 用标数法原理进行标数,整个标数流程如下图从 A 到 G 共有 21 条不同的路线.巩固】 ⑴按下图左箭头方向所指,从 X 到Y 有多少种不同的路线? ⑵如下图右所示,这个问题有一个规则:只能沿着箭头指的方向走,你 能否根据规则算出所有从入口到出口的路径共有多少条?C EBAEB2 1AC GG分析] ⑴利用标数法求得 X 到Y 有34种不同的路线,如下图左所示. ⑵由题将路线图转化为下图右所示,根据标数法求得从入口到出口的路 径共有 10 条.例 12】 ⑴如下图左,如果只允许向下移动,从 A 点到 B 点共有多少种不同的路线?⑵如下图右,要从 A 点到 B 点,要求每一步都是向右,向上或者斜上方, 问共有多少种不同的走法?34Y入口出口5 8 31X13AB解析】⑴按题目要求,只能向下移动,利用标数法求得A到B共有路线68种,如下图左所示.⑵按题目要求,只能走下图右的3个方向,利用标数法求得共有22 种不同的走法,如下图右.巩固】 图中有 10个编好号码的房间, 你可以从小号码房间走到相邻的大号码房 间,但不能从大号码房间走到小号码房间, 从 1号房间走到 10 号房间共 有多少种不同走法?分析】 图 中并没有标出行走的方向,但题中“你可以从小号码房间走到相邻的大号码房间,但不能从大号码房间走到小号码房间”这句话实际上就规 定了行走的方向.如下图所示,我们可以把原图转化成常见的城市网络 图,然后再根据标数法的思想标数:从图中可以看出,从 1 号走到 10号 房间共有 22 种不同的走法.A68 BB 22 16 61例 13】一只密蜂从A处出发,A回到家里B处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?解析】 蜜 蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行 ”这意味着它只能从小号码的蜂房爬进相邻的大号码的蜂房.明确了行走路径的方向,就可运用标准法进行计算.如图所示,小蜜蜂从 A 出发到 B 处共有 89种不同的回家方法 .例 14 】 在图中,用水平或垂直的线段连接相邻的字母, 当沿着这些线段行走时,正好拼出“ APPLE ”的路线共有多少条?PP LPP P L E L P分析] 要想拼出英语“ APPLE ”的单词,必须按照“ A P P L E ”的次序拼写.在图中的每一种拼写方式都对应着一条最短路径.如下图所示,运 用标数法原理标数不难得出共有 31 种不同的路径.P P L P P A P L E L P P A1311 2 7 2 11 2 4 15 4 2 1 2 4 8 31 8 4 2 1铺垫]图中的“我爱希望杯”有多少种不同的读法.我 1 爱 1 希 望 1 杯1 1 1 1爱 1 希 2 望 3 杯 41234希 望 杯 希1望1望 3杯4杯6 望 1杯1 4分析] 从我( 1个)、爱( 2个)、希( 3个)、望( 4个)、杯( 5个)中组成“我 爱希望杯”即相同的字只能选一个而且不能重复选,所以共有1 4 6 4116(种).拓展] 如 下图左所示,科学家“爱因斯坦”的英文名拼写为“ Einstein ”,按图中箭头所示方向有多少种不同的方法拼出英文单词“ Einstein ” .1i E1 1 i2 i 1 1s n3 n 3 n 1 t4 s t 6 s t 4 s 10 t 10 t ee 1i 0 2i 0i 10 3n 0 i 3n 0 i分析] 因为“ Einstein ”的拼读顺序为“ E i n s t e i n ”,每一种拼法都 对应着网络图中的一条最短路径,所以可以运用标数法来解决. 如上图右所示,从E 点到n 点的最短路径有 30条,所以共有 30 30 60(种) 不同拼法 . 注意图中的三个字母 “i ”, 左、右的两个字 母“i ”只能由一 个字母。